

сообщения обьединенного института ядерных

 исследовании
дубна

$1775 / 2-80$
$21 / 4-80$
E2-80-56

Kh.Namsrai

A NOTE ON THE PROBLEM
OF TWO INTERACTING STOCHASTIC PARTICLES

In the previous paper /1/ we have investigated the motion of a aingle particle in a stochastic space and obtained equations of atochastic mechanics in both the nonrelativiatic and relativiatic cases. Now we ahall consider the problem of two interacting particles since this is the problem of real physical interest. We shall study this question within the framework of Kerahaw's atochastic model $/ 2 /$ which is based on the Smoluchowski equations for the probability density $\rho\left(\vec{x}_{1}, \vec{x}_{2}, t\right)$ of finding the first particle at point \vec{x}_{f} and the second particle at \vec{x}_{2} at time
t. Let there be a potential force $U\left(\vec{x}_{1}-\vec{x}_{2}\right)$ operating between the two particlem, and let $\vec{v}_{1}\left(\vec{x}_{1}, \vec{x}_{2}, t\right)$ and $\vec{v}_{2}\left(\vec{x}_{f}, \vec{x}_{2}, t\right)$ be their relative velocities.

The problew of two interacting stochastic particles was con--idered first by Kershaw $/ 2 /$ for the case of a oingle quantity
$P_{+}\left(\vec{x}-\Delta \vec{x}^{+}, t ; \Delta \vec{x}^{+}, \Delta t\right)$, where $P_{+}\left(\vec{x}-\Delta \vec{x}^{+}, t ; \Delta \vec{x}^{+}, \Delta t\right)$ ie the conditional probability denaity that a particle at position $\vec{x}-\Delta \vec{x}^{+}$at time $t \quad$ will be displaced by $\Delta \vec{x}^{+}$during the interval Δt, thue reaching position \vec{x} at time $t+\Delta t$. He has obtained some equations describing the center-of-maemes and relative motlons of two particles. These equations can formally be reduced to the Schrödinger equation for a two-particle system.

Pollowing Kershaw $/ 2 /$ and an idea of paper $/ 1 /$ we shall inveatigate in this paper the problem of motion of two interacting particles in the stochastic spaoe with a small stochastic component by uaing two conditional probability denaities P_{t} and P. where $P(\vec{x}+\Delta \vec{x}, t ; \Delta x ; \Delta t)$ denote the probebility density that a particle with position $\vec{x}+\Delta \vec{x}^{-}$at time t has been dieplaced through $\Delta \vec{x}^{-}$in the preceding interval Δt and thua would have been found at \vec{x} at the earlier inatant $t-\Delta t$. Let

$$
\begin{align*}
& P_{+}^{\prime}\left(\Delta \vec{x}_{j}^{+} ; \Delta t\right)=\left(2 \pi \tau_{1} \Delta t / m_{1}\right)^{-3 / 2} \exp \left\{-m_{1}\left(\Delta \vec{x}_{1}^{+}\right)^{2} /\left(2 \tau_{1} \Delta t\right)\right\} \\
& \underline{P}_{-}^{\prime}\left(\Delta \vec{x}_{1}^{-} ; \Delta t\right)=\left(2 \pi \tau_{1} \Delta t / m_{1}\right)^{-3 / 2} \exp \left\{-m_{1}\left(\Delta \vec{x}_{1}^{-}\right)^{2} /\left(2 \tau_{1} \Delta t\right)\right\} \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
& P_{+}^{2}\left(\Delta \vec{x}_{2}^{+}, \Delta t\right)=\left(2 \pi \tau_{2} \Delta t / m_{2}\right)^{-3 / 2} \exp \left\{-m_{2}\left(\Delta \vec{x}_{2}^{+}\right)^{2} /\left(2 \tau_{2} \Delta t\right)\right\}, \tag{2}\\
& P_{-}^{2}\left(\Delta \vec{x}_{2}^{-}, \Delta t\right)=\left(2 \pi_{2} \Delta t / m_{2}\right)^{-3 / 2} \exp \left\{-m_{2}\left(\Delta \vec{x}_{2}^{-}\right)^{2} /\left(2 \tau_{2} \Delta t\right)\right\}
\end{align*}
$$

