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1. Introduction 

The introduction of conserved topological charges/1/ widely 

used in the soliton and instanton physics is based substantially 

on the compactification of the space on which fields are defined. 

This requires the existence of the finite continuous limite of 

the field variables at the spatial infinity. The existence of the 

limits {at almost all spatial directions) even constant in time 

(dynamical charges) was shown by the extensive analysis of Parenti, 

strocchi and Velo/ 2/ under very general assumptions for the 

scalar fields, if they exist at some initial time. Moreover, the 

limits were shown to exist for all finite-energy scalar fields 

in the space of dimensions s.::.1 and s ~ J in 12/. It is noticed 

in the present paper, that their proof for s=1 can be used 

without substantial modifications also in the two-dimensional 

space ( s=2). The existence of the limit at spatial infinity of 

a real scalar field with a finite energy is proved for almost all 

spatial directions. A simple proof is presented that the limit is 

constant in time if it exists at some initial time and if the 

field has a finite conserved energy. In fact a stronger statement 

that a field with finite conserved energy remains in one Hilbert 

space sector in the sense of/2/ is proved. We offer a simple 

proof of this fact for those who take the energy conservation as 

a physical requirement and do not want to study the whole theory 

of/21. However, the energy conservation is a nontrivial assump­

tion. It can be proved for the solutions of the field equations 

in the completed space of the smooth functions with compact 

support under some conditions on the interaction part of the 

Lagrangian (potential)/ 2 ,31. 

The main new result of the present paper is the proof that 

the limit at spatial infinity of a scalar field of finite energy 



is constant for almost all spatial directions. This is sufficient 
for one method of introducing a topological charge which is then 
trivial (zero) but insufficient for another one. 

2. Limits at Spatial Infinity for Fields of Finite Energy 

We consider a system of real scalar fields 

:(x~l')x=R ~('( •. ::!) J , , . (x' , ... ,x') 

f-(x,!} 
with continuous first derivativea1. The Lagrangian of the system 
is assumed to be of the form 

1 ~ t ''~<fH<~' ... reJ - vcreJ 
leading to the field equations 

0 ",· (x,l) + ~ U( <P(x,!J) ~ 0 j = 1, ... , hV 1 ~J \ .I 
and energy 

E = f [ f(~)' + f("'<fJ' + U(<f)] J'x 
R' 

. 1,; The map U: R- -*R is assumed to be contJ.nuoue • We shall call it 
potential (somewhat inaccurately). 

The following two propositions are the generalizations of 
Theorems C.1 and C.2 of/2/ for the case s>1 .. Stronger results 
are known for s ~ .3 (Lellii!l.a 6 orf 2/) and for all s if U(z.) ~ z1 

(Lemme 5 of/ 2/ ). 

Proposition 1. Let rtv =1, M be the set of zero-points of conti­
nuous function U 

1 
anJ 

iThe second derivatives of the fields and the first derivative of the potential appear in the field equations but most of the follow· ing statements are valid for the field configurations of finite energy regardless of field equations. 
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:t <> •""' 

J VIV(,JI dz : J VIU(z)/ h : 
( 1 ) 

for some z~c R 

If M is a discrete nonempty set and f:e-t~R is a function 

with continuous first derivatives such that 

f [ T(Q<('(x))' +{U(<e(x!)/]J'x .<. +"" (2) 

.R' 

then there exists 

~oof(~>f) •M 
for almost all unit vectors ft.$ 1

-
1 

(for f =:!::1 if .!=1). 

If M=ff, then no function r(:R!---i>R with continuous first 

.deri\~i.ltives satisfying (2) exists. 

Proof. Let M be at most a discrete set and f be a function 

satisfying (2). Then 

7 [ f ( ;~(tV f) r + /U(<{(Nf))/] J, < +"" 
1 

for almost all f' s·-· and we can repeat the proof of Theorem 

C,1 from/ 2/ keeping f fixed. 

