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INTRODUCTION 
Recent experimental investigation of the quadrupole polari

zation of deuterons in the pd back scattering shows that its 
value is about zero within the experimental errors throughout 
a wide range of incident proton energies T0~400-1000 MeV l / . 
This result is in strong disagreement with the predictions 
of the single nucleon pole model or the nucleon resonance mo
del of Kerman and Kisslinger / z / which predict strongly va
riable large tensor polarization coefficients / 8 /. 

The investigation of the polarization phenomena gives 
a rigorous test to different models of the pd back scattering 
at intermediate energies. The differential cross sections of 
this process, calculated in different models '*"", can give 
a good agreement with the experimental data. The difference 
between different models may be found by the study of vector 
and tensor polarization phenomena which depend strongly on 
the dynamics of the process. 

The smallness of tensor polarization in the triangle model 
of Craigie and Wilkin / 8 / (see fig.la) was already predicted / 9 / . 
The second rank polarization tensor in the triangle model can 
be constructed only from vector q which is the relative mo
mentum of nucleons in the deuteron. Since in the integral 
on q the main contribution is given by the small values of 
q /*>6/ , the quantity <Ч(Ч, > must also have a small value. 

Fig.1. a) The triangle diagram of Craigie and Wilkin 
for the pd-»pd scattering, b) The triangle diagram 
of Yao for the pp -. 6n+ reaction. 
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This argument is not enough as the d-wave component of the 
deuteron wave function, which gives only a small fraction to 
the differential cross sections'107, has a very important 
role in the calculation of quantity <qjq,>. The momentum 
spectra of the d-wave component is strongly different from 
the spectra of the в-wave since the d -wave is described by 
largeq values. 

But at the incident energy T 0 = 620 MeV at which is a thre
shold energy for the creation of the A g 3 resonance in the 
NN collisions, the Л 33 resonance can be created only in the 
case of q=0 (if the resonance has zero width). So in the 
models where the main contribution to the amplitude of the 
scattering is determined by the creation of the A g 3 reso
nance / 7 /*, in the given energy range the small value of the 
tensor polarization can be predicted. 

The calculations (see further below) show that in the 
Craigie-Wilkin model of the pd back scattering the final reso
nance width in the pp •* dir+ reaction gives some small contri
bution. 

Basing on the above arguments, we shall show later, that 
the value of tensor polarization in the pp-»di?+ reaction 
is small. The smallness of tensor polarization of forward 
deuterons in the quasifree reactions A( p, pd) В and A(p, л!)В 
is predicted, too. 

Preliminary results of these calculations have been pub
lished in work / l l /-

TENSOR POLARIZATION IN THE TRIANGLE MODEL 
Using the definition and notation of work for the tensor 

polarization parameter A we have: 
N + + N_-2N„ 
N + + N_+N 0 

(1) 
where N + , N _ and N 0 are the numbers of deuterons in the final 
state in the case of unpolarized beam and target with spin-
projection values M z=+1, -1, and 0, respectively. The re
gion of values of A according to (1) is -8 <A <1. 

* Calculation of tensor polarization in the pd back scat
tering in the model / 7 / has been recently carried out by 
L.A. Kbndratyuk et al. 
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The triangle model for the pd back scattering (0 =180°) 
gives the following simple expression for A. 

-|fo |8 + 2v¥'Re(f0f|) 
A . . ( 2 ) 

| f 0 l +l'«l 
In the usual peaking approximation, calculating the slowly 

variable quantities at q =0, fp is defined in terms of the 
deuteron wave function components фл (г) with orbital momentum 
I = 0 or I = 2. 

f f(0 = /~^(г)е~ у г j1(pr)(l + yr)dr, (3) 
j m (x) is a spherical Bessel function. Numerical factors у 
and p are discussed in refs. / 5 , 1 , their definition is given 
in the Appendix, see formulae A2. Their values in the isobar 
region are у ~ 0.73 fm _ 1 and p - 1.65 fm" 1. 

In the peaking approximation A,practically, does not de
pend on the incident energy Tfl , its value is A--0.8. 

The peaking approximation is well established only for the 
calculation of f 0 as the d-.pn vertex in the case of t = 0 
has its maximum at q=0 and it decreases drastically with the 
increase of q. As the momentum spectra of the d-»pn vertex 
in the P =2 is found in the region of large q values, the 
peaking approximation for the calculations of f g is rather 
rough and we have to calculate it with more accurate methods. 
This is very important as the contribution of th? 1-2 wave, 
which is quite small for the differential cross sections / 1 0 /, 
is comparable to the s-wave contribution see formulae (2). 