be transition probability densities for the first and second partisles, respectively. Here $\tau_{1}=2 \mathscr{D}_{1} m_{1}$ and $\tau_{2}=2 \mathscr{D}_{2} m_{2}$. Assuming $\quad \tau_{1}=\tau_{2}=\tau \quad$ and at first we carry out investgation concerning the quantities $P_{+}^{1}\left(\Delta \vec{x}_{1}^{+}, \Delta t\right)$ and $P_{+}^{2}\left(\Delta \vec{x}_{2}^{+}, \Delta t\right)$. Now let

$$
\begin{equation*}
\vec{r}^{+}=\vec{x}_{1}^{+}-\vec{x}_{2}^{+} \quad \text { and } \quad \vec{R}^{+}=\left(m_{1} \vec{x}_{1}^{+}+m_{2} \vec{x}_{2}^{+}\right) /\left(m_{1}+m_{2}\right) \tag{3}
\end{equation*}
$$

then

$$
\begin{aligned}
P_{t}\left(\Delta \vec{r}^{+}, \Delta t\right) & =\frac{\partial\left(\vec{x}_{2}^{+}\right)}{\partial\left(\vec{r}^{+}\right)} \int P_{+}^{+}\left(\Delta \vec{x}_{1}^{+}, \Delta t\right) \\
& \cdot P_{+}^{2}\left(\Delta \vec{x}_{1}^{+}-\Delta \vec{r}^{+}, \Delta t\right) d^{3}\left(\Delta x_{1}^{+}\right)
\end{aligned}
$$

where $\partial\left(\vec{x}_{2}^{+}\right) / \partial\left(\vec{r}^{+}\right)$is the Jacobian of \vec{x}_{2}^{+}with respect to $\overrightarrow{\mathbf{r}}^{+}$. This implies that

$$
\begin{aligned}
& P_{t}(\Delta \vec{r} ; \Delta t)=\int d^{3}(\Delta v)\left[(2 \pi \tau \Delta t)^{2} / m_{1} m_{2}\right]^{-3 / 2} \\
& \cdot \exp \left(-\left[m_{1}(\Delta \vec{x})^{2}+m_{2}\left(\Delta \vec{x}-\Delta \vec{r}^{+}\right)^{2}\right] /(2 \tau \Delta t)\right)=
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{\exp \left(-\mu\left(\Delta \vec{r}^{+}\right)^{2} / 2 \tau \Delta t\right)}{(2 \pi \tau \Delta t / \mu)^{3 / 2}} \int d^{3}(\Delta x)\left[2 \pi \tau \Delta t /\left(m_{1}+m_{2}\right)\right]^{-3 / 2} \\
& \exp \left\{-\left(m_{1}+m_{2}\right)\left[\Delta \vec{x}-\frac{m_{2}}{m_{1}+m_{2}} \Delta \vec{r}+\right]^{2} / 2 \tau \Delta t\right\} .
\end{aligned}
$$

From this formula we get

$$
\begin{equation*}
P_{t}(\Delta \vec{r}+\Delta t)=\frac{1}{(2 \pi \tau \Delta t / \mu)^{3 / 2}} \exp \left\{-\frac{\mu(\Delta \vec{r}+)^{2}}{2 \tau \Delta t}\right\} \tag{4}
\end{equation*}
$$

where $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ is the reduced mass. Similarly, we have

$$
\begin{gathered}
P_{+}\left(\Delta \vec{R}^{+}, \Delta t\right)=\frac{\partial\left(\vec{x}_{2}^{+}\right)}{\partial\left(\vec{R}^{+}\right)} \int P_{+}^{2}\left(\frac{M}{m_{2}} \Delta \vec{R}^{+}-\frac{m_{1}}{m_{2}} \Delta \vec{x}, \Delta t\right) \\
\cdot P_{+}^{+}(\Delta \vec{x}, \Delta t) d^{3}(\Delta x)
\end{gathered}
$$

