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1. INTRODUCTION 
It is now safe to assert that quantum chromodynamics (QCD) 

agrees qualitatively with all the experimental data related to 
strong interactions phenomena. At the same time, the QCD pre­
dictions are usually too flexible for precisive quantitative 
tests. This is caused mainly by the fact that all the calcula­
tions in QCD are based on perturbation theory (PT), i.e. on 
the expansion over the coupling "constant" a (k) that de­
pends really on the momentum scale к related to the process 
investigated. Asymptotic freedom / 1 /enables one to use PT at 
short distances (or large momenta). However, any physical pro­
cess involves also long distances, i.e. each process involves 
small momentum scales P (e.g., quark and hadron masses),and 
as a rule, this results in the appearance of the logarithmic 
contributions ln(Q 8/p 8) , that are singular for p 2 =0 (mass 
singularities ). In such a situation p E cannot be neglec­
ted. However, within PT it is possible to show that for in­
clusive /2-6/ a n (j some hadronic exclusive hard processes / e - 8 / 

the Q -dependence of the corresponding amplitude T(Q 8, p 8 ) 
can be factorized from the p -dependence (see fig.l): 

T(Q 2.p 2) .Q NlE(Q 2/V 2,a,(p)) » f(f£8,pB ) +R(«, p) I , (1.1) 

where N is the dimension of T in mass units and R is the 
sum of contributions which are power suppressed with respect 
to E • f. . The parameter ц is a boundary between large and 
small momenta, and E • f does not depend on a particular 
choice of ц. 

The functions f describe long-distance interactions. This 
means they cannot be reliably calculated in perturbative QCD 
and must be treated phenomenologically. As a result, the QCD 
predictions are more ambiguous. 

The functions E describe short-distance interactions. In 
principle, they are given by a perturbative series expansion 
over a B(f«). . In practice, only a few terms are known, and 
one is forced to make some plausible hypotheses about the mag­
nitude of the noncalculated higher-order corrections. Accord­
ing to most of recent estimates, а8(^)/я is of the order 
0.1 for n s <,Ю GeV 2 . This means that taking into account 
only a few first terms of the series is a good approximation 
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only if the coefficients of the expansion of E over a n are 
not too large. 

An analogous uncertainty exists also for power corrections 
absorbed by R(Q , p) . It is known that the hadron-and quark-
mass corrections for the most simple inclusive processes can 
be calculated exactly with the help of the £-scaling forma­
lism ' 9 > l 0 / . For light quarks u,d,s, their masses (m -4 MeV 
rad -7 MeV, m 8 -120 MeV) usually may be neglected at all. 
The main uncertainty is due to power corrections caused by 
the finite size of the hadrons, by the Fermi-motion of cuarks 
inside the hadrons, etc. All these effects have a nonpertur-
bative origin. The magnitude of the corresponding corrections 
(M 2/Q 2) nis determined by a characteristic scale M =1/R .-
=3O0-r5OO MeV, but in some cases they play a very important rol 
up to very high momentum transfers.For example, in high - p 
hadron production, the effects of the primordial transverse 
momentum of partons dominate the cross section up to p;j,-30-
-40 GeV 2 / l i ' . It should be emphasized, however, that all 
the phenomenological methods of taking into account the power 
suppressed terms have no reliable theoretical basis. So, it 
is highly important to develop methods of field-theoretical 
analysis of power corrections. 

2. HIGHER-ORDER CORRECTIONS 
In general, the functions E(Q/// ,a (ft)) in eq. (l.l) 

depend on the calculation scheme, namely, on the chosen re­
cipe of the R-operation for the ultraviolet divergences 
and the recipe of separating the contributions related to 
short and long distances (i.e. on the R -operation for compo­
site operators). In particular, E is ц-dependent. The fun­
ctions Кц, р) also depend on the chosen scheme and only the 
product E ®f is scheme-independent. If we take /*-Q, , 
then the resultant expression'would not have an explicit de­
pendence on (i . Note, that this procedure removes from 
E(Q 2/^ 2) the logarithms ln(Q2///2) which, for Q • ц , lead 
to growth of the coefficients in the expansion of E over a . 
The meaning of the choice yi = Q is clear: one must take /i 
equal to a scale characterizing the off-shellness of the par­
ticles taking part in the short-distance subprocess and the 
latter is proportional to Q 2 : <fc2> г а

г О а . 
If, however, the parameter a is very large (or very small) 

compared to 1, then the choice fi -aQ should be preferred. 
It is implicit_here that we use a "physical" renormalization 
scheme, i.e. g(k) corresponds to a vertex with external mo-
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menta к 2 . However, for direct calculations within QCD it is 
more convenient to use various "unphysical" schemes based on 
dimensional regularization. In this case the meaning of glk) 
is less transparent. So, for the time being, we will adhere 
to the choice ft = Q. . 

Recently, in a series of papers ' 1 , г- 1 Б / it has been estab­
lished that the scheme-dependence of the results obtained may 
be reduced by expanding the coupling constant a (Q) over 
(lnQS/A 8)" 1 : e 

« B(Q> 4 b l JnW/A 2 

4 f f b 0 l n Q 8 / A 8 b 8 l n Q 8 / A 2 

where b 0 , bj are the coefficients of the expansion of the 
/3-function over g. . After this change we have the following 

representation for E e f 

P , Л / ь о ~ 2 (lnlnQ2/A2)k , -
E . f = . ( l n Q 2 / A 2 ) ° k ! o f V f k _ _ 5 - ¥ , e f -

-ianQ»/A«)* /V • a i ° • - г 0 

b 0 l n Q 2 / A 2 b 2 l n 2 ( Q 2 / A 2 ) 
(2.2) 

+ a81 
lnlnQ e/A g 

b 2ta 2(Q E/A 2) 

All information about the long-distance dynamics is accumu­
lated in Г, whereas the coefficients a»k can be calculated 
in PT. . Moreover, the coefficients a ( ^ , « ^ related to 
two different schemes can be obtained from one another by the 
change A J = K i 2A g for the appropriately chosen parameter к . 
Thus, if one uses the expansion (2.2), then various schemes 
differ only in magnitude of the parameter A . 

Let us assume that, in a scheme S , some first coefficients 
8fk are numbers of the order 1. Then in another scheme S' , 
which has A'=lOOA ( or A'= o.Ol A ) , the coefficients a'» 
are numbers of the order bo In 100 - 40 . It is easy to notice 
the analogy with our previous discussion about the optimal 
choice of the parameter y. and to conclude that the scheme S 
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is very close to a "physical" scheme, since the choice /i = Q 
(assumed in eq. (2.2)) minimizes for this scheme the higher-
order corrections. Note also that the choice p=aQ is equi­
valent to an expansion over (ln(a aQ 2M 2)) - 1 rather than over 
(lnQ B/A 2) - 1 , i.e. to the change A-»A/a. 