At first we have converted the nonrelativistic forms of 
nucleon propagators / 5 / to relativistic forms. We have assumed 
for the pp-dff+ amplitude F ml m2(T 0.q z) (mj.mg.M arc 
the spin projection quantum numbers of nucleons and deuteron, 
respectively) a Breit-Wigner form in the resonance region with 
resonance energy T R = 620 MeV: 

^ 1 Г О 8 ( т 0 . 1 г ) ^ ; - ш м т 0 ) т я - т о - " ^ ? 
M 0 z M 0 T R _ T ( T O „ ^ _ 1 Г / г 

T(T 0,q z)is the relativistically calculated energy of the incident proton in the rest system of proton in the dei'*eron. 
Taking into account the experimental total pp-> dir+cross sec
tion / > 2 / the width of the resonance has been chosen Г= 300 MeV. 

The dependence of the N -» NIT vertex on the square of the 
pion four-momenta к а is described by the Ferrari-Selleri 
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factor / i 8 / 

F(k 8) = tl + ̂ S - k S ) / 6 0 / l ~ 1 , (5) 

where y. is the pion mass. 
In order to separate the dependence on q and cosd=q/qz 

we have expanded the A(T0,qz)i factor into Legendre series, 
where A(T0,qz) is the product of functions depending on q z 

(it contains (4), (5) and other factors defined in Appendix): 

А< то-ч г> = , =
2

0 М т о . ч , > р е <«»*> (6) 

The use of expansion (6) in calculations of fg will not 
change formula (2) since the application of (6) does not in
fluence the spin structures. For f2 we have got the following 
sum of two-fold integrals. 

f.= 2 B(Lff .) 7*e~'"/d448^2(<J)JL(4OAf(T0,q) x 
" blty 0 0 

L f.+ f t ( 7 ) 

' x[(l+yr)j , ffit)+(-l) i prj,(pr)S(q)], 

where Ф£(Ч) is the d-wave component of the deuteron wave func
tion in momentum space. 3(q) and S(Ll£ j) are defined in A3 
and AI3, respectively. The second term in (7) gives a 5-10% 
contribution to f 2 . 

TENSOR POLARIZATION IN pd-pd AND pp ->d<r+ REACTIONS 
The above formalism can be applied equally well for the 

pd-»pd scattering and for the pp->dw+ reaction as they 
are different in the triangle model only in the amplitude 
of the resonance process. Changing the amplitude P p p ~* 
in fig, la into the F" N "*N" amplitude we get the fig, lb, 
the triangle diagram of Yao / 1 4 /on the pp -, dw+ reaction. 

For the deuteron wave function we have used the Reid soft 
core and Reid hard core wave functions/16/. The results are 
plotted in fig.2. The calculated tensor polarization A for the 
pd back scattering is quite small in absolute value throughout 
the 400-1000 MeV range which is in agreement with experiment''1'. 
Authors of ref. . did not give the value of A atT=600 MeV 
as they have no relative normalization between the measure-
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Fig.2. The dependence of tensor 
polarization A in the pd back 
scattering on the incident 
proton energies Tp.Experimen
tal values are from7Iх.Theore
tical curves are calculated 
by the single pole model I by 
the isobar model of Kerman and 
Kisslinger 2, by the triangle 
model with Reid soft core wave 
function 3, by the snme model 
with hard core wave function A. 

Tp[G«V] 

Fig.3. The dependence of 
tensor polarization A in the 
pp-»dir+ reaction on the in
cident proton energies 
at backward pion angle within 
the triangle model. Curves 
are calculated by Reid soft 
core 1 and Reid hard core 2 
deuteron wave functions. 

ments with full and empty targets. But both results are in 
agreement with the value A=0. Taking into account the agreement 
of the calculated and experimental vector polarization in the 
pd back scattering in the isobar region (500-700 MeV)/iS''we 
can btate that the triangular model has a dominant role in the 
isobar region. 

In the case of the pp-»djr+ reaction the width of the re
sonance is -120 MeV according to the experimental width of 
the A3g isobar. The results with Reid soft core and Reid 
hard core wave functions are plotted in fig.3. It can be seen 
that the predicted tensor polarizations are small, too, espe
cially in the isobar region. There are no measurements in this 
region. Our result is in strong contradiction with the predic
tion of Niskanen's isobar model 7 1 , where the tensor polarizc-
tion in the pp-»dff+ reaction at 0_ ,, =180°has its minimal 
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value, A = - 2 , independent
ly of the incident proton 
energy. From the view 
point of different models 
the measurement of A is 
highly desirable. 