Proposition 2. Let U: R,.....~ R be a continuous function, 

• 
F(rJ= [ ~/U(>J/]' 

!7../=.f 

for r~ 0 whe~e 

the function F 
/zi=(I z')f 

jd J 
, and 

M be the set of zero-points of 

(3) 

If M is a discrete nonempty set and re: R' -J R""' is a map 

with continuous first derivatives satisfying the relation (2), then 

there exists 

j,;,.v /~(,.JJ/ ~ M 
{11-+oll 

J, s•-• for almost all "' (for f •:!:1 if s =1 ). 
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If M = ..fT , then no map f: R 1 
-....J> R- with continuous first 

derivatives satisfying (2) exists. Proof is similar as for Proposi­

tion 1. 

The next proposition is fundamental for the introduction of 

dynamical and topological charges of scalar fields since it gives 

sufficient conditions for their conservation. 

Proposition J. Let t(:R 1 xR --7 R,... 

first derivatives and 

be a map with continuous 

f,[ ( ~i('·' 1 )' 1- ( V !( (x,lJ)'] J'x "'- C 
R 

(4) 

for a finite constant C and all 1: 6 R • 'i'hen for all t
1 

tD ER 

and 

J [ '((x,O- !f(x,l,Jj' J'x < • "" 
R' 

(5) 

(6) 

S
,_, 

for almost all f€ (for f =±1 if s=1). Especially if the 

limit ~ d!(tvf, ~) or /.wv l<e(rvf,t )/ exists at some l, < R 
tv-'f+o'J \ rv-?+r;>D t:! 

for almost all f E S r- 1 
, then at all ~ € K 

,£;,.- d) ( "'f ' 1) = j,;.,., d) ( {1/ f' t • ) 
,..~ ... 0(' \ fV--')+<:10 1 

or 
~ /f(tvf,O/=~""/f("'f,t.)/ 
rv~+cP I"~+ 

for almost all f £ s$·! . 
Proof. Dy Schwarz inequality, 

l ' ' 
l<ec,,>l-'((x,f,)/=lf il<eC';cJ d"\ !;./J(!~J' J"'l' 

to 'd 't" ~. 
Now, according to (4), 

f [ '((x,U- !( (x,>,)J' J'x 
R' 

<. c ( l- t,)' 
' 

' I• -t,l' 

and (5) is proved. Eq.(6) then follows, e.g., from Proposition 2 

applied to the map <f(x,l:)- f(x,f:J and the potential V(z) = ~2., 
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Remark. In Proposition ), we gave the condition (4) evidently 

valid for the fields of finite conserved energy if the potential 

is non-negative. 1Veaker assumptions 

and 

J [ V~(,,1)- ll~(x,f,J]' J'x <: +"" 

R' 
were used in the proof. 

«e gave the sufficient conditions for the existence of the 

limit of the field for almost all directions at spatial infinity. 

Now we show that this limit has the same value at almost all 

directions for s ~ 2 

Proposition 4. Let cr: R~'" ___,.R"" (s~2) be a map with continuous 

first derivatives, vre '"C (Rs) 

If S ~ 3 , then there exists a constant cu € Rfi'V such that 

~ 'D(rvf) = w 
,..~+of) \ 

(7) 

for almost all E f S ·-· 

If s • 2 , then the limit (7) (or ,Cvw-- /<f(n,f}f) has the 
,...-+~ 

same (finite or infinite) value at all fe S'for which it exists. 
~· It is sufficient to give the proof for tnl =1 and then to 

apply the result to each component of ~ separately (the proof 

for ~ /~(~}JI in the case S=2 is also similar). Let us 
rv~+o" 

start with the simpler case 3 =2. If there exist £- <((tvj,) 
IV~+OO 

< ~ '((,j,) 
rv~+OIJ 

for some J1J~ 6 S' with polar angles w1 '4: r..ot. , 

then there exist ~c 9 0 and numbers h, c E R such that 

'f(Nj,) < b « C .<:, '('(Nf,J 
for all It/~ 11/11 Integrating over polar angle w , we have now 

for all If/ > ""• 

'"' J (\/'(')' J., ;;. 
0 
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The contradiction with the assumption 

thus obtained. 