So, let us assume that if one uses a physical scheme with 
a properly chosen subtraction point (i.e. p a = < k s > ), then 
the resultant expansion over (а_/т) has coefficients of the 
order 1 (this is just the situation usually encountered in 
QED, where one has no problems with the momentum-dependence of 
the coupling constant a e E D -1/137 ). If this assumption is 
valid, then the higher-order corrections may be calculated 
using the following rules: 

1) One may calculate in an arbitrary scheme. The most con­
venient, in our view, is the MS-scheme / i e / , which is free 
from spurious terms ln(4w) and y E present in the minimal 
-subtraction (MS)-scheme. The parameter Ajjj^- may be chosen 
to be a fundamental scale of QCD. Note, that Л — is close 
to Л р н related to a physical scheme: A P H = K A J ^ , , where к=2 
is almost independent of the vertex chosen to define ĝ k) , 5. 

2) In general, however, there are no a priori reasons to 
expect that the MS -scheme minimizes the coefficients a»k * f 
in eq. (2.2). If it is known that the average off-shellness 
of lines related to a short-distance subprocess is a 2 Q 2 , 
and a » 1 (or a « 1 ) , then E e f must be expanded over 
(ln(a 2Q sA 2Ai.))-i rather than over (lntl2/A2_) ~ l . MS MS 

3) Usually the value of a is not known. However, this value 
may be estimated by requiring that the coefficient a 1 0 (or a„ 0, 
if yQ = 0 ) vanish after the change Л — -» 2Л— /a. 

" MS MS 
In this approach all results of the calculations are express­

ed in terms of the only parameter A 0 = 2Ajjs . However, in the 
expansion (2.2) for different processes one may use different Л*'* = A /a, (with known a/s ). etf 0 i 1 

3. POWER CORRECTIONS 
Our derivation of eq. (1.1), given in refs. / 5" 7 / / , is based 

on the analysis of Feynman diagrams in the a -representation / l 7 / 

(see also /18,19/ ), i.e. on the formula 

m K - k B о 
i /da r iexpfia ( 7(k a-m*)] (3.1) 
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applied to propagators of all lines a of the diagram. After 
integrations over all k t this gives the representation 

T(Q, p) - Г И da D~2(a)G(Q,p,a) x 
(3.2) xeip[iQ2A(a) + ip2I(a) -i Sa m2.] , 

a a 

which has many advantages for analysis of the large Q 2 behaviour 
of T . In particular, from eq. (3.2) it follows that integra­
tion over a region where A(a)>p gives for Q2-»oo an exponen­
tially damped contribution 0(exp(-Q2p)). . Hence all contri­
butions having a power (0(Q - N)) behaviour for Q2-»oo are due 
to integration over regions where A (a) vanishes. There exist 
three main possibilities to get A (a) = 0 : 

1) short-distance (or small- a) ) regime, when aa =aa =...•= 
= aa = 0 for some lines о l ,ог ,... ав; 

2) infrared (or a -t ~ ) regime, when a =a = ... =o = ~ 
"l °2 "a 

for a set of lines \a ,o |; 
1 n 

3) pinch regime, when A = 0 for nonzero finite a's . This 
regime works when A(a) may be represented as a difference of 
two'positive terms. 

It is possible also to get A (a) making шэ a combination of 
the three basic regimes. In the momentum representation the 
first regime corresponds to integration over a region к ~ Q , 
the second one over к ~ p 2 / Q , and the third over к - p . This 
means that perturbative QCD is applicable only when the regimes 
2,3 and the combined regimes either do not contribute at all or 
give a power suppressed contribution compared to that of the 
pure SD-regime. There exists a wide class of processes for which 
the pinch regime does not work (see ref. ) , and It is suffi­
cient to analyse only the SD- and IR-regimes. In this case it 
is very useful to visualize a diagram as an electric circuit 
and to treat the parameters о as the resistances of the cor­
responding lines о . Note, that according to eq. (3.2), for 
A = 0 the amplitude T lacks its Q -dependence. Hence, one 
must find the subgraphs that should possess the following topo­
logical properties: when lines of these subgraphs are contracted 
into point («^ = 0) and/or removed from the diagram (e,= ^ 
then the resulting diagram does not depend on Q 2 . Each Jon-
figuration of this type corresponds to some power-behaved 0(Q i 
-contribution. The power N may be easily estimated with the 
help of the rules k g D ~ Q , к , R ~ p 2 / Q : 
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t S D < Q 4 ~ 2 t ' ; v *-
tIB < Q ~ 2 t J (3.3) 

tSD;IB < Q
( 4 - S t i - 2 t J )

i 

V;S 
sve t( (t ) is twist / 8 0 /of the i-th (j-th) external line of 
э subgrapn V(S) corresponding to the SD-(IR-) integration 

whei 
the эиЬдгарЪ V(S) corresponding to the SD-(IR-) integration. 
Recall that t JJ =1 for ф, ф -fields and the curl 0^ , 
whereas t, . = 0 for the vector field A„ . That is why in 
QCD (in cdvariant gauges) it is necessary to sum up over ex­
ternal gluon lines of the subgraphs V, S . However, for 
the forward amplitudes (corresponding to inclusive cross sec­
tions) and for amplitudes of exclusive processes involving 
colour singlet particles, after such a summation the field A^ 
either disappears (and the gluon lines correspond to the curl 
G „ v that has a nonzero twist) or enters into covariant de­
rivatives D„ = d„-igA„ present in composite operators .-hat 
naturally arise when the contribution of the corresponding 
configuration is written in the coordinate representation 
(Cf. '«•" ). 

Consider, e.g. the forward amplitude T(r,Q2) corresponding 
to the total cross section of the Drell-Yan process AB -ц1+ц~Х. 
In this case all the configurations responsible for the lead­
ing contribution T I e a d(r,Q 2) - 0(Q°) have the structure shown 
in fig.2a. Here, the subgraph V corresponds to the E-functi­
on, whereas subgraphs resulting after contraction of V into 
point correspond to the function f = f»e fв • • T h e configura­
tions shown in fig.2Ь,с give power suppressed contributions. 
Note also that eq. (3.3) gives only an upper estimate. This 
means the contribution 2a itself apart from the leading con­
tribution, contains also power corrections. These corrections 
appear in the following cases: 

1) If we project the spinor structure of the subgraph V 
onto 1 rather than onto y„ . In the latter case we obtain a 
composite operator having twist equal to 2 and in the former 
one the resulting operator has twist 3. Note that y., y.y -
and Op,- projections have vanishing matrix elements for 
npin-averaged amplitudes. 

