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I. INTRODUCTION 

The radiative correction procedure is known to be impor­
tant in the deep-inelastic lepton-nucleon scattering data 
processing''1''. In view of CERN experiments on the deep-
inelastic muon scattering / 8 / during last years we have been 
analysing in detail the radiative corrections (RC) to the 
processes 

£ + + N - i + + anything (1) 

at incident muon energies from 50 GeV up to 300 GeV. We have 
studied usual electromagnetic corrections and also the cor­
rections due to weak interactions which grow with energy 
very fast. In particular, in a recent paper / 8 / based on the 
Weinberg and Salam theory and on a simple quark-parton model 
(QPM), we have calculated the one-loop RC to the P-odd 
asymmetries 

Л+М-А. '***(л) " d 8 s + (" л ) 

A d 8I*(A) + d"S?(-A) ( 2 ) 

and to the charge (or beam conjugation) asymmetry 

В ( Л ) =аУ(А)-аЧ_(гА) 
d 85: (A) + d £~(-A) 2̂ -... .2Г~~' <3> 

where ^ is the longitudinal polarization of the initial 
lepton (antilepton), and d 2+ is the double differential 
inclusive cross-section of processes (1). 

The calculations have been carried out in the ap­
proximation 

mf « I « M £
w , (4) 
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where I is any invariant of the amplitude, ml is any mass 
of scattered particles, M w is the weak W -boson mass. The 
l.h.s. of inequality (4) is the necessary condition to apply 
the QPM; the r.h.s., which is valid at the energies con­
sidered in ref.'''3'' , simplifies essentially the resulting 
formulae. 

In this paper, in view of the proposed experiments on 
deep-inelastic tti -scattering at TeV energies / 4 / we calculate 
the one-loop RC to asymmetries :A+ and В abandoning the 
r.h.s. of inequality (4), which does not hold at these ener­
gies. 

The paper is organized as follows. In the next section we 
describe in detail the renormalization scheme used for the 
calculations of the one-loop approximation for the amplitude 
of lepton-quark scattering. In section 3 we present and dis­
cuss the numerical results for asymmetries A + and В in the 
deep-inelastic fiN-scattering at incident muon energies E = 
= 500 GeV, 800 GeV and 30 TeV. (The first two energies lie in 
the proposed muon beam energy interval for FNAL TEVATRON 
project, the latter energy is expected to be reached at big 
world accelerator). In the Appendix all cumbersome formulae 
are collected. 

II. RENORMALIZATICN PROCEDURE 

For the calculation of the lowest-order radiative correc­
tions, it is necessary to realize the one-loop-level renor­
malization procedure, all independent parameters of the 
theory being expressed through the physical (experimentally 
measured) quantities. In the lepton sector of the Weinberg 
and Salam theory there are 21+4 independent parameters, where 
1 is the number of lepton types ( e,u,r , ... ). At the first 
step we follow Salomonson and Ueda / 5' and choose these 
parameters as follows: Electron charge e , weak charge g , 
masses of weak charged boson * and Higgs scalar, M w and 
My , and masses of all leptons (physical masses of neutrinos 
are considered to be zero). However, in contrast with / 5 /, 
where g is defined as the on-mass-shell constant of the 
decay W-» fiv , we extract g from the life time of muon, г , 
well defined experimental quantity. The g renormalization 
counterterm is derived from the requirement of zero one-loop 
RC to the total decay probability of the muon, i.e., we pos­
tulate for the renormalized weak interaction constant g „ the 
tree expression 
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з . г 1 1 ^ 4 » „ " 1 М » 8 ( 5 ) 

w г 

with the no ta t ion of Fermi constant 

V g g r 1.Q245 1 n - 5 
°^i^-=-ur-10 • (6 ) 

This step of renormalization procedure is free from unphysi-
cal infrared divergences present in the method of Salomonson 
and Ueda b / and uses the natural point of fixation of the 
parameters of the theory, in -decay constant, which measures 
the strength of weak processes at small (in the weak interac­
tion scale) transfers. Eq.(5) provides one restriction for 
three new parameters g , M and M y of the Weinberg and 
Salam theory. (For the QED charge e in the renormalization 
scheme , ъ / the usual expression e2=47r« is still valid, a = 
= 1/137) . It fixes the ratio g*/M s in the renormalized 
amplitudes and can be used to exclude W-boson mass, which is 
not measured up to now. So, we are left with two parameters 
g F and M . instead of gp we shall use another parameter 
sin0j = e/g^ . I n this case all calculated up to the one-
loop corrections observables (e.g., asymmetries) will be the 
function of two parameters sinS^ and M Y which are not yet 
fixed. The computations exhibit, however, a very weak depen­
dence of the asymmetries from the Higgs boson mass; for 
example, we have observed that variation M v within the 
limits 

I GeV <M < lOOGeV (7) 

gives relative change of asymmetries only within 1%. There­
fore, one can take some value for M y , say My = lOO GeV, and 
consider this value as another point of fixation. 

