


1. Introduction

The introduction of conserved topologicsal charges/1/ widely
uged in the soliton and instanton physice is baesed substantially
on the compactification 6f the space on which fields are defined.
Thie requires the existence of the finite continuous limits of
the field variables at the spatial infinity. The exigtence of the
limits {at almost all spatial directione) even constant in time
{dynamical charges) was shown by the extensive analysie of Faerenti,
Strocchi and Velolz/ under very genersl assumptionsg for %the
scalar fields, if they exist at some initial time. Moreover, the
iimits were shown to exist for all finite-energy scalar fields
in the space of dimensiouns s=1 and s23 in /2/. It is noticed
in the present paper, that their proof fer -~ s=1 can be used
without substantial modificatidus also in the two-~dimensional
space (‘s=2). The existence of the limit at ppatisl infinity of
a real scalar field with a finite energy ig proved for almost all
spatial directions. A pimple proof is presented that the limit is
constant in time if it exlste at some initial time and if the
field has a finite coneerved energy. In fact a sironger statement

that a field with finite conserved energy remains in one Hilbert

ppace sector in the sense oflz/

is proved. We offer & gimple
proof of thip fact for those who take the energy conservation as
a physical requirement snd do not want to study the whole theory
of/2/. However, the energy conservation ig a nontrivial assump-
tion. It can be proved for the solutions of the field eguations
in the éompleted space of the emooth functions with compact
support under some conditicns on the interaction part of the
Lagrangian (potential)/a’B/.

The main new result of the present psper is the proof that

the limit at epatial infimity of a scalar field of finite energy



ig constant for almost all spatial directions. This is sufficient
for one method of introducing a topological charge which is then

trivial (zero) but insufficient for another one.

2. Limits at Spatial Infinity for Pields of Pinite Energy

We consider a éystem of real scalar fields
((9: RFxR —+R™
g (xt)
{(_XIE) =

x !(X"._,,X‘)

?m(nij '

with continious first derivativesl. The Lagrangian of the system

is agsumed to be of the form

L= L (ae)3%) -Vl

leading to the field equations

O @0t + %uqm»: 0, s,
and energy

E=fL2(3) + tve) +vt@] 5
RS

The map U:RA'~%K is aseumed to be continuou54{ We shall call it
potential (somewhat inéccurately).

The following two propositions are the genéralizations of
Theorems C.1 gnd C.2 of’zl for the casge £>1, Stronger results
are kpown for §23 (Lemma 6 ofje/) and for all ¢ if U(z)= zt
(Lemma 5 of’el).

Proposition 1. Iet m =1, M be the set of zero-points of contiw

nucus function U, and

1The pecond derivatives of the fields and the Pirst derivative of
the potential appear in the field equations but most of the follow.
ing statements are valid for the field configurationa of Ffinite
énergy regardless of field equationa.
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[ iG] dz = J VTU@IT dz = + oo (1)

zﬂ
for some Z,¢R .
If M 1is a discrete nonempty set and ?:Rs—aR is a function

with continuous first derivatives such that

T (0@l +{u(qel]d'x <« +eo (2)
a2

then there exists

Lo f(rvf) eM

4 0C

41
for almost all unit vectors féf)"‘

(for f =41 if &=1).

If M=4 , then nc function g:R’—»R with continuous first
derivatives satisfying (2) exists.
Proof. Let M be at most a discrete set and ¢ be a function

satisfying (2). Then
FLe(2efy o juwi)] dn < + o
1

for almost all fé £  and we cen repeat the proof of Theorem
Cal fromlz/ keeping f fixed.

Propogition 2. let U:R™-—=R be a continuous funciion,
1
Fle)= [ o JULD[]T
lzf=¢

~ L]
for ;2; ¢ where !zf:(z z;)r R M be the set of zero-points of

et

the function F , and

+ o9
[ Flerdg =« )

[
If M is a discrete nonempty set and ¢: R &™ ig a map
with continuous first derivatives satisfying the relation (2), then

there exigts

Lims wi!{’frvf)l cM

"~ —n 4+

for almost all [eS5'™" (for fas1 if s=1).



If M=.2 | then no map g: R f™ with continuous firast
derivatives satisfying (2) exists. Proof is similar as for Proposi-
tion 1.

The next proposition isg fundamental for the introduction of

dynamical and topological charges of scalar fields since it gives

gsufficient conditions for their conservation.

Propogition 3. Let (:R‘xR —= R™ be a map with continuous
first derivatives and
Fe{nt) |2 : r 4
JLO50) #loqt) Jas < ¢ W
k.r
for a finite constant ¢ land all E€R . fhen for all hboeR
[ et gt )] 44 ¢ o o0 (5)
R.T
and
(6)

Liows @i b) - @(nft)] =0

N~ + 2
-1
for almost all fe ' (for f=41 if s=1). Especially if the
limit mf(""fr t) or ’&::wlce(ﬂ/f,b” exists at some E‘,ER
for almost all fé $*1 |, then at all tek

B @(WT ) = fo  q(f 1)

fowe 1 glf )] = e 140 ]

v—3+
for almost all _fE $r

Proof. Uy Schwarz inequality,

t b 2 1 1
g ) - gl <l 2E2 4| sltj (RF gt Je-ul®
t,

How, according to (4),

I [q{’(x,t)—cg{x,b,)]t 4% £ ¢ {t-6)"
g]’

and (5) is proved. Eq.(6) then follows, €.g., from Proposition 2
applied to the map ?(K,’-') — #(x,t,) and the potential U{z} = z2 L.