2) If we expand a bilocal operator б (£ q) over the local 
ones, then there appear operators 

^j times 
tyVD/'l...D'/n) 1 ....g ' ф) (3.4) 

symmetrized W- /*•/<• 
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having twist 2 + 2j . Each factor g adds (£->;) to the 
corresponding function E(A, ij; f, JJ') and this leads to sup­
pression of the resulting contribution by an additional fac­
tor 1/Q2 . ^1 f n 

The expansion of the function E(£, JJ,... )(£->j) ...(£-IJ) over 
syiranetric-traceless structures E(̂ ,ij,...)[(f-jj)TJ Hf-»j) ...(f-17) t 
corresponds in _the momentum representation to an expansion of 
the amplitude E(k,0,...) over k 2: 

ОС 

E(k,... )=E(k,...)lo + 2 (k2)J E~ (k....)| 
k ° ] = 1 k = ° (3.5) 

i.e. over the off-shellness of the particle corresponding to 
the external line of the SD-subgraph V (quark masses are as­
sumed to be zero). In the a-representation this corresponds 
to an expansion of the integrand in eq. (3.2) into a power 
series over X v « 2 a . Thus, the coefficient function E 

CT6V 
for the leading contribution corresponds to an on-shell am­
plitude. This means that E is formally gauge-invariant in 
each order of PT. However, because of logarithms lnQ 2/k 2 

present in E(k,Q,...) , taking the limit k 2=0 is a rather deli­
cate procedure. Note, that E(Q2/)i2,...) in eq. (1.1) corres­
ponds to integration over small A-v » i-e- the contribution 
of the region X >l/fi2 must be subtracted off. As a result, 
one has lnQ2/f(2 in place of ln.Q2/k2 , , and it is then safe 
to take к 2 = 0 . To maintain gauge invariance, one may intro­
duce the cut-off at A v>l/p 2 using, e.g., the dimensional 
regularization d*k -» d 4 + 2 €k(f< 2)~ < combined with subtraction of 
poles 1/e . These poles formally correspond to ln(jz2/k2)| 2 

, c c /23/ , 
(cf. ref. ). 

Thus in the leading power approximation quarks correspond­
ing to external lines of the parton subprocess should be tre­
ated as the on-shell particles. Real quarks are, of course, 
off-shell. But according to eqs. (3.4), (3.5) this phenome­
non leads to power corrections only. They may be analysed 
just in the same way as the leading term, although the analy­
sis is more involved. In particular, for each new set of ope­
rators one must introduce a new function. However some of 
these functions are linearly dependent due to equations of 
motion. As it was emphasized in a classic paper'24/using the 
equation of motion D„ yP ф «= 0 , one may get rid of the ope­
rators containing D„ yP- and^D^Df4. The resulting operators are 
built of the fields ф , ф , G„v and covariant derivatives 
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D« . The reduced matrix elements of such operators may be 
identified with the moments of functions which are generali­
zations of the parton distribution functions, e.g. 

._L±V[f" a i g („. k) +W)«f-- g (n.k)U 

- |[T g a (п. Ю + (-1)k f~aiga (n.k) П-l) n f l B. Г (n.k) • < 36) 

1 
+ (_l) n + k f,_ig-(n,k)]=/dx1dxa<Jx3[fagia(3t1,x2;x3)fl(. /x a-x 3> ' 

• (-l)kf (x ;x xJS(x -x -x ) f a,ga 1 2 3 1 ^ J 

П-1)".... f(-l) n + k... Ix»-1 x ^ 1 , 

where ; denotes covariant differentiation, a denotes the quark 
flavour and jT that of antiquark. The function f , (f - - ) 
describes a quark (antiquark) with momentum x P and a gluon 
with momentum х 2 Р in the initial state and quark (antiquark) 
with momentum x 3P = (x t + x2)P in the final state. The functions 
f , f- - have analogous meaning. Such a construction 
was introduced first in ref. 8 S for operators ф I У ц ''V i '"''l'k'''' л 

Лд„ ... <7 , A >l used in the analysis of factoriza-
''kU fnik ''nUtl 

tion in the Feynman gauge. 
Operators of eq. (3.6) appear also in configurations 2a if 

the subgraph V has external lines corresponding to the curl О 
Apart from matrix elements .P|0!P'-,, these jponfigurat ions 
contain also matrix elements <0|G...GiO', *.O|(00)...(00);O , , 
O|G...G(00)'0 • etc. In each order of PT these matrix elements 

vanish,but in QCD, due to nonperturbative effects, these va­
cuum matrix elements may be nonzero. As it was demonstrated in 
ref. , these contributions are very important for under­
standing the dynamics of hadrons. Thu main problem i.s to gene— 
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ralize the methods developed in ref. to more complicated 
amplitudes. 

All the configurations considered above correspond to the 
SD-regime A(V) - 0. . One must take into account also the con­
figurations 2c corresponding to the combined SD-IR regime 
A(V) _ 0 , A(S) -» ~ . Physically this regime corresponds to 
a short-distance subprocess accompanied by the exchange of 
soft quanta between the hadrons A and B. According to eq.(3.3), 
these contributions also have a power behaviour 0 (Q ), 
where N is the number of external lines of subgraph S . If 
all N lines are gluonic, then the corresponding diagrams de­
scribe a multipole interaction of hadrons. However, if the 
quarks are massless, then the subgraph may possess quark lines 
also. The main contribution for the IR-regime is given by the 
region к B - (p 2 / Q ) s , where p 2 may Ы treated as hadronic mass. 
For massive fields (e.g., quarks) the contribution of the IR-
regime is damped by the mass present in the propagator (k 2+m 2) - 1 

if k 2 - m ^ Q 2 « m 2 , , i.e. for Q 2 > m * / m 2 the IR-regime 
does not work. The mass m in this case works as an infrared 
cut-off. 

Since the gluons are massless, the IR-regime' in PT always 
works for gluons, and there are power corrections due to in­
tegration over a - oo . However, the contributions corresponding 
to the configuration 2c do not factorize in the usual sense. 
This suggests that complete analysis even of the lowest power 
corrections in perturbative QCD is impossible. 

However, if the exchanged system is coloured, then the cor­
responding contribution should be damped by confinement (non-
perturbative) effects, i.e. in this case even for m=0 there 
exists an IR cut-off Ksl/R c o n t = 300 т 500 MeV. Thus, if we 
add to PT a confinement hypothesis, then for a coloured system 
S the contribution of configuration 2c is damped for Q >m*/M _ 
- M 2 i.e. for all hard processes. On the other hand, if the 
exchanged system is colour-singlet (e.g., colour-singlet 
glue-ball, я--meson, p -meson, pomeron etc.), then there are 
no a priori grounds to neglect the configuration 2c. We feel 
that the methods of the "old" hadronic theory, such as the 
Reggeon calculus and potential models (e.g. the quasipotential 
approach / 2 7 /), will be much more suitable for analysis of these 
contributions than the psrturbative QCD methods. Highly instruc­
tive in this connection is the result of ref. , where it is 
shown that if one describes the soft exchange by an exponen­
tially vanishing quasipotential, then the soft interactions 
in initial and final states give power ( l/pT and 1/p2, ) rather 
than exponential (etp(-ap _ )) corrections to the amplitude of 
high-energy wide-angle elastic яр -and pp -scattering. What 
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is more, in the available energy range these corrections give 
an essentia] contribution. 