Studying asymmetries as functions of sin8^ , one can fix 
the last parameter of the theory. For this purpose we have 
calculated RC to the STAC experiment on asymmetry A~ . We 
used s / a renormalization scheme, where sin0 w is derived 
from eq.(5) and from a physical value of M e x , i.e., 
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sin0F = -SZAoeV. ( 8 ) 

w M « 
In this scheme we have observed rather large (<10%) RC to A 
in the kinematical region of SLAC experiment. The analysis of 
formulae showed that these RC come mainly from a near constant 
contribution of Z y-mixing diagrams (this term is of an order 
of ln(M^/m 8)). 

So, we have two alternatives: Either to accept the 
definition (8) for sin0jj and analyze once more the data of 
experiment by Prescott et al / 6 / extracting a corrected value 
of sin @ w , or to change the definition of sin в J in order to 
minimize the RC in the kinematical region of SLAC experiment. 
The latter is possible because a constant term dominates in 
this region in the RC. Let us follow the second alternative 
and define the physical value of sin3©*1 by the equation 

. sin20«= Bina@;.[ 1+£_.K B (sin 20^]. ( 9 ) 

where constant F includes the limit at Q2-»0 of the Zy -
mixing diagrams and also the Z-boson self-energy con­
tribution / 3 / . As a result of redefinition (9) the RC to SLAC 
experiment become small (see fig.2 in the next section); 
therefore, the extraction from this experiment of a value of 
the Weinberg parameter, which has been done by neglecting weak 
RC, yields practically the same value for sin2©^* as would 
be extracted if the latter corrections were taken into account. 
We shall take for 8in 0 " the mean value of neutrino and 
asymmetry experiments 

sin E0" =0.23, П°> 

as the last input value in our renormalization scheme. 
Eqs.(8) and (9) give the exact prediction for W-boson mass 

up to one-loop RC 

,, 37.3GeVr, „ „ , . 2„в»м 
M w — r s - c l + £" p * ( w , , V ] - ( U ) 

sinQ 
w 
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At sin й " = 0.23 the second term in (11) is about +o.04, 
i.e., RC increase W-boson from 77.8 GeV to 80.8 GeV. 

So, the fixation of the parameter sin 20" completes the 
renormalization procedure in the lepton sector of the Wein­
berg and Salam theory. 

We note that the renormalization procedure realized here 
differs from those of refs./,?/ used to calculate the one-loop 
RC to the processes e+e--» ц+ц~(е+е~) and is very close to a 
scheme which is called by Passarino and Veltman/'7/ to be as 
"ideal". We are able to realize the "ideal" scheme, because 
in the previous papers / 8 / we have calculated the one-loop 
corrections to the scattering amplitude of any two fermions 
and also to (/-decay total probability. 

To calculate RC to the semileptonic processes (1), it is 
not enough to complete the renormalization procedure in the 
lepton sector. Dealing with QPM we include in the Weinberg 
and Salam theory the doublet of light quarks ( . ) (we shall 
work neglecting sea quark contributions). This adds two new 
input parameters, masses М ц and M f l . We have chosen M u=M d=M 
and investigated the sensitivity of the result to the 
variation of M . We observed that, if M changes within the 
limits 

100 MeV < M < 1 GeV, (12) 

the relative change of asymmetries does not exceed 1% again. 
It is obvious that within QPM it is possible to calculate 

unambiguously only those RC which do not involve quark lines, 
i.e., RC to the lepton current and self-energy insertions to 
the exchange quanta virtual lines. But to obtain a finite 
result within a gauge theory, it is necessary to calculate 
the total set of the one-loop diagrams including those which 
involve quark lines. Furthermore we are forced to consider 
quarks as free particles on mass-shell. It is evident that 
the estimation of the precision of the results obtained in 
such a manner is difficult. 