The same argument is used for s),:;.), but it is applicable 

after some preliminary considerations only. Let us first realize 

that the finite limit in the left-hand side of eq.(7) exists for 

almost all f EO S s-' according to Lemma 6 of121 and that it is a 

measurable function of f as a limit of measurable functions. 

It can be seen now that either the statement (7) is valid or 

there exist numbers h < c such that the sets 

have positive measures in ss-• Let us assume that the last 

possibility takes placea The set N can be rotated to the position 

\Rl;j where it has an intersection of nonzero measure with the set L: 

CN ( L n $.,N) > 0 , 

where (.U- is Lebesgue measure on S"-" and *-'I! SO(,) is a 

sui table rotation. 'i'he existence of R is proved in Appendix. l'fe 

can choose such an orthogonal system of coordinates that the 

matrix ~ has a canonical form/ 4/ 

1 
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Let us introdUce in R s a system of coordinates similar to 

the cylindrical and spherical ones by the equations: 

·u::-1 " . )(. :::.fk:c.tr.>WK 
' 

X =ff(~t.J~<, 

f, =It!~ ,r, ·J: . .,y 
,.4NYv S-k~t ~ f-k-1 I 

f• =tt-~..9;; ~ ~-K-2 '-" ..t: 
l-1<: .1 I J v.!,J f-. 

f, ':::. {tl ~ J-~ . ~ .J;_2k un{_'lk+1
1 

k>1 ct~fy 

x:t.f( ... 1 =tv pWv J,; • ~ ~·-tK-1 (.bj ~-21f 
' 

)(s =tvun-f1 

where 11/~0 O!=.J'; bff (i::.1,.'",s-l.k), Of,-.9i£T-(i::.s-21{+1
1 

••• 
1 

s-K-1), 0 'w.L!f.2tt (i:1, ... ,k). For k=1 (this is certainly the case 

for s ::)) we obtain the usual spherical coordinates. In the 

following, all real values of "'.t are allowed (or the formulas 

should be understood as valid by mod 2~ ). The rotation by 

matrix ~ is the transformation 

Let us denote 

(8) 

(if at least one f.t ::> 0 ). There exists an orthogonal matrix (f 

(dependent on angles .J' ) of dimension k xk such that 

f 1 .t, J 
f1.: J... .... 

f, <~-, 
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We shall use the variables defined by the equation 

instead of "'z. • The transformation (8) becomes a translation 
in one variable 

Let us denote 

Now 

N, c N , di.,N, c L , <Y"(N,) > 0. 

There exist t->1 .,, ... 1 wk., such that f!N(N,) > 0 where N1 is 
the part of ~ contained in the region described by the inequa­
lities 

'"' -"· I < J. PO 
(td, ... ,k). 

There exists ~~0 such that 

where 

1>'-,_,(N:) = J 5'(..J} .J'-k-1-J' Jw; . Jw~ > 0
1 Nt 

N'l.* == { (~ 1 .. , J;-k-1, ""~ , . ., '-!~)/ f(.J; 1··., ~-k-1 /oJ~o, ""~ 1 ·· ·1 w~) ~ Nt.} 
( JC J-, v:~') is the unit vector described by the variables -J", ~' 
and 

( ") . ~-k-l. f... J: 0 v = ,....., v 1 ... ~ ·-·-· 
Using our coordinates, we have 

., "'-..+r ,_ 
f}V<flJ'xe> J {J[J (!!.) Jw;)Ns-3 dN}s-i..t)r"-'JJ~~. Jw; R N* o rN' • 

' " 
It can be shown that the last integral is infinite similarly as in 
the case S=2. The Proposition 4 is completely proved now. 

). Conclusions 

Various assumptions of our Propositions in Sect. 2 are valid 
for the fields of finite conserved energy if the potential U("z.) ~ 0 
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{z. E R.'"") • The existence of a finite limit of the field at a·patial 

infinity for almost all directions was proved. If the number of the 

components of the field trV> 1 and the space dimension S=1,2, the 

existence of .f,vwv it(Crvf)( is proved only ( f E S s.,). The mentioned 
IV_.. QO 

limit is constant in time and in almost all spatial directions. 