After aome elementary calculations we obtain

$$
\begin{equation*}
\underset{+}{P}\left(\Delta \vec{R}^{+} \Delta t\right)=(2 \mathscr{N} \tau \Delta t / M)^{-3 / 2} \exp \left\{-M\left(\Delta \vec{R}^{+}\right)^{2} / 2 \tau \Delta t\right\} \tag{5}
\end{equation*}
$$

where $M=m_{7}+m_{2} \quad$ is the total mass. Now let

$$
\begin{aligned}
& \vec{V}^{+}(\vec{r}, \vec{R}, t)=\left(m_{1}{\overrightarrow{v_{r}^{+}}}^{+}+m_{2}{\overrightarrow{v_{2}^{*}}}^{+}\right) / M \\
& \vec{C}^{+}(\vec{r}, \vec{R}, t)={\overrightarrow{v_{1}^{+}}}^{+}-{\overrightarrow{v_{2}}}^{+}
\end{aligned}
$$

$$
\begin{gathered}
\quad \vec{r}=\vec{x}_{1}^{+}+\vec{x}_{1}^{-}-\vec{x}_{2}^{+}-\vec{x}_{2}^{-}=\vec{x}_{1}-\vec{x}_{2} \\
\vec{R}=\left[m_{1}\left(\vec{x}_{1}^{+}+\vec{x}_{1}^{-}\right)+m_{2}\left(\vec{x}_{2}^{+}+\vec{x}_{2}^{-}\right)\right] / M=\left(m_{1} \vec{x}_{1}+m_{2} \vec{x}_{2}\right) / M
\end{gathered}
$$

When the total dieplecement in position ia given by

$$
\begin{aligned}
& \delta \vec{R}^{+}=\vec{V}^{+} \Delta t+\Delta \vec{R}^{+} \\
& \delta \vec{r}^{+}=c^{+} \Delta t+\Delta \vec{r}+
\end{aligned}
$$

We can rewrite $\rho\left(\vec{x}_{r}, \vec{x}_{2}, t\right)$ as

$$
\rho(\vec{r}, \vec{R}, t)=\rho\left(\vec{x}_{1}, \vec{x}_{2}, t\right) \partial\left(\vec{x}_{1}, \vec{x}_{2}\right) / \partial(\vec{r}, \vec{R})
$$

We have then as before (see /1/ also)

$$
\begin{align*}
& P_{R}^{+}\left(\vec{r}, \vec{R}, t ; \delta \vec{R}^{+}, \Delta t\right)=(2 \pi \tau \Delta t / M)^{-3 / 2} \exp \left\{-\frac{M\left(\delta \vec{R}^{+}-\vec{V}^{+} \Delta t\right)^{2}}{2 \tau \Delta t}\right\} \tag{6}\\
& P_{r}^{+}\left(\vec{r}, \vec{R}, t ; \delta \vec{r}^{+} \Delta t\right)=(2 \pi \tau \Delta t / \mu)^{-3 / 2} \exp \left\{-\frac{\mu\left(\delta \vec{r}^{+}-\vec{C}^{+} \Delta t\right)^{2}}{2 \tau \Delta t}\right\}
\end{align*}
$$

The Smoluchowski-type equation for ρ, by using quantities P_{R}^{+}and P_{r}^{+}, acquires now the following form

$$
\begin{align*}
& \rho(\vec{r}, \vec{R}, i+\Delta t)=\int \rho\left(\vec{r}-\delta \vec{r},+\vec{R}-\delta \vec{R}^{+}, t\right) \rho_{r}^{+}\left(\vec{r}-\delta \vec{r}^{+}, \vec{R}-\delta \vec{R}^{+}, t ; \delta \vec{r}, \Delta t\right) . \\
& P_{R}^{+}\left(\vec{r}^{-}-\delta \vec{r}^{+}, \vec{R}-\delta \vec{R}^{+}, t ; \delta \vec{R}^{+}, \Delta t\right) d^{3}\left(\delta r^{+}\right) d^{3}\left(\delta R^{+}\right)=(7) \tag{7}\\
= & \rho-\Delta t\left[\nabla_{r}\left(\rho C_{j}^{+}\right)+\nabla_{R_{j}}\left(\rho V_{j}^{+}\right)\right]+\Delta t \cdot \frac{\tau}{2}\left(\frac{\nabla_{r}^{2} \rho}{\mu}+\frac{\nabla_{R}^{2} \rho}{M}\right) .
\end{align*}
$$