The calculations exhibit, however, a rather favourable 
situation. Let us obtain two radiatively corrected asymmet­
ries. The first one, Aj , is derived from the differential 
cross section d ;£ j ; while calculating it we take all one-
loop diagrams (fig.1) and_realize the whole renormalization 
program. The second one, ^\ , is derived from the corres­
ponding cross section d 2 i , where we leave finite parts of 
a small number of diagrams only, namely: Lepton brems-
strahlung (diagrams 44 and 45, fig.1), vertex electromagnetic 
corrections (diagrams of type 22 with additional virtual 
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1 I _ _ ^ _^__ photon) , and finally. 

q lq 

5 J_t_^^^ 
2 3 t 5 в 

7 8 9 10 11 12 

( V ( \ t ( V i V f j k f%«,» formulae describing the 
>Г T T Г-^ >Г >Г contributions of these 
13 U IS 16 17 It 

vacuum polarization 
(diagram 14, fig.1) and 
Z у-mixing (diagrams 8 
and 9, fig.l). In what 
follows, this set of 
diagrams will be refer­
red to as the restricted 
set of diagrams. The 

diagrams to the con­
sidered cross section 
d £j are given in the 

_ __, Appendix. 
W7AJC W 7 Alt 

'21 2 2 и *' T n e computations show 
5~ y\Xv 1 ~i\7~ \/Sr I that the assymmetries A+i 

/ \ Y w^V T I / \ x a r e P r a c t i c a l l y the same 
•/..J — ' — ' * —*— — ' — * ̂  as A + (see figures in 
*•*# 26 27 » _ * _ 30 t h e n e l t s e c t i o n ) _ т : 

ХЖЖЕЕга 
36 39 (0 (1 (2 

the next section). This 
means that the radiative 
effect can be ap-

32 33 3t 35 36 proximated very well 
only by the restricted 
set of diagrams, i.e., 
it is free of the QPM 
uncertainties. 

Due to this reason 
and cumbersome represen­
tation of the formulae 
for the total set of 

Fig.I. diagrams of fig.1, they 
are not given in the 

Appendix; thus we restrict ourselves only to the presentation 
and discussion of numerical results corresponding to the 
total set of diagrams. 

III. DISCUSSION OF RESULTS 

In figures 2 and 3-7 we show the results of computations^ 
of the asymmetry A - for SLAC experiment and asymmetries A + 

and В for the deep-inelastic muon-nucleon scattering in TeV 
energy range. These curves, corresponding to the scattering 
on an isoscalar nucleon, have been computed at sin 2e e l= 0.23, 
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0.80 

085 

-090 

M = 0.33 Gev, for the 
parton spectra the 
parametrization of 
Barger and Phillips / s / 

being used. All asym­
metries are shown as 
functions of the scal­
ing variable у at 
fixed Q 8 . The numbers, 
placed close to the 
curves in figures show 
the values of Q 2 in 
units GevE . The solid 
lines represent asym­
metries Ai calculated 
with the total set of 
diagrams, dotted lines 
correspond to asym­
metries Щ derived 
from the restricted 
set. As a measure of 
the radiative effect, 
we take the quantity 

-06 
•A'-IO'/lq'WV*» 

-0Л 

02 У 
Fig.3 

09 

A ( B ) A 0(B 0) 
(13) 

where A^B,,) is the 
Born asymmetries cal­
culated with diagrams 1 
and 2, fig.l. 

From fig.2 we con­
clude that RC to A at 
SLAC kinematics are 
really small in our 
renormalization scheme. 
This p.rmits us to 
consider the mean ex­
perimental value for 
sinQ" as an input 
for our calculations. 
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From fijs.3-7 one can see 
that both asymmetries and 
the radiative effects depend 
mainly on G 2 and у but not 
on energy at fixed G2 and 
у . At energies E = 50O-
-80O GeV the most prominent 
is the RC 5 B reaching 
dozens of per cent, RC 8 Д 

do not exceed 10% in the 
greater part of the 
kinematical region but grow 
very fast at small Q 2 when 
у goes to unity. This is 
the effect of the hard 
photon bremsstrahlung. 

One can see also that л 
the major part of the 
kinematical region, ex­
cluding high Q 2 domain, the 
radiative effe_ct for the 
asymmetries A + is well ap­
proximated by the restricted 
set of diagrams. The con­
tributions of other diagrams 
are small or cancel each 
other. 