Thus, a consistent analysis of power corrections in QCD 
seems to be a highly nontrivial but maybe not a hopeless task. 

After this paper was essentially completed., we received a 
preprint by Politzer '29' ( wheie the power corrections are ana­
lysed using the methods similar to ours. There is no surprise 
that the analyses are similar, because both arn based on the 
classic work 2 4 ' . However, there exists also a conceptual dif­
ference between the two approaches. Our approach is based 
directly on the analysis of the corresponding amplitude T(Q 2p 2) 
in the large-Q 2 region whereas Politzer's approach is based 
on the analysis of small-p 2 behaviour of T(Q 2,p 2) (i.e. 
on the analysis of mass singularities). Both the approaches 
are (almost) equivalent if one analyses logarithmic ln(Q2/p2) -
corrections. However, the power corrections 0(Q~2" ) in mass-
-singularity analysis correspond to contributions (p ̂ "(lup2) k , 
that simply vanish for p 2 ~ 0 . So, we are very sceptic about 
the main idea of ref. 2 a' that a complete analysis of power 
corrections may be performed within the mass-singularity ap­
proach. Incompleteness of this approach reveals itself in the 
fact that the soft exchanges (configuraticn 2c) are completely 
ignored in ref. 2 9 . Another disadvantage of the mass-singu­
larity approach is that it incorporates perturbation theory 
just in the region k 2 .0, wlioro one should expect in pCD large 
nonperturbative effects. In particular, within the mass-singu­
larity approach, it seems impossible to understand the origin 
and structure of power corrections to the "e'e--» liadrons" 
process, since the related amplitude T(G') does not depend 
(iii a massless theory) on small momentum variables like p 2 . 
It should be emphasized that the analysis of these effects 
given in ref.' 2 6 is the only serious analysis of power correc­
tions in QCD and it: is based (not: by chance) on the operator 
product expansion, i.e. just or the analysis of the 1argo _0 
behaviour of the relevant amplitude. 

4. PION FORM FACTOR AT MODERATELY I.ARGE Q 2 

As an example illustrating the importance of a detailed 
study of higher order and higher twist effects, let us con­
sider the behaviour of pion electromagnetic form factor Г (G) 
for moderately large Q 2. 

During the last 3 years a definite progress has been made 
in understanding of the asymptotical Q2-»« behaviour of 
Fff(0)/6-8.3)-33/in the QCD framework. The main result here is the 
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proof that in a region where the power corrections may be 
neglected the form factor may be written in a factorized 
form '•-"' : 

p » W > - - i - / < * /<Jy<£*(y,e2,n{[,«s</*R)) * Q K о о 
(4.1) 

x Е(0% г,/^/|Лх. У,а5 (/*R))0(x,^>R,«S (^R)) , 

where <£(x) is the _wave function describing the splitting of 
the pion into a qq -state and E/Q 2 i s the amplitude of 
the short-distance subprocess y*qq-»q'q' . Note, that, in ge­
neral, the normalization parameter ц„ of the R-operation for 
ordinary UV -divergences may differ from the splitting pa­
rameter ц that separates small and large momenta. The latter 
may be treated also as the normalization parameter for compo­
site operators* The moments of the function 000 are equal 
to the reduced matrix elements of the twist-2 operators 
фу у D n 0 . . The SD-amplitude, as usual, is a series ex­
pansion over os((iR) (see fig.3) : 

2iras(>tR)CF, xQ 8 
-11+ 0(a )! 

N c (xQ2)(xyG2) e ( 4 - 2 ) 

where С F = 4/3, N c = 3. . The factor xQ in the numerator of 
of eq. (4.2) is due to the trace over Dirac у-matrices. 
Note that E(x, y) is rather singular for x,y - 0 . Hence, 
the main contribution is given by integration over small x,y. 
In the next order the most singular terms are -1— ln(xyQ2/u2) 

xy R 
and ( lnx)( lny) , , (lnQ% 2)-(lnxy)/(xy). The f i r s t term 

i s given by divergent p a r t s (notice / i R ) and the o the r s by 
convergent ones . Thus, t o minimize_the a - co r r ec t i ons we 
must take / i 2 - x Q 2 - y Q 2 and / i 2 - x y Q 2 , where x(y) i s the 
average value of x (or у ) : 

lnx"«<lnx> = ( / l n x - ^ l ) d x ) ( / - | ^ d x ) ~ 1 (4.3) 
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If ф(х) -Six- — ) (nonlnterac t ing quarks) , then x = — . Ho-
R 

wever, for very broad functions, e.g. for ф(х) ~[x(l-x)l 
with R « l we have a very small value x -exp(-l/R) . 

In the problem investigated we encounter just the same 
mass scales ( т

П'тп a n d "s*/"conf ' a s * n d e e P inelastic 
scattering. So, it seems natural to expect that eqs. (4.1), 
(4.2), for the appropriately chosen wave function 0(x) must 
provide a good approximation for F f f in the region Q • 1 GeV. 
The wave functions $(x,/i8) are in general unknown. In pertur-
bative QCD one may calculate only their evolution with growing 
H 2 . In particular ф(х,ц2) -*6t x(l-x) as /i3-«~ / 3 4 /, where 
t n =133 MeV. Presence of the t n -factor is due to the nor­
malization condition 

1 
/ 0(x, ̂ 2)dx =f f f . (4.4) 
0 
It is clear, however, that for ц < 1 GeV the wave function 

ф(х,р.г) may strongly differ from its limiting form. For non-
interacting particles <£(x) -S(x-l/2). . When the interactions 
are switched on, the wave function broadens. The width I of 
ф(х) may be estimated as Г-.(Е(п,/ш ) s . Hence, for heavy 
mesons (e.g. for J/ф or Y-particles) ф(х) is rather 
narrow, since E i n t =M =300+500 MeV and m >l GeV. On the 
other hand, for pions the wave function must be very broad, 
because m u -4 MeV, m d -7 MeV ' , i.e. pion must be treat­
ed as an ultrarelativistic system. To obtain a more accurate 
estimate of the width Г f o r S U c h a system we assume that the 
(soft) Bethe-Salpeter wave function Хр(к..к„) is exponential­
ly damped for moderately large, space1ike k 2 (1 = 1,2): 

i 

The exponential damping is suggested by the observed spectra 
of particles produced in high-energy hadronic reactions. For 
our wave function ф(х) (which may be obtained from i(p(k.,k2) 
by integration over k sk -k and k i 3 5 , 3 8' ) the coice (4.5) — 0 3 + gives texp[-