TENSOR POLARIZATION IN THE 
A(p,Xd) REACTION 

The large number of 
forward deuterons at inter
mediate incident proton 

BOO « Ю 1200 M O 1600 P^Meyfc e n e r g i e s ' » ' can be ex
plained in terms of the 

Fig.4. Forward inclusive deute
ron spectrum in the ' C(p, Xd) 
reaction at intermediate pro
ton incident e n e r g i e s / z 0 / . The 
first peak (a) can be related to 
the pN-»di7, the second(b) to 
the p<NN>-»Nd quasifree pro
cesses. 

pp->dir quasi-free reaction 
and of the quasi-elastic 
pd-»pd scattering, see the 
r e v i e w / 1 9 / . An illustrate 
example of the forward in
clusive deuteron spectra 
can be seen in fig.A. The 
diagrams of the quasi-free 
processes are plotted in 
fig. 5. These reactions 
have a strong peripherical 

character due to the strong absorption of deuteron in the final 
state. 

The quasi-free pd processes are mainly due to the p<pn, t~0>-< 
-»pd ( t is the isospin), elementary processes, where the 
<pn> cluster has the quantum numbers of the deuteron / n / . The 
cross section ratios are c(p <pn, t -0 > -»pd) /u(p<pn, t-l>-»pd)>9 
a(p<pn, t-0>-»pd)/o(p<nn>-»nd) - 4.5 assuming identical 
space part of the t - 0 and t-1 wave f u n c t i o n s / s l / . In 
ref ff7 /iff/ the dominance of the f-0 contribution is suggested 
due to the sensitivity of the amplitude on the short range 
part of the <pn> relative wave function. 

In the case of unpolarized target the nucleon and the <pn> 
cluster inside the nucleus are also unpolarized. Using the 
triangular model for the elementary processes inside the nuc-
leus /' 0 /, we can predict the small absolute values of tensor 
polarization of forward deuterons in the isobar region, in
dependently of the deuteron origin from the pp -»di7 or from 
the p<pn>-»pd elementary processes. The Fermi motion of the 
nucleon or the <pn> cluster inside the nucleus give the effect 
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Fig.5. The diagrams of the A(p, nd)B (a) and 
A(p, Nd)B (b) quasi-free processes. 

of resonance width increase in the elementary process. The 
motion of the resonance maximum is possible, too. These ef
fects do not influence our conclusion like for example the 
increase of the width from 120 to 300 MeV does not change the 
character of the results (see figs.2,3). The effect of the 
spin dependent forces may disturbe the polarization of deute
rons along their path inside the nucleus, but at these high 
energies of deuterons (600 MeV from the pd-»pd scattering) 
the imaginary part of the optical potential is dominant. 

The experimental study of tensor polarization of forward 
deuterons from the reaction A(p,Xd) В at intermediate proton 
energies in different mass regions is highly desirable. If 
the measurements give support to the model suggested in / l 0 /, 
the A(p, pd)B experiments see''81,88'' may give an excellent tool 
for the study of the pairing effects on the surface of the 
nuclei. 

APPENDIX 
m.M. The H M amplitude of the pd-»pd scattering, where m a 

and M are the spin projection quantum numbers of the protons 
and deuterons, according to the diagram la, can be written in 
the following form: 

H-,M t "l*g 4 H t 

П , , М' Jp*-m 8-l 4)(n 8-m*-i,)(k 8V-i,)' 
where С «—li/2 »~6,'8mj», p and m are the masses of pion and 
nucleon, p ,o, and к are the four momenta of the virtual pro
ton, neutron and pion, p and E are the momentum and energy 
of the virtual neutron, D̂ *J , Г^ 1 are the deuteron vertex 
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and the p ->nrr+ vertex,respectively. Putting the virtual neut
ron on the mass shell the integration with the help of the 
pole in E=(p2+n2) can be carried out: 

m M D?'„ r3F""mni(J>dp 
M m M[- С' / L i — L - J 4 , ( A 2 ) 

where 

C — 2 _ 1 / a

f f ~ 8 / B / . ( l + T j / m ) - 1 , (A2a) 

(p 2 +X' 8 ) f (p-p") 8 +y a J 
R(p) = _ , ( A 2 b ) 

[-М^/г + М ^ ш ^ р 2 ) ][2m 2-2(m 2+p a)'*(m + T j ) + 2 p p i - f i

a l 

jf = p 1 ( l + T i / m ) ~ l , (A2c) 
y a = T a ( 1 + T j / m ) - 8 + / i a ( 1 + T j / m ) - i # ( A 2 d ) 

For the evaluation of the invariant integral we have chosen 
the rest system of the final deuteron. T ( and p i are the 
kinetic energy and momentum of the initial proton, in this 
system, respectively. M d is the deuteron mass х 2 = п>«а> 
where *, is the binding energy of the deuteron. With the 
factor K(p5 we can reserve the relativistic nature of the 
propagators. 