For the asymmetry В the 
radiative effect cannot be 
calculated using the res­
tricted set of diagrams, 
because of the large contri­
butions to В coming from 
diagrams with 2у-exchange 
(diagrams of the type 38 and 
39, fig.1) and from inter­
ference of diagrams 44-45 
with 46-47. These con­
tributions, changing the 
sign from 1~N to 1 +N -
scattering are of the order 

a but are not suppressed by 
the factor G s/M 2 as the 
other terms are. For this 
reason their relative con­
tributions to В depend on 



Q z and can be large, 
especially at low energies. 
Just these terms dominate in 
the RC to В at E = 500-
-800 GeV (see fig.6). 
However, at G^ = Ш, these 
terms approach to the other 
one-loop contributions to B. 
As a consequence of this 
fact, the RC both to A and 
В exhibit similar behiviour 
at TeV energies. 

In conclusion we em­
phasize that in the con­
sidered energy range the 
usage of the r.h.s. ap­
proximation (4) would yield 
quite an incorrect result 
even up to an order of 
magnitude and sign. At these 
energies Z-exchange squared 
contributions are not neg­
ligible as compared to the 
usual Z у -interference terms. 

The authors are indebted 
very much to M.Klein and 
I.A.Savin for valuable dis­
cussions. 

APPENDIX 
Here we list the con­

tributions to the cross sec­
tion d 2Sj from the 
diagrams belonging to the 
restricted set. 

I. Vertex electromagnetic 
corrections to the lepton 
current (diagrams of the 
type of 20 and 22 fig.l with 
additional vartual photon) 

v n £ m8 ° 
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Here 
d a 2 0 = d 2 2 ^ + в*Е** + «»2*. (A.2) 

2,, A 
2 - x . [ i + a - y ) 2 ] z « f « Q * ( A - 3 ) 

2 v Z A 

d 8 2 Z 

— - й - = К . 7
г . 2 Х Г , (x)[ Л%(1-у) 8Л~ ], (А.5) 

dxdy j i i i 
where 

2rra S N Y 

X = — , v = , y=Q e, (A.6) 
Y* 4 s m 2 e « ( M « + Y C o 8

2 e « ) 

+ i 
e i "f-fb, (w-вЛ) + <s+a\)], (A.7) 

Л, -•^(1 + Ьа)(1 + а
8
+2авЛ) + i-bj [ (1 + a г ) А+ 2as], (A.8) 

s= -1 for 1 N -scattering, and s = +1 for 1 +N -scattering. 
In formulae (A.1)-(A.2) the following notation is used S N = 
= 2MNE,Mj.s the nucleon mass, m is the mass of a scattering 
lepton,E is its energy in the lab. system, Q, is the i-th 
quark charge, f*(x) is the i-th quark momentum dis­
tribution, •a=l-4sinE©e't,b1=l-4!Q1|sinfi0«, В^ЭТ.З/вШв^. 
In summing over parton types i in (A.3)-(A.5) and below we 
take into account the contributions from valence u - and d -
quarks only. 

II. Vacuum polarization by fermions (diagram 14 of fig.1) 

d%^?(Y)-(d% A
+{d\ Z A), (A.9) 

10 



!P(Y)=2_XG:(-J-+m-i-). ( А Л О ) 
3 f f 3 mf 

Summing (A.IO) extends over all charged fermions ( e, fi,r,q,.„ ) 
which can appear in vacuum loops. In numerical calculations 
we take into account only the most important contributions 
from the lightest fermions, namely from e , ц < u and d-loops. 
Leaving u -and d -loops we approximate to some extent the 
contribution of the hadron vacuum polarization. 

III. Zy-mixing through fermion loops (diagrams 8 and 9 
fig.» 

i!̂ L . « 3Vi"4: „. т . D(Y) 2 xf.(x) |Q. [ [ -i\ MQAh A(R(y) -
dxdy у 2 i 

3o «in 1Я1 ®^ 
_s|Q |)]+ Ы _ ffi.— , a . T -D(Y)5:xf.(x)l-[b(l+a2+2asA)|G,| + . 