expi-
/хМ'Ч; x « 1 

ФЫ. I i s - M 8 ) - f f f . ̂  " o (4.6) 
m2/((l-x)M2i; (1-х) « 1 . 
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Thus, 0(x) is very close to f„ everywhere outside the re­
gions 0 <x <т 2/М 2~10~ 4;0<1-х<т 2/М 2~10~? In these regions 
ф(г) vanishes rapidly. Note that for such a wave function 
x - Ю - 3 т 10 ~* , i.e. the main contribution into F„ is gi­
ven by the region where the gluon has a catastrophically small 
off-shellness x 2 Q 2 , which for Q 8 <100 GeV 2 is much 
smaller that the value |k2|~0.1 + 0.3 GeV 2 where the confine­
ment effects must be taken into account. Thus, for a broad 
wave function short distances do not contribute, in fact, and 
eq. (4.2) is unreliable. In particular, it is not justifiable 
to neglect the power corrections that may really have a form 
(M 2/<k 8>)~(M ^iTQ 2) rather than.simply M 2 / Q 2 . We assume 
that the confinement effects eventually remove the infrared 
singularity from the "hard" quark and gluon propagators 1/xQ2 

and 1/xyQ2 . . so, we change l/xyQ2-.l/(xyQ2+2M2) -l/(xyQ2+<kl-k1')2> 
and l/xQ2-.l/(xQ2+M2)~l/(xQ2+<k?>).The connection between M 8 

and <k_f_> is a pure mnemonics and must not be understood too 
literally. However, as an order-of-magnitude estimate this 
connection must be true. So', we should expect that M 8 - 0 . 1 * 
+ 0.3 GeV 2. 

As a result, we have in place of eqs. (4.1), (4.2) 

,AA 2*C F 1 e s ( ^ ( x Q 8 ) 
Fn <&--« /dxdy<«x),ACy) -2-й _ -fl+Ob )), ( 4. 7 ) 

" N
c о (xQ 2+M 8)(xyQ 2+2M 2) 8 K ' 

wjjere АА stands for projection onto the "axial" operators 

From eq. (4.7) it is clear that for not too large Q 8 the 
contribution of the soft region x- 0 is damped at x ~ M 8 / Q 2 , 
whereas the wave function damps only the region x < m 2 / M 2 . 
Thus, up to Q 8 - ( M 8 / m J 8 ^ 1 0 3 GeV 8 the magnitude of the^ pion form 
factor is determined by the value of M , i.e. by the confi­
nement radius. 

The main contribution into the integral in eq. (4.7) is 
given by the region x y Q 2 _ 2 M 8 . . To minimize the a -correc­
tion we should take /Л equal to the average off-shellness 
of the gluon: ц -IyQ*+2M 2 -4M 2. 

a ( M 8 ) -. a (4M 2) iL_— . (4.8) 
8 R s 9to(4M 2M^ H) 
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It should be realized that eqs. (4.7), (4.8) are meaningful 
only if «g/c « 1 i i.e. for 4 М а / Л е й50 (in this case 
aB(m2)/n -=-0.1 ) . If M 2 ~ 0 . 2 GeV 2, then eqs. (4.7), (4.8) may 
work only for A p „ < loo MeV. Note that this is just the value 
preferred in ref.'Ze/ we emphasize that the authors of r e f / 2 e / 

just have taken into account power corrections. In standard 
analyses of deep inelastic data (neglecting higher-twist ef­
fects) larger values of Л are usually obtained. It is known, 
however, that if one includes in a phenomenological analysis 
the effects of higher twists, then it is possible to describe 
the data using an arbitrarily small Л / 3 7 / . 

Apart from power corrections related to the primordial 
transverse momentum of quarks (which correspond to operators 
involving the curl G„ v ) , .there exist also power corrections 
due to twist-3 operators Фу5& Ф and ФУ^а

1а, D"V. In the 
large-Q 2 limit their contribution has an additional factor 
A_ /Q compared to the contribution of the twist-2 operators 
фу у Ъаф. Note, however, that A is anomalously large 5 ц 

*! < 0 | d y n | P > = if A =if ^ = if . (1.8 GeV) (4 .9 ) 
5 " " m u + m d 

i.e. for Q 8 < 6 GeV these operators cannot be neglected. 
For the pseudoscalar фу Цпф -operator we have 

2 (P P ) An а АШ ) I 
F\ '(Q) _2j C F / * (j) ф (y) dxdy x 

с О 
1 - 1 11+ 0(a )| , 

(4.10) 

(xQ 2+M aXxyQ 2+2M a) 

where <£p(x) = A<£(x) - Af . 
2 (PPV 

It should be noted that for M =0 the amplitude E (x,y) 
is as singular at x ~ 0 as 1/x 2. . As a result, integration 
over x gives an additional factor Q 2 / M 2 that compensates the 
absence of the u -factor in the numerator of eq. (4.10). In 
other words, in the region Ci s<(M 2/m ) 2 the contribution F^J^Q) 
has 1/Q a -behaviour rather than 1/Q4 . . Moreover, F < p p) 
has an additional large factor (A/M) 2>10 compared to F £* A\ 
The same factor has_also the F (/ '-contribution ((TP) stands 
for the фу о ф в фу Ф -projection): 

6 ра> 'Ъ 
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г^тЬс^ 1 S&TQQ0p(y) dxdy 
" N^ o (xyQ2+2M2)(x<32+M2) 

x ( 3 _ d+»)G 2 - y t ' ^ O l U 0(« B)!. 
( x Q s

+ M a x y Q 2

+ 2 M a 

(4.11) 

Note that for M 2 =0 the amplitude E T P has the 1/x 3 -singu­
larity. However, using the equations of motion it is possible 
to show that the function <£T ( x) has an additional x -factor 
for x - 0 . In particular, if 0 p(x) - Af f f , , then <f>Jx) -
-Af„x(l-x). As a result, F<J P>~1/Q2 in the region Q 2 < (M2 / m q) 2. 
This contribution is negative and small for Q2 > 4 GeV 2. 

The curves for F„ given by the sum of eqs. (4.7) , (4.lO) , 
(4.11) have a right form (fig.4) and for M ^ O . 1-0.2 GeV s , 
Л =100 MeV they are close to existing experimental data. 

It is easy to realize that since the passive quark in our 
case has a very small fraction of the pion momentum x - M 2 / Q z 

("wee" parton), we deal really with the mechanism proposed by 
Feynman / 3 8 / t o explain the power-law fall-off of hadronic form 
factors. Thus, we might have considered the diagram shown in 
fig.5 and write F_(Q) in the standard bound state forma­
lism / 8 5- a e / 

1 <*x r j2,. F„ ( Q) - / ' /d*kx,6(l -X, k, ) x 0 *(1 ~V 

x </>(! - x, к , + xq). 
(4.12) 

Note that according to the Bethe-Salpeter equation the diag­
rams shown in figs.3 and 5 are equivalent up to 0(a ) -correc­
tions. 