Remark., In Preoposition 3, we gave the condition (4) - evidently
valid for the fileida of finite conserved energy if the potential

is non-negative. Weaker assumptions

£
[ [ (38 o ae] < - =
and t- R

[T vt - 7@(xt)]) I & + =
R:

were uged in the proof.

We gave the sufficient conditions for the existence of the
limit of the field for almegt all directions at spatial infinity.
Now we show that this limit has the same value at almogt all

directions for s>2 .

Proposition 4. Let ¢ R® —R™ {s22) ve a map with continuous
firat derivatives, VQ el? (Rs) "

If §> 3 , then there exists a constant wGRW such that

Lore, Q) = o | @
for almost all fe §°77
1f §=2 , then the limit (7) (or G [@(wf)) pas the

same (finite ox infinite)} value at all fe.S"for which it exists.
Proof. It ig sufficient to give the proof for mw =1 and then to

apply the result to each component of ‘F separately {(the proof
for Mxoafr((ﬁ’f)f in the case £=2 is slso similar). Let us
o+
gtart with the eimpler case & =2, If there exiat Liw q(rvf,)
oy 400
< fowe _¢lwf,) for some f,f.¢€ $' with polar angles w, ¢ w, ,

=0
then there exist 4, » ¢ and numbers n'o‘ ¢ eR such that

¢lwf) <be e < @(rf)

for all A > A, . Integrating over polar angle e« , we have now

for all #w>n,

2 _ w, z
of(w)z do 2 _4_,1 (200 o] > Lt

at P



becauge of Schwarz inequality
_ o TR
lpvi -l =1§ 2 do] &lo=et® [J (55) do|®

The contradiction with the sssumption [ (v@)' wdn dw<ros i
thus obtained.

The same argument is used for ¢33, but it is applicable
after some preliminary considerations only. Let us first realize
that the finite limit in the left-hand side of eq.(7) exigts for
almost all f ¢ $ " sccording to Lemms 6 of/2/ and that it is a
measurable function of f as a limit of measurable functiions.
It can be seen now that either the statement (7) is valid or

there exist numbers .b < ¢ such that the sets
- et .
Vs (fer T e e < 6]
— i1 .
L= (eS| fime  ¢(mf)>e}

have positive measures in J$°' . Let us assume that the last
poessibility takes place. The set N can be rotated to the position

Ri where it has an intermectionof nonzero measure with the get L:
c/u(f_ﬂ &IV) >0 s

-1
where & 1is Lebesgue measure on A and & e SO(-’) is a
suitable rotation. The existence of R is proved in Appendix. we

can chooge such an orthogonal system of coordinates that the

matrix @& has a canonical fomM/

con by —pim )

S ey oy o

R = ' ’ conoly - e ok

MOLK oo aLK

1
L ) 1 s

where '0<!°Lﬁléﬂ' for £=1,. .




Let us introduce in R* & system of coordinstes gimilar to

the cylindrical and spherical ones by the equationst

1 .
X =P ooy ,x"=f’pwlu1
2k~
x - 1K
Tfpeme, X ﬁfszuk‘
Fy = e~ 1}; e 19:,‘.’__*_‘ B~ Vsikay
f." =NM'\& .Mw'\g}_"..z c—m'&;_k_.?l
Vﬂrn‘J {ov-
P = e o F w‘%'-lkwf’ k>1 ouly
Th+T _ - . .
X —-"7//1"”"1’6{1 - 'M"‘"‘"';-zk—‘l “”‘9’:—2«,
= w o
1 r

where w0 , 047 &0 (iz4.y J‘-“‘), o0& £ i‘i (3= 5-2647, .. .
$-K-1), 0 Guy LI0T (£:4..k Por k=1 (this is certainly %he case
for §=3) we obtain the usual spherical coordinates. In the
following, all real values of @
should be understood as valid by mod 2#¢ ). The rotation by

matrix ® is the transformation

% Land Q'L * OLL (ﬁg’]l "‘fk)< (8)

Let usg denocte
kT A
T T i
J = %‘[E e °Lﬁ} >0

{if at least one ¢, >0 ). There eXxistis an orthogonal matrix

(dependent on angles 2 ) of dimension kxK guch that

£y ) s
0
% fzzd't &
Fx Ay 0 .

s, ~ 8re allowed {or the formulas



We ghall use the variables a,}: defined by the equation

mq' ’ £1¢%

I
I~
cRl

@ (9"
ingtead of @y, » The transformation (8) becomes a translation
in one variasble

& w2

Let us denote

N, = &7 (LaRN).