This implies that

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=-\nabla_{r j}\left(\rho C_{j}^{+}\right)-\nabla_{R_{j}}\left(\rho V_{j}^{+}\right)+D_{\mu} \nabla_{r}^{2} \rho+D_{M} \nabla_{R}^{2} \rho \tag{8}
\end{equation*}
$$

whore $\quad \mathscr{D}_{\mu}=\tau / 2 \mu \quad$ and $\quad \mathscr{D}_{M}=\tau / 2 M$.
Similar calculations by using quantities of P^{1} and P^{2} make the following equation for ρ :

$$
\rho(\vec{r}, \vec{R}, t-\Delta t)=\int \rho(\vec{r}+\delta \vec{r}, \vec{R}+\delta \vec{R}, t) P_{\mu}^{-}(\vec{r}+\delta \vec{r}, \vec{R}+\delta \vec{R},-t ; \delta r, \Delta t) x
$$

$$
\begin{equation*}
\times P_{R}^{-}(\vec{r}+\delta \vec{r},-\vec{R}+\delta \vec{R}, t ; \delta \vec{R}, \Delta t) d^{3}\left(\delta r^{-}\right) d^{3}\left(\delta R^{-}\right) \tag{7.}
\end{equation*}
$$

which implies that

$$
\frac{\partial \rho}{\partial t}=-\nabla_{r_{j}}\left(\rho C_{j}^{-}\right)-\nabla_{R}\left(\rho V_{j}^{-}\right)-D_{\mu} \nabla_{r}^{2} \rho-D_{M} \nabla_{R}^{2} \rho
$$

where $\quad \vec{C}^{-}={\overrightarrow{r_{1}}}_{1}^{-}-{\overrightarrow{v_{2}^{-}}}_{2}^{-} \quad$ and $\quad \vec{V}^{-}=\left(m_{1}{\overrightarrow{讠_{1}^{-}}}^{-}+m_{2}{\overrightarrow{v_{2}}}_{2}^{-}\right) / M$.
Prom equations (8) and (8^{\prime}) we obtain

$$
\begin{gather*}
\frac{\partial \rho}{\partial t}=-\nabla_{r}\left(\rho V_{r}\right)-\nabla_{R_{j}}\left(\rho V_{c_{j}}\right) \tag{9}\\
\vec{u}_{c}=D_{M} \vec{\nabla}_{R} \ln \rho \quad \text { and } \quad \vec{u}_{r}=D_{\mu} \vec{\nabla}_{r} \ln \rho
\end{gather*}
$$

Here

$$
\begin{aligned}
& \vec{V}_{c}=\frac{1}{2}\left(\vec{V}^{+}+\vec{V}^{-}\right)=\left(m_{1} \vec{z}_{\gamma}+m_{2} \vec{v}_{2}\right) / M \\
& \vec{V}_{r}=\frac{1}{2}\left(\vec{c}^{+}+\vec{c}^{-}\right)=\overrightarrow{u_{1}}-\vec{v}_{2} \\
& \vec{u}_{c}=\frac{1}{2}\left(\vec{V}^{+}-\vec{V}^{-}\right)=\left(m_{1} \vec{u}_{1}+m_{2} \vec{u}_{2}\right) / M \\
& \vec{u}_{r}=\frac{1}{2}\left(\vec{c}^{+}-\vec{c}^{-}\right)=\vec{u}_{1}-\vec{u}_{2}
\end{aligned}
$$

The potential $U(\vec{r})$ affects only $\vec{C}^{ \pm}$and not $\vec{V}^{ \pm}$. We have then

$$
\begin{aligned}
\vec{V}^{ \pm}(\vec{r}, \vec{R}, t \pm \Delta t) & =\frac{1}{N^{ \pm}} \int \vec{V} \pm\left(\vec{r} \mp \delta \vec{r}^{ \pm}, \vec{R} \mp \delta \vec{R}^{ \pm}, t\right) \\
& \rho\left(\vec{r} \mp \delta \vec{r}^{ \pm}, \overrightarrow{R^{\prime}} \mp \delta \vec{R}^{ \pm}, t\right) \rho_{r}^{ \pm} \rho_{R}^{ \pm} d^{3}\left(\delta r^{ \pm}\right) d^{3}\left(\delta R^{ \pm}\right), \\
\vec{C}^{ \pm}(\vec{r}, \vec{R}, t \pm \Delta t) & =\frac{1}{N^{ \pm}} \int\left[\vec{C}^{ \pm}\left(\vec{r} \mp \delta \vec{r}^{ \pm} \pm \vec{R} \mp \delta \vec{R}^{ \pm}, t\right) \mp \Delta t \cdot \frac{1}{\mu} x\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\times \nabla_{r} U\left(\vec{r}_{\mp} \delta \vec{r}^{ \pm}\right)\right] \rho\left(\vec{r}_{\mp} \delta \vec{r}_{,}^{ \pm} \vec{R}_{\mp} \delta \vec{R}^{ \pm}, t\right) \times \\
& \times P_{r}^{ \pm} \rho_{R}^{ \pm} \cdot d^{3}\left(\delta r^{ \pm}\right) d^{3}\left(\delta R^{ \pm}\right),
\end{aligned}
$$