If the function </>(x,k, ) is that given by eq. (4.6) then, 
performing к j_-integration in eq. (4.12) we obtain 

1 r n 2 m, m n F | r(Q)-;dxe^( 22 « - — • + =-=-» (4.13-
0 2M2(l-x) X M 2 ( 1 - X ) M 2 

whence it follows that for Q 2 < M y n ) 2 the main contribution is 
given by the region x ~ M 2 / Q 2 . if the function <A00 ( i.e. 
Ф(х,к±) integrated over k_j_ ) behaves like x K for x - 0, 
then F„ (Q) _ ( Q 8 ) - 1 ~ B . Our choice (4.5) corresponds to R = 0 
and as a result ^(Q)- 1/Q2. . If one assumes that 
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Хр(к1,...,кп)~еч>|2к1
8/М2} (4.14) 

for a system composed by n valence quarks, then ф(х) _ x n - 2 

for x - 0 and thus 

F ( n )(Q) -(Q 2) 1-" . (4.15) 

This relation corresponds formally to the well-known quark 
counting rule (QCR) /39,40/ # I n o u r c a s e > however, this rule 
has nothing in common with short distances and scale invari-
ance. The short-distance mechanism proposed in ref. to 
explain QCR, according to our estimate, works only for Q"> 
> Ю 3 GeV 2 . In an intermediate region one must take into ac­
count the fact that the contribution of the Feynman mechanism 
is damped by the Sudakov form factor of the active quark. 
Thus, one must multiply the curves shown in fig.4 by the Su­
dakov QCD form factor /* 1 / 

8( в^М^-в^|-^[аа4^#И1п-»йй^)-1п51]|. (4.16) 
ь 0 л а 2 1пм2/Л2 м 2 

For Л =100 MeV, M B= 0.22 GeV2this gives the curve shown in 
fig.6. In the region Q 2 = 1 -r 4 GeV 2 there is good agree­
ment with experimental data/4E/. Decrease of Q2FJ7(Q) for Q 2> 
>10 GeV2 is due to the Sudakov form factor. In the region 
Q 2 > 100 GeV 2 the short-distance regime begins to work. In 
this region the average off-shellness of the gluon increases, 
p grows, and as a result the wave function becomes narrower: 

—-—Linings- - In In-—s-J 
^(x,„2)-(x(l-x)) b„ Л Л ( 4 Л 7 ) 

and this, in turn, damps the contribution of the Feynman re­
gime. For Q 2 > 10 8 GeV 8 one may neglect the P y p ' contribu­
tion and use eqs. (4.1), (4.2) with the wave functions ф(х) ~ 
-(xCl-x)^2*0:3.The asymptotic formula <£(*) =6^(1-x) may 
be used only for Q 2> to20 GeV. 

Thus, in the region Q*_>lo^GeV* begins the asymptopia, 
and F„.(Q) is again given by the quark counting rules. In this 
case they are due to the short-distance scale invariance, as 
expected in the pioneering works by Matveev, Muradyan, and 
Tavkhelidze/394nd Brodsky and Farrar / 4 0 /. 
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Quark counting rules for ultrarelativistic systems were 
considered first by Terentyev/ 4 3^ However, he used constitu­
ent quark masses, m q -. M . In this case the range of appli­
cability of our analysis (M B « Q 2 « M 4/m^ ) is zero. We insist 
on using the current quark masses (m _ - 4-7 MeV) in the 
wave function (4.6). Note that the eventual IR cut-off in our 
analysis is of an order of M (i.e. of an order of constitu­
ent quark mass) in accordance with the common wisdom. 

The last but not least observation is that the magnetic 
proton form factor in QCD is negative for narrow wave functi­
ons like 0(x, ,xa,x3 )-IIS (XJ - 1/3)' * 4 / and positive for the broad 
ones, e.g. for that given by eq. (4.14). 

Summarizing this section, we may conclude that although 
our analysis is semi-phenomenological and some assumptions are 
very crude, it is clear, nevertheless, that a consistent treat­
ment of power "corrections" (in fact, they give the main ef­
fect) is the main problem for perturbative QCD of hard elas­
tic processes in the now (and, perhaps, forever) available 
energy range. 

5. SOFT PROCESSES AND PERTURBATIVE QCD 
The main fraction of the total cross-section at high ener­

gies is due to the processes with small transverse momentum 
(soft processes). These are the elastic and quasielastic pro­
cesses in the diffraction region |t| <'. 1 (GeV/c)8 and multi­
ple production processes with low p T :p T -̂ 1 GeV/c. The con­
ventional phenomenology of processes in this region is the 
Regge-Mueller picture. Till now, however, it was not clear 
whether perturbative QCD can give any information about these 
processes. Below we discuss this problem analyzing a process 
12 -»1'2' in the region s » |t|, m ^ d . We will assume also 
that the t -channel is flavour nonsinglet. This assumption 
simplifies the analysis. 
For seals^ gluons, i.e. in a Yukawa-type field theory soft 

processes have been studied 10 years ago '*5/ . It was shoivn 
that summation of all logarithmic tern.s (logs) N coming from 
the short-distance integration (regime 1), see sect.2) gives 
the following representation 

14а.о = c ± ( j , t ) [ i - B ± ( j , t ) v ± o ) r 1 v ± ( j ) c ± a , t ) (5.i .) 
for the Mellin transform of the scattering amplitude F"(s, t): 
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F-iBrf.-L-f If* **> f (j.t)dj . (5.2) 
2i _l0, r(j+l)einnj 

where ± stands for signature, С , v and В are some matri­
ces (to be discussed below)? e.g., B = B a b , and a,b=S,V,T,A,P 
are structures appearing in the Fierz identity applied to 
factorlze the spinor structure of the relevant contributions. 

According to this representation (eq. (5.1)) the Mellin 
transform f"(j,t) possesses moving ( t-dependent) Regge poles 
due to zeros of Det[l-B(j,t) v(j)]. . It has also fixed ( t-in­
dependent) singularities in the complex j-plane accumulated 
in the function v . The type of fixed singularities depends 
on the ultraviolet asympltotics of the effective coupling 
constant. In particular, in a fixed point theory (where 
g\/i)-»g0 as fi •* <• ) the function v(j) has square-root branch 
points, the position of which depends on g 0 , i.e. on the 
asymptotical value of g(p) . On the other hand, in an asym­
ptotically free field theory v(j) has the infinite number of 
poles condensing to j = 0 . 