Now

NeN, RN, © L a(N,) >0

There exist w,,,..., @, such that o (M, )> 0 , where Nz is

the part of ﬂﬁ contained in the region described by the inequa-

lities
T
lo, =9, | < 5 (L=1,,k)
There exisis !, such that
* ~ig=1
e, (N, ) =J.F@H d’ #’Ju;“_Ju; > O}
N

where

* A ' ! l G 7 ot |)

NI = {( Yy ik, ”"-l"'/hk) f 1y -f"k"‘f,w*rwwt;"',uk GN,.}

( f(J}w? is the unit vector described by the variables ¥, @)
and

. tek~1 N
E0F) = 2o 2 i Hi
Using our coordinates, we have

s u.“.‘rf
,{:(w)ﬁ‘x > J*{é [f (335’,-)" doy |- dn'} & 6) g8 dol .. du
~2 “he * -

It can be shown that the last integral is infinite gimilarly as in

the casge §=2, The Proposition 4 ig completely proved now.

3. Conclumsions
—_—_ s

Various assumptions of our Propositions in Sect. 2 are valid

for the fields of finite conserved energy if the potential {Hz)z 0



(z¢ E™) . The existence of a finite limit of the field at gpatial
infinity for almost all directions wae proved. If the number of the
components of the field m > 1 and the space dimension 5=1,2, the
existence of ibwv [@(mjﬂ ig proved only (f € $°"") ., The mentiouned
limit is constant in time and in almest all spatlal directiong.
Therefore ‘the dynamical charge defined 1n as é%;;ﬁimﬁﬁls const—
ant in f ¢ $°° for scalar fields of finite energy (this is the
pain new result of the present paper, formerly expected by the heu-
ristic arguments only/1/) and can be redefined on the set of zero
measure (at every time) to tecome a continuous (comstant)} function.
The topological charge defined as the homotopy class of (redefined)
'jbwv @va) is then trivial for §2 2. Our Propositions can be
uaed algo for the fields having finite energy difference from the
congtant field. The shift of the potential U by a constant is
needed here only.
The fact that a large class of finite-energy (finite-action

in Euclidean case) fields have the 1imit at the iafinity constani

n time and all directions is oftem used. It approves another
definition of the topolegical charge pased on the compactification
of the space by adding a "point at‘infinity"/S/. The Buclidesn
space Rr hecomes topologically equivalent to the aphere Lnd

after the compactification, and the topological charge is.defined
as the homotopy claes (or some number characterizing it) of the
whole field defined.ou $% . The finiteness of energy is not
gufficient for such compactifiéation, since the uniform existence
of the constant ,&w e(vf)  for ell fe$™" is needed. The
rigorous condltlons sufflcxent for the compactification should de
found. Can they be formulated as gome requirements on the agympto-
tic beyaviour of the initial conditions? A more detailed treatment

of the field equations should give an answer.



The generalization of our resulis to gauge fields would be
extremely interesting, bui the Hemiltonians of gauge fields and

gcalar fields differ substantially.

Appendix

We shall prove two lemmas. The second lemma is needed in the
proof of Pi-oposition 4, the first one serves to the proof of the
second one. The first lemma is not new, lts special case we need
is used, e.g., in exercise 11 to §3 of/6/. We give a simple proof

here for completenees.

Lemma 1. Let & be a locally compact Lie group of differentiable
transformations transitive on the finite dimensional d¢ifferentiable
manifold & s (W be a measure on < invariant with respect to the

transformations of & , 0 c {8} < + oo » ¥ be the right inva-

riant measure on the group & . Then for every function ;g inte-

grable on- ¥ and every point fes

JAE) dulh) = 2 [ 40) dentn)

Proof. By the substitution m’ = d?,ﬂz ., &'=®R we obtain

i £{&7) Joutn) du(R) = 0(6) _‘!’Hﬂ') Jont)

§x6

(expressing integrals as ones over the parameters of S and & ,

the same. Jacob;‘.en appears 88 in the equgtion
[ A(8q ) deln) = [0 dotn)
Ay £

valid by the asgumption; thecremson homogeneous spaces can also

be used l'ierels/). Since 6 is tremsitive on &, to ail fimeS



there exists a OL;,LG 6 puch that = dz,mf. Using the fact that

YV ip the right invariant measure on & , we obtain

[ £&n) deln) do(®)= [ { (&8, §) dv(R) deln) =
fyc §6

= o~ (5) é‘é(&f) dv (&) .
By comparigon of the two expressions for the double integral, the

gtatement of Lemma 1 follows.

Lemma 2. Let the agsumpticns of Lemma 1 be valid, ¥(G)> 0, Les,
NCS, o(L)>0, o~(N} > 0 | Then there exists a transformation

# 6 6 guch that
wl(Ln®N) >0,

Proof. Let us denote by »\(, %, Kﬂ‘ the characteristic functlons
of the sevs N, L Ly TN for every T€¢ 6 ., Then

w08 = g1 £(TF)

for fES end

51 %, () denlf) ) =:f(i)) (L) (W) > 0
Ix6

by Lemma j. Thersfore there exipts T et such that
wlLo TN) = {tsg-(f) dov(f) > 0

)
and it ie sufficient to put R = r .

In the proof of Proposition 4 we use Lemma 2 for $=§°7

and 6= $0(s),
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