where

$$
N^{ \pm}=\int \rho\left(\vec{r}_{\mp} \delta \vec{r}^{ \pm}, \vec{R} \mp \delta \vec{R}^{ \pm}, t\right) P_{r}^{ \pm} P_{R}^{ \pm} d^{3}\left(\delta r^{ \pm}\right) d^{3}\left(\delta R^{ \pm}\right)
$$

Expanding $\vec{V}^{ \pm}, \vec{C}^{ \pm}, P_{R}^{ \pm}, \rho$ and U in the Taylor series, integrating, and retaining terms only of first order in Δt, we obtain

$$
\begin{aligned}
& M\left[\frac{\partial V_{j}^{ \pm}}{\partial t}+\left(V_{i}^{ \pm} \nabla_{i}\right) V_{j}^{ \pm}+\left(c_{i}^{ \pm} \nabla_{r}\right) V_{j}^{ \pm}\right]=M \frac{d V_{j}^{ \pm}}{d t}= \pm M\left\{D_{M} \frac{1}{\rho} .\right. \\
& \left.\left(\nabla_{r}^{2}\left(\rho V_{j}^{ \pm}\right)-V_{j}^{ \pm} \nabla_{r}^{2} \rho\right)+D_{\mu} \frac{1}{\rho}\left(\nabla_{R}^{2}\left(\rho V_{j}^{ \pm}\right)-V_{j}^{ \pm} \nabla_{R}^{2} \rho\right)\right\}, \\
& \mu\left[\frac{\partial c_{j}^{ \pm}}{\partial t}+\left(V_{i}^{ \pm} \nabla_{i}\right) c_{j}^{ \pm}+\left(c_{i}^{ \pm} \nabla_{r}\right) c_{j}^{ \pm}\right]=\mu \frac{d c_{j}^{ \pm}}{d t}=-\nabla_{r} U(r) \pm \\
& \pm \mu\left\{\mathscr{D}_{\mu} \frac{1}{\rho}\left(\nabla_{r}^{2}\left(\rho c_{j}^{ \pm}\right)-c_{j}^{ \pm} \nabla_{r}^{2} \rho\right)+\frac{D_{M}}{\rho}\left(\nabla_{R}^{2}\left(\rho c_{j}^{ \pm}\right)-c_{j}^{ \pm} \nabla_{R}^{2} \rho\right)\right\} .
\end{aligned}
$$

Summing the equations in this expression we get

$$
\left.\begin{array}{l}
d_{s}^{\prime} V_{c_{j}}-d_{u}^{\prime} u_{c_{j}}=0 \tag{10}\\
d_{s}^{\prime} V_{r_{j}}-d_{u}^{\prime} u_{r j}=-\nabla_{r} v / \mu,
\end{array}\right\}
$$

whore

$$
d_{s}^{\prime}=\frac{\partial}{\partial t}+\vec{V}_{c} \vec{V}_{R}+\overrightarrow{V_{r}} \vec{V}_{r} .
$$

$$
d_{u}^{\prime}=\vec{u}_{c} \vec{\nabla}_{R}+\vec{u}_{r} \vec{\nabla}_{r}+D_{\mu} \nabla_{r}^{2}+D_{M} \nabla_{R}^{2} .
$$

So, operators d_{S}^{\prime} and d_{u}^{\prime} are separated into a sum of two independent parts. Therefore, by analogy to the separation of variables in quantum mechanics, we assume that

$$
\rho(\vec{r}, \vec{R}, t)=\rho_{r}(\vec{r}, t) \rho_{R}(\vec{R}, t),
$$

implying that

$$
\begin{array}{ll}
\vec{V}_{r}(\vec{r}, \vec{R}, t)=\vec{V}_{r}(\vec{r}, t), & \vec{u}_{r}(\vec{r}, \vec{R}, t)=\vec{u}_{r}(\vec{r}, t) \\
\vec{V}_{c}(\vec{r}, \vec{R}, t)=\vec{V}_{c}(\vec{R}, t), & \vec{u}_{c}(\vec{r}, \vec{R}, t)=\vec{u}_{c}(\vec{R}, t),
\end{array}
$$

where ρ_{c}, \vec{V}_{c} and \vec{u}_{c} describe the motion of center-of-masees (as a free motion of a particle with mass $m_{1}+m_{2}$), but ρ_{r}, \vec{V}_{r} and \vec{u}_{r} describe the relative motion (as a motion of ar particle with mass μ in a central symmetrical field $U=U(r)$).