Let us now discuss briefly the derivation of eq. (5.1). 
Consider a particular diagram of a binary process 12-»1'2' 
in the region S »|t|, m ^ a d t . The Mellin transform of its 
contribution has the following structure in the a-represen­
tation (eq. (3.2))-. 

f±(j,t)-/ndaffD~2(a)d(j.t,a£,)|A(a)| J x 
° (5.3) 

x [ e(A) +<Н-Л)] exp[iJ(a,t,mE)], 

where g(J, t, a) is a polynomial in j (it corresponds to the 
function G in eq. (3.2)) and A is the coefficient in front 
of the large variable S =s-u. . As is well-known, the 
asymptotical behaviour of F(S,t) for large S is determined 
by the rightmost singularities of its Mellin transform f(j,t). 
These are poles j - N generated by integrations corresponding 
to the regimes l)-3) discussed in sect.3. However, using eq. 
(3.3) it can be shown that in Yukawa theory the IR-regime 
gives only nonleading poles at) =-1,-2, . Furthermore, the 
pinch regime contributes only to the negative-signatare am­
plitude F" (S,t). . Thus, for F+(S,t) it is sufficient to 
consider only the poles due to the short-distance regime. 

According to eq. (3.3), the leading poles (at j= 0 ) are 
due to the subgraphs V t with 4 external lines. We recall 
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that Vj should possess the property that if it is contracted 
into point, the diagram becomes S -independent (i.e. Vf must 
be an S -subgraph). The most general configuration is shown 
in fig.7. Note that in general the SD-subgraphs V may be 
2-particle-reducible, i.e. they may contain smaller S-sub­
graphs with 4 externa] lines and the total singularity due 
to the SD-regime of V ( may be a multiple pole j~Ni . It 
makes sense to treat a particular diagram as a ladder compo­
sed by 2-particle irreducible blocks k. . Then the maxima] 
value of Nj is determined by the number of к • 's inside V f 

(and also by the number of the UV -divergent subgraphs in­
side Vj ). The contribution fy(j) °f each S -subgraph V 
may be represented as a sum of two terms f v = fy % f " e . 
The first term ( f^ ) is due to integration over the 
region ^-a

a- A v'l/f< 2and the second one is due to that over 
the region A v>l//i 2, . This procedure corresponds to a sub­
traction of the pole due to the small - A v integration. Ho­
wever, if V is composed by two or more k/s then f'y" may 
also possess the poles at j = 0 due to the SD-integration 
for a smaller subgraph V, С V. . Thus, one must represent 

f'vs as f v r R Pv)e * f " g VjB . and so on. An example of such 
a decomposition is shown in fig.8, where the pole part- are 
circled by the broken line and the regular ones by the s]a-
shed lines. Note that fig.7 is really a decomposition of the 
whole diagram. Summing over all diagrams we obtain (in the 
coordinate represenLat ion) : 

(2-)464(p1-.pi!-p;-pJ)F(S, t) ,-

- i ICfoj.p',; ij.y,)^ lid*], v(K,,y, :«,.»,)> ( 5 - 4 ' 

HfZj.w, ;x j ( , ,y H j)lv(x11.yI,;«„.wn)C(pz.p8';zIlfwn)l<Jvln. 

where ldy]j •- dx (dy jdz (dw j (see fig.7), and the functions (', 
v , I) are given by the following matrix elements 

C(a) (PpP'l ;*1.У1)- R B-Pils'TCfd^r.iKy,)*)^,:., (S.M 

В ( а Ь / г , ^ | ; х 1 4 1 . у ! ч 1 ) = Е 2<0|S"'T(:f(Zj)ral/'(wi): у (5.6) 

> : 0 U H j)r h0(y H1):S)|0>, 
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v(x 1,y I;z 1,w 1)=P g <0|S+T(:,(xi)ra,(yl): x 

x^Cz^T^Cw^iSJlO, ( 5" 7 ) 

Га' ГЬ = 1 - > V > . Уб'^Ур" 
(5.8) 

Here ,:: denotes the usual normal product; 17 , rj are the spinor 
currents (e.g. ijT=S (8&/Ъф) ) ; S is the S-matrix; P 2 means 
that Ay<l/ps for each diagram V contributing to v, (and R z 

means that Av>l/psfor all leading S -subgraphs having liries 
related to В or С . 

If we expand В or С into the Taylor series over £=x-y , 
£ »z-w, 

CW*l*l' ; , tl' yl )- (5.9) 
= exp(irX.)R S (l/j!)<p'1|S+T(0 .. 8)|Pl>f ̂ ... f [K 

B(ab) ( Zi , Wi : X 1+1'У i+l } = (5.IO) 

x <°l s + T^ t...». j( z,)o^ i...^ (xi+1)S]|o>, 
» j + У . Z. + W, 

(where t=pt -pj^p^- P 2 , Xj ' , Z f = — ' - — 1 ), then 
R 2 provides the renormalization „recipe for the resulting 
composite operators 0at, # < i v =^Г д —д ф . 3". should be 
emphasized, however, that R g in addition, subtracts from 
В , С also the contributions due to integration over small 
Л -parameters for S-subgraphs that do not contain the 
vertices фГдаф corresponding to composite operators. 

Just like for hard processes, only the lowest-twist ope­
rators (i.e. the traceless-symmetric part Olâ ,...fi.| of 0) 
give the leading contributions. Using the translation inva-
riance of the functions (5.5)-(5.7), integrating over f J f £ t, 
X i and Z j and summing over n ( n is the number of SD-in-
tegrations), we obtain 

P(S,t)=j|()i^-C(j>t)[l-v(j)B(j1t)r1v(j).C(j,t)( (5.11) 
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where t _- t 2 , S = 2(PQ), P = p t + p \ , Q = P a + Pg. . The functi­ons B(j,t), , C(j, t) , v(j) are given by 

R ^ 2 < p 1 ' | S + T ( O W r ^ , ( 0 ) 8 ) | p 1 > = C ( j . t ) l P a P ^ . . . . P / j | + O(r / i), 

i r X , tbfi,...fi. t ( 5 . 1 2 ) 
| d X e i r X B 2 < 0 i S , T ( O i a l / ,..„,(X)0 ^ k (0)S)|0> = 

- j i e l k e | , b e j ; i

i . . . e ^ 1 W i . t ) + <H,V), ( 5 Л З ) 

j"v(X-Z, i,OM " W ' 1 \\<u ».<L ld(X-Z)a£d£eiqp[ir(X-Z)]l -

J! v<j)S.k 3,^1 ... 6^ j
k > 0(r p). (5.14) 

where v(X-Z, f, О is defined by 

v(x,y;z,w) = v(X4--^,X--i; Z v4« z ~ T ) " V ' ( X ~ Z ' ££> 
2 d С С (5.15) 

and O(t^) denotes terms containing г t, . These give zero 
contribution into eq. (5.11) because (Pr) =(Qr) 0 . Note that 
eqs. (5.1), (5.2) give just a Mellin transformed version of 
eq. (5.11). To construct the functions В, С, v one must 
apply first the R-operation for ordinary divergent subgraphs 
(this procedure is characterized by the renorraalization para­
meter f K ) and then the operations P 2 and &иг~ 1 ~ Р Ц 2 
that separate small and large A-parameters (this corres­
ponds to splitting of the mass-loqarithms lnS/рЙ into "short-
distance" (lnS/(ia) and "long-distance" (ltift^p2) parts). The 
whole amplitude F(S, t) , , of course, must be independent both 
of yi and I1 R • • The f B -independence of F leads to a 
standard renormalization-group equation 