The Г 1 vertex can be written in the following form: 
ml 

r^ 1 = v72"0F(k2)u(pi)y5u(p)=viGF(fc2)(E
i
+"1)l'4(Etn,)~,/4 * (A3) 

х ( 2 ц ) " 4 (2m) - 1 </>Hv°l$-h +S(p)p"* il^i4m i • 
where 

S(p) = l + (l + T,/m) (m + E H m + E , ) - 1 (A3a) 

with G /4л = 14.8, a is the Pauli Matrix, ф„ is a two com-_ Vt m ponent s p m o r . 
Assuming the energy function described by formula (4) for 

the F^2mt amplitude and collecting the factors from Г"1 
and F M

2 ' depending on p we have the following expres
sion for 'А(Т0.рг) in (6): Z 

8 



-. f2 m i w етк8* T R - T 0 - i r / 2 
A(Tn.p ) = R(p)i2BL-. F< k > * — 2 , (A4) 

0 z F(k2) (Е + ш ) л Т к-Т(Т 0,р г)-1Г/2 
where kj =kz(p=0). The definition of the expansion coefficients 
in formulae (6) is as follows 

2 1 A f(T 0,p) = — -/A(T 0,p z)P f (я) dx x=cos0. (А5) 

Taking i n t o account the fol lowing i n t e g r a l r e p r e s e n t a t i o n s : 

( p 2 + y 2 ) - l = ( 4 f f ) - l ; e - y r / r . e

l p r

 d r - ( A 6 a ) 

and 

J. Zi_ f l / J L , ' I.")" »' / — ' — + ^ - ) e ~ ' " e " " dr (A6b) 
p 2 + y 8 4ir Г Г Г 

and us ing the formulas (A3) and (6) the (A2) ampli tude o b t a i n s 
the fo l lowing form 

f 

мш1иГ°"ф*»1оф*™?«i ( T o ) 5 ~ Г ~ Г f V T ° ' P ) p t ( c o 8 * ) x 

P + X (A7) 

xf[L(Z. + \ . ) e - y t - ip* l S (p ) -* - ] e K ^ ' ' dr\jp\ 

where 

- E i +•" ,M 1 T<*\) C " = - ^ i — V2G(—i- ) -i U C ' . (A7a) 
in ty 2m ( 8 m ) й 

M f 

We express t he D„ „ v e r t e x i n terms of t he </>Др) deu te ron 
wave func t ion components as fol lows 

M f 

m .» 
Expanding the e'(P""P)' f a c t o r i n (A7) by s p h e r i c a l harmonics 
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and using the expression, for the spherical harmonics products 
we have 

m-M. " m V ^ V F(k*M2m) * [3^(E j +m)]" x 

[(2f,4-tX2fo+ l)l' ,,„> 
x X Г ° - (P,010|L0)x (A9) 
у ь ^ 3L+1 l 

x( f n Q£0M)H„?, , 2 (H^V^C | lm a ) ( l iD s f 0 m|lM f ) x 
m 6 m l m 8 

x ( 1 4 v l l m a | V 4 m l ) ( f i m i l m g | P m ) Y p щ (p f ) F ^ 8 " " ' ^ ) ^ „ / й „ g 

with 

H ° = /dre ' " " d q q ^ . ( J j f q r ) A (T q) x 
f L ! о ° ° (A10) 

x[(l+yr)jj (pt) +(-l)Li 1 + + 1 JL(pr) ptS(q) ]. 

In the case of the P = 0 amplitude ф/ (q) decreases drasti
cally with the increase of q, In the region of q =0 
Af(T0,q) ~6 ($ and by taking into account that S(0)«1 we 
get the formula of ref. . m M 

Using the formulae (A9) for the amplitude M we have 
III j M j 

calculated the tensor polarizatiop A defined in (1), wher? 
mr 1 8 

N + = £ ^ п м 1 ' ( A , I ) 

and for N_ and N Q we have the same formulae with the change 
of index M f=l to -1 and 0 respectively. We have got the 
formulae (2), where fg has the following definition: 

: „ = £ B(LHVHf .» 2 L W I 1 L P f i f 2 = £ B(bfP,)Hfe» (A12) 

with 

B(U? ,) =-(5/n) (-1) l i 1 + L + 1 (C.010|LO)(20CO|LO) x 
(A13) 

x £ ( - l / ( l - / i2^|10)(2/ 1 P0|L^)(P.01^|2 f I ) . 
V-
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