Therefore 'the dynamical charge defined in/2/ as ~ '((tvfha const-
rv_.+oO 

ant in i 's"·' for scalar fields of finite energy (this is the 

main new result of the present paper, formerly expected by the heu­

ristic arguments only/1/) and can be redefined on the set of zero 

measu-re (at every time) to become a continuous (constant) function. 

The topological charge defined as the homotopy class of (redefined) 

'JN- 11J(t1.1f) is then trivial for s ~ 2. Our Propositions can be 

~tt-7+ o"1 

used also for the fields having finite energy difference from the 

constant field. The shift of the potential U by a constant is 

needed here only. 

The fact that a large class of finite-energy (finite-action 

ln Euclidean case) fields have the limit at the infinity constant 

in time and all directions is often used. It approves another 

definition of the topological charge based on the compactification 

of the space by adding a "point at infini ty 11 /5/. The Euclidean 

space R~ becomes topologically equivalent to the sphere S$ 

after the compactification, and the topological charge is defined 

as the homotopy class (or some number characterizing it) of the 

whole field defined on S~ • The finiteness of energy is not 

sufficient for such compactification, since the uniform existence 

of the constant .£;,..- 'f("' f) 
N----i!-t-(;10 

for ~11 f € S"-1 is needed. The 

rigorous conditions sufficient for the compactification should be 

found. Can they be formulated as some requirements on the asympto­

tic behaviour of the initial conditions? A more detailed treatment 

of the field equations should give an answer. 

9 



The generalization of our results to gauge fields would be 
extremely interesting, but the Hamiltonians of gauge fields and 
scalar fields differ substantially. 

Appendix 

We shall prove two lemmas. The second lemma is needeq in the 
proof of Proposition 4, the first one serves to the proof of the 
second one. The first lemma is not new, j_ ts special case we need 
is used, e.g., in exercise 11 to j3 ot/61. We give a simple proof 
here for completeness. 

Lemma 1. Let G be a locally compact Lie group of differentiable 
transformations transit:i.ve on the finite dimensional differentiable 
manifold . S , (l.v be a measure on S invariant with respect to the 
transformations of f:i , 0 ,c_ (1-t-(S) <:.. + oe » be the ~ight inva-

riant measure on the group (; • Then for every function :( inte­
grable on S and every point J Ei. S 

J _,f(~f) Jv(dl,) = v(GJ) J ,(("1) Jr-(nt) r; CN(S S 

Proof. By the substitution "/, 1 = (/(,i'l'J_ , fv 1
= ~ we obtain 

fJ e~"l) J<!'"h) Jv(~) =V(G) J.{("l.') J~("'!') 
Sxb S 

(expressing integrals as ones over the parameters of S and b 
the same Jacobian appears as in the equation 

valid by the assumption; 

be used here 161). Since 

theoremson homogeneous spaces can also 

G is transitive on S , to all f,"l eS 
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there exists a ~~IOJ..l G such that nz. = d?,f'"Lf. Using the fact that 

J) is the right invariant measure on 6 , we obtain 

JS ;{($,"!.) JO"'("t} Jv(~)= f S{(~~"tl) Jv($,} J..-hJ= 
s.,.r; s r; 

oo ty-(S) u·(d/-f) Jv($,). 

By comparison of the two expressions for the double integral, the 

statement of Lemma 1 follows. 

Lemma 2 .. Let the assumptions of Lemma 1 be valid, v(G)> 0, L C.S
1 

NC S <Y"'(L)>O, ~OI) > 0 • Then there exists a transformation 
I 

~' G such that 

CN( Ln $-N) > 0. 

Proof. Let us denote by ,/, 7', 0,.- the characteristic functions 

of the sets N, L I Ln r"N for every 9"""t G • Then 

for f<S and 

by Lemma 1. Therefore there exists 

and it ie sufficient to put 
,... .. 

di,a; • 

such that 

In the proof of Proposition 4 we use Lemma 2 for S= S""-1 

and G = S 0 (,). 
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