ц K cV<»/« R i /((В) <V'>B - 4^0) v(j ,(tB, в, ii) 0. (5.16) 
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The subtraction procedure R g for the problem considered 
is more complicated than that for hard processes. This is ma­
inly due to the fact that, for soft processes, we deal in ge­
neral with the configuration (fig.7) that has several nonover-
lapping SD-subgraphs Vj v n . We recall that for hard pro­
cesses we always have a configuration with the only SD-sub-
graph (see, e.g., fig. 2a). Straighforward analysis gives the 
following equation for С : 

^ J*_C H С = y(j) С + (1 - B V ) _ 1 (1-Bv) ', (5.17) 

where all functions entering into eq. (5.17): В ,C and v 
depend on /i. . The second term in eq. (5.17) is just due to 
the additional subtraction discussed above. The function y(j) 
is the ordinary anomalous dimension of the composite operator 
^ar, •.. v, • • I n o u r case it is convenient to single out 
from у the terms singular at j = 0. .It can be shown that 
these terms are proportional to v , i.e. that y(j) *=c(j) +b(j)v(j) 
where o(j) is regular at j=0. 

The equation similar to eq. (5.17) can be obtained also 
for (1-Bv): 

-(1-Bv)'=[2y(j) +bv(l-Bv) +Bv'][l-Bv]. (5.18) 

Requiring that Ф (j) - the sum of the leading Doles, 
does not depend on С , we obtain that (Ф р о 1 в (j)) ' must 
gular at j = 0 : 

а ф Р ° 1 в
№ = г ( й . 9) 

where r(j) is some function regular at j = 0. . Using eqs. 
(5.17)-(5.19) we obtain the equation for v : 

v'+2yv+bv 2=-t. (5.20) 

The meaning of t(j) becomes clear, it is just the residue of 
v(j) at j - 0 , because v'-jv. 

It should be remarked that eq. (5.20) differs from its 
analogue given in ref. / 4 5 / because of another choice of the 
^„2 -operation. 

Using eq. (5.20) one can sum up all the poles at j = 0 due 
to the SD-regime of all possible S -subgraphs (i.e. to sum 
logM(S/p8) contribution). The solution of tq. (5.19) has square 
root branch points in the complex j -plane /* Б / (see also / 4 6 / /) . 
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However, V(j) has also^poles Vj due to divergent subgraphs. 
These poles (i.e. logN(S/fi|) -contributions) are summed by 
eq. (5.16). If we take ц = /xR and combine eqs. (5.16), (5.20), 
we obtain 

/8(g) -^-=(j-2 y-4 y ( A)v-bv 8-r , (5.21) 

where v, у and г depend on j , and (-j) is the canonical 
dimension of v . In the lowest order of PT b=l , г - у - y^-g8, 
j3(g) ~ g s and the solution of eq. (5.21) has condensing poles 
at j = 0 / 4 5 - 4 e / . 

Summarizing the preceding discussion, we conclude that if 
one assumes that the asymptotical behaviour of F(S,t) is given 
by the sum of the leading terms of all contributing Feynman 
diagrams, then F(S,t) has for large S a Regge-type behaviour 
F(S,t)~Ca(t)Sa(l) since its Mellin transform has just a t-de­
pendent singularity at j = a(t). . To find the function a(t) ex­
plicitly, one must solve the equation 

Det[l-B(j,t,//R,g,ft>mq)v(j,^,ftR,g)] = 0. (5.22) 

It can be shown that eq. (5.18) guarantees that a(t) does not 
depend on fi and ft R : 

8 2 
«(t) =ф(-^-, -V,g(ft)) = 0(-^-,l. g(t)) . (5.23) 

t fi« t 
Hence, one may try to calculate the Regge trajectories in 

the region where g~(t) is small, e.g. in QED, where a=l/137, 
or in QCD for sufficiently large t . However, there arises a 
question whether eq. (5.11) is valid in vector theories. 

In QCD one encounters the complication discussed in sect.3. 
Fiist a SD- subgraph Vj may have an arbitrary number of ex­
ternal lines. But if the t-channel is colour singlet, then 
the only change is 

0(*)Г0(у) -.y,(x)rPexp(ig;A (z) dz^ ) <А(У) (5.24) 
У ^ 

for all bilocal operators entering into B- and C-functions. 
For local operators this corresponds to the changed. -» D, = 
= dn, -igA„ . The second complication is due to the IR-regime 
(soft exchanges, see fig.9). However, just like for hard pro­
cesses, if the j -channel is colour-singlet, then the sum of 
all soft exchanges givfe only power corrections in each order 
of perturbation theory. Thus, all terms responsible for the 
leading power contribution have the structure of fig.7 and 
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as a result, we get eq. (5.11). In other words, if we sum the 
leading j -singularities of all relevant Feynman diagrams in 
QCD, we obtain a Regge-type picture for binary processes and, 
hence, a multiperipheral picture for the multiple production 
at low P T . 

We recall, however, that we have discussed above only the 
flavour-nonsinglet, positive-signature amplitude FjJg .For 
Ffjs the pinch regime (sae sect.3) also gives leading j -po­
les for nonplanar diagrams. It is known, however, that the 
nonplanar diagrams have an additional colour factor (l/N )2=<l/3)8. 
This suggests that the pinch contributions in QCD must be sup­
pressed. There exists also an experimental evidence in favour 
of this suppression: the well-known signature degeneracy of the 
Regge trajectories. 

For flavour-singlet amplitudes F. ("vacuum" exchange) the 
poles generated by the pinch regime are at j =1 rather than 
at j = 0 due to the 2-gluon intermediate states and after sum­
mation one obtains for F + a square-root branch point at 
j =1+ 0(g 2). . This suggests that the pinch regime plays a 
highly important role in formation of the Pomeron singularity. 

The most intriguing possibility is to utilize the asympto­
tic freedom of QCD for a calculation of the Regge-trajectories 
and of the resonance masses in the region of large t (see eq. 
(5.23)). Note, however, that the function B(t) describes 
the long-distance dynamics, i.e. by its construction, В has 
an UV cut-off but there is no IR cut-off. This means that 
if the IR region of integration gives a sizeable contribution, 
one must (in some way) take into account nonperturbative ef­
fects. It seems that the most effective tool here is the me­
thod proposed in ref. / s e / . This and related problems are under 
investigation just now. 

Fig.l 
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