Then equations (9) and (10) acquire the following form

$$
\left.\begin{array}{l}
\frac{\partial \rho_{R}}{\partial t}=-\operatorname{div}\left(\rho_{R} \vec{V}\right) \tag{11}\\
d_{R}^{\prime} \overrightarrow{V_{c}}-d_{R}^{\prime \prime} \overrightarrow{u_{c}}=0
\end{array}\right\}
$$

(a

$$
\left.\begin{array}{c}
\frac{\partial \rho_{r}}{\partial t}=-\operatorname{div}\left(\rho_{r} \vec{V}_{r}\right) \tag{12}\\
d_{r}^{\prime} \vec{V}_{r}-d_{r}^{\prime \prime} \vec{u}_{r}=-\nabla_{r} U(r) / \mu^{i}
\end{array}\right\}
$$

Here

$$
\begin{array}{ll}
d_{R}^{\prime}=\frac{\partial}{\partial t}+\overrightarrow{\nu_{c}} \vec{\nabla}_{R}, & d_{R}^{\prime \prime}=\vec{u}_{c} \vec{\nabla}_{R}+D_{M} \nabla_{R}^{2}, \\
d_{r}^{\prime}=\frac{\partial}{\partial t}+\vec{V}_{r} \vec{\nabla}_{r}, & d_{r}^{\prime \prime}=\vec{u}_{r} \vec{\nabla}_{r}+D_{\mu} \nabla_{r}^{2}
\end{array}
$$

By umping the etandard method proposed by Nelson $13 /$ nonlinear equation (11) and (12) may be linearized if variables \vec{u}, \vec{V} and ρ are transformed by the following formulas:

$$
\begin{array}{cc}
x_{r}=\frac{1}{2} \ln \rho_{r} & \vec{u}_{r}=2 \mathscr{D}_{\mu} \vec{\nabla}_{r} \mathscr{X}_{r}, \\
\mathscr{X}_{R}=\frac{1}{2} \ln \rho_{R} & \vec{u}_{c}=2 \mathscr{D}_{M} \vec{\nabla}_{R} x_{R}, \\
\Psi_{r}=\psi_{r}\left(\vec{r}_{,} t\right)=\exp \left(\mathscr{X}_{r}+i \delta_{r}\right), & \psi_{R}=\psi_{R}(\vec{R}, t)=\exp \left(x_{R}+i \delta_{R}\right), \\
\vec{V}_{r}=2 \mathscr{D}_{\mu} \vec{\nabla}_{r} \delta_{r} & \text { and } \quad \vec{V}_{c}=2 D_{M} \vec{\nabla}_{R} \delta_{R} .
\end{array}
$$

From this we have the following two equations for Ψ_{r} and Ψ_{R} :
and

$$
\left.\begin{array}{c}
\frac{\partial \psi_{r}}{\partial t}=i \partial_{\mu} \nabla_{r}^{2} \psi_{r}-i \frac{1}{2 \mu D_{\mu}} U(r) \psi_{r} \tag{13}\\
\frac{\partial \psi_{R}}{\partial t}=i D_{\mu} \nabla_{R}^{2} \psi_{R}
\end{array}\right\}
$$

respectively.
The last two equations coincide formally with the Schrödinger equations for Ψ_{r} and Ψ_{R}, assuming that $\tau=\hbar$, i.e.,

$$
D_{M}=\hbar / 2 M \quad \text { and } \quad D_{\mu}=\hbar / 2 \mu
$$

In conclusion we noted that the generalization of the above-mentioned results to the relativistic case needs a special investigation.

References

1. Namerai Nh., JINR, E2-12760, Dubna, 1979 (to appear in Foundations of Physics).
2. Kerman D., Phye.Rev.,1964, 136, p. B1850.
3. Nelson E., Phys. Rev., 1966, 150, p. 1079.