4 Y
a 0 j > i 

•f (Ubf Xa+sA.)]+R(y)[ |Q.!.(2as + (l + a2)A) +2b, (s+aA)]l, (A.il) 

R(y)=[l-(l-y)2l/T0 , T 0 = U(l-y) 2 , (A.12) 

£(Y)-1-2(4Q" J^li-K-f+ln-Ij). (A. 13) 

IV. Lepton Bremsstrahlung (diagrams 44 and 45 fig.1). 
For the contribution of these diagrams to the differen­

tial cross section d2^. , we use the following represen­
tation 

d 2* =-2-*d22 + d 2 2 + d 2 5 ^ , (A.14) 

where 

11 



i!b».ijcY)-£Sa.| i £ f ( a - , f W

 ( А Л 5 ) 

dxdy * dxdy xr.(x)-. / ь ' Л » " i W d * 
£-* 

K = - -L-in̂ l-y) - -Lj (Y) In * ( 1 ~ y ) - , (A. 16^ 
2 2 у 2(1-х) £ 

J(Y)=2.(-l + ta-^), (A.17) 

and the last term in eq.(A.14), we have expressed as the sum 
.F 

d 2 £ R -3..V } . ,~ M.ro2.„A 

The f i r s t t e rm i n e q . ( A . 1 8 ) i s t h e c o n t r i b u t i o n t o d £ „ 
from t h e s q u a r e o f t h e sum of d i a g r a m s 44 and 45 w i t h v i r t u a l 
p h o t o n exchange 

o ^ O ^ S ; Х) + Ф 1 ( - Х ; - 8 ) , (А.19) 

where 

ф <S;X) = - - * - ? ' + - V - - ! [ J(Y) + -1LL-]--&-(S-1.-JI.)!\ ( A . 2 O ) 
1 S y

 A S x

l Y SXY XY 2 Y x 

г A , v 2 „ г i S y i ( V S x + M j Y ) i X 
P - = l n „T^TT ' '< = l n 1if?»T7 • f x= m - ^ . ( A . 2 1 ) 

rj= V +Mj , V = S X - Y , S X = S - X , Y = x y S N , S = f S N . X = f S N ( l -y ) . 
(A.22) 

S Y = S - Y , X y = X + Y , T = S 2 + X2. 

The second terra i n (A.18) c o r r e s p o n d s t o t h e i n t e r f e r e n c e of 
b r e m s s t r a h l u n g d i a g r a m s 44 and 45 w i t h у - a n d Z-exchanges 

0 l = 0 * F i ( S ; X ) + 0 ~ F i ( - X ; - S ) . ( A . 2 3 ) 
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2 2 

P. «•» 2 S X ' M . S ' ^ . Y Z , Z . 2 S ( M z - X ) . 3 r S X - X Y M z 

Fl (S.X) = - p - - - < 1 + —)J(Y> _ £ t + y - D x + y t ^ 1-

(A.24) 
2 2 2 3 

S + X Y

 z 1 S + X Y z у z i 

Here and below D s = SY + X y M z , D x = - D g ( S - . - X ) . 

„ z V . S Z + M ^ Y Z a 2 
S 1 = S + X . ? t = l n — - 1—-£— , S ^ S , . + M 7 . Y „ = Y + M 7 . (A.25) 

M f V + M?Y7 Z" x Z . Z 

Z Y- D s 

L s = ТГ l n - s T - O a § Г Т ' ( A - 2 6 ) 

D s т*№?Г +M ztVSx + a/l]Y H M ^ l 

z z L x= - L s (S -. - X) , (A.27) 

M 2
z = M^/cos2ee;. <*-28) 

2 F 
Finally, the last term in (A. 18) is the contribution to d X R from the diagrams 44-45 with Z-exchange bremsstrahlung 

c, Z =A*M i ( 8 ; X ) + \ M j ( - X ; - S ) , ( A - 2 9 ) 

. 2 

Mi(S;X) = - 4 ( i + _ l ) j ( Y > f — _ Z _ . [ S Y L X - £ A ] + _ 2 a - _ _ ) . 

Y z n Y Z ? Z w S + X y r

M Z SY Z T 

2 2 

- _ ] - T - _ - . [ V M z + X . S 1 + - S - , 8 y( X +2Y + 4)]!LX + 
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T | 2 S * X . S f M z ! SVM Z ч X % S 8

Y , 

D* Y z

 D s » * S Z " Z 

1 . . .a „ XM 2

7 [ 2SV + Y . Y 7 ] 
+ Т П 5 ~ ' M z ( 4 X + Y > - 2 X s + 1 _ L J

! + 

^.„-««Lxx,-!£..*„. 
a -

Summing I to IV we obta in the r e s u l t i n g expression for d 2 j 

which i s used for the ca l cu la t ion of asymmetries 

d ' ^ - d 2 2 0 + d ^ v + d B S p + d 2 2 M + d 2 2 R . 
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