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1. INTRODUCTION

The renormalization group method when applied to asympto-
tically free models results in an "improved" perturbation
theory. Its expansion parameter, an effective charge g%QZ2/A2 g?),
decreases logarithmically with the increase in the momentum
transfer Q®. The existent QCD calculations of various deep
inelastic processes in the first two orders in g® appear to
be consistent with the present experimental data’1/. However,
the next-to-leading corrections (i.e., those ~§'4 ) are fairly
large. It leaves open the possibility that the higher-order
contributions will be important.

The calculations in higher orders are also of interest from
another standpoint. They might serve us a starting point for
summing the perturbation theory expansions of QCD, as it is
done, for instance, in the ¢4 model 72/, Moreover, these cal-
culations can shed light on some peculiar aspects of certain
field theory models. For example, in the SU(4) -supersymmet-
ric non-Abelian gauge model derived in /8,4/ the charge renor-
malization effects are shown to vanish to the two-loop or-
der /%, The corresponding three-loop calculations presented
below give the same answer: The charge renormalization function
B(g?) is equal to zero. Apparently, the vanishing of B(g®)
at the three-loop level is not a sheer coincidence, but an
indication that this effect holds to all orders.

The first three-loop QCD calculation in the framework of the
renormalization group has been performed in’/6/ where the to:al
cross section of e'e -annihilation into hadrons has been com-
puted analytically. This result is confirmed in /7 by a nume-
rical calculation and in /8 also analytically. However, these
calculations involve the B(g2) function to order g8, whereas
all other three-loop QCD calculations require the next, ~g8.
contribution to B(g2). The charge renormalization function
B(g2) for the non-Abelian gauge theory including fermions is
known to g% only, i.e., in the two-loop approximation /9.

In the present paper we describe a method which enables one
to evaluate ﬁxgz) at the three-loop level. We present the
results of these calculations and the full list of needed
formulas.
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2. RENORMALIZATION GROUP IN THE MINIMAL SUBTRACTION SCHEME

We consider a non-Abelian gauge theory with fermions be-
longing to the representation R of the gauge group G:
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Here 7® is the ghost field, a is the gauge parameter, and
fabe are the totally antisymmetric structure constants of
the group G. The indices of the fermion field (,bT specify
colour (i) and flavour (m), respectively. The matrices R®
obey the following relations:

ab

?

-[Ra'Rb]_=“abcRc fa'cdbed:C 5

’

A

(2)
R2R® =C I, -w(R®*RP)=Ts b,

In particular, the values of group invariants C ’ CF and T
in the fundamental (quark) representation of SU(I\II\) are:
N2_1 1

oN T='2_‘ (3)

CA=N’ CF=

The underlying gauge symmetry of the Lagrangian (1) gives
rise to the well-known Slavnov-Taylor identities /10/extensi-
vely used throughout the paper. In particular, a transversa-
lity of the radiative corrections to the gluon propagator
allows one to compute such a correction in the scalar form,
i.e., with its Lorentz indices contracted.

We now turn to a brief discussion of the renormalization
procedure. In this paper we adopt the renormalization pre-
scription by 't Hooft/ll/,the so-called "minimal subtraction
scheme",which by definition subtracts only pole parts ine from
a given diagram.The renormalization constants Zr relating the
dimensionally regularized 1Pl Green function with the renor—
malized one,
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2 : 2yr(nl L2
g ( ,a,g%) = lim Zr(;l“’“’ g)r@%a g%, 0), (4)
" €0
look in this scheme like 4
1 2y _ o ) 2, -n (5)
ZF(-—E—-,a,g ) —1+n§1cr (a, %) ¢ ,
i 4-d i ~time dimension. In (4) pu/
with e= 5 d being the space-time s . [y

is the renormalization parameter with the dimension of pass.
The bare charge ng is to be constructed from approppiate
Z’s. The most convenient choice is as follows:

«

—p2 gzl 72 (6)
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2
B
Here 21 is the renormalization constant of the ghost-ghost-

gluon vertex, Z, and f3 being those of inverted gluon and
ghost propagators, respectively. Note al%o ayp in (4) to be

given by eg=aZ,. The Green function T (-9-2-—,a,g2) satisfies
the renormalization group equation

2
L agh=0
n

. . o
[a 2-6—3“5- -B") -af(;g ~7g (2 8) - ~yria, g9 L

2
Q
and the normalization condition FR(——-E—,a, 0)=1, The anomalous

dimensions yp are given by the relatfon

2y _ .2 0 (1 £ 8
rples™) =g por ey (@ 8%). (‘)
Similarly, from
g2 = [g%+ 2 a® (g¥He ) : (9)
n=1

one obtains the charge renormalization function g,
d D, 8 €roc 2 ~ E:
™) =" -0V =g® 27 (0, 8D -y a8 -2y (ag®], (10)

which is known to be gauge independent ”%T‘hus, the computa- ‘

tion of yplae, 2% and B(g®) requires the functions cfd) (a,g®)

for the renormalization constants in the right-hand side of (6),
The residues of higher-order poles in the expansions (5)

and (9) are related with ¢{Dand a(). by the equalities

gy 9 _ 2yq-9_ 2)]e @ (a,g®) =g @D (4,g9), (11)
(B )ag2+y8(a,g )a " +ypia, 85)le W (a,g?) =5 pos D (a,%)
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BE®)525a ™ €% = Py -ha D). (12)

We choose to work in the Feynman gauge a=1 throughout this
paper. For checking the higher residues by means of (11), one
may use the results of the corresponding two-loop calcula-
tions/ﬁwrperformed in a general gauge.

According to the minimal subtraction prescription/lhithe
renormalization constants are uniquely determined by requiring
that all the divergences in ¢ disappear from the product
Zr(=,a,g%) T (Q%,ap,8 §,¢), so that the limit e»0 in (4) does
exist. However, we find a somewhat different (but equivalent)
definition’1%’ to be more convenient:

Zp=1- KrT. (13)

An. operator X picks out all the pole terms in e,

Kb eP= Zbet® . (14)
n n<0

R’ is the BPHZ minimal subtrxaction procedure ( R -operation)

with its final subtractidn missing: R=(1- K)R’. In other words,

the R’-operation subtracts all the divergences of internal

subgraphs but does not subtract an overall divergence of

a diagram., To construct R’ explicitly one can employ the fol-

lowing recursion relation /157
R’G=G+Z2(-KR’G )-eu. . (- XR°G ) -G/(G +...+G ), (15)

divergent
is the diag-~

where the sum is over all sets of disjoint 1PI
subgraphs of the diagram G, and G/(G, +..+G )

ram obtained from G by contracting G1’""Gn1 to points (as
an example see Fig.l).
The XR’G is the negative of a contribution from G to

an appropriate renormalization constant. The computation of
Xr-G

R T = B ~fiR A D —2fi -,
R frh g A=A

Fig.l

. /
is simplified drastically owing to the following fact 16{

R

. ity

4+

Let a diagram G be infrared. finite in a range of external
momenta k; and internal masses.m,. Then in this range XR’G

is a polynomial in k; and m,. Thérefore, it either is indepen-
dent of k; and m; (for the logarithmically divergent diag-
ram G) or loses such a dependence after differentiating once
or twice with respect to ki‘

3, A METHOD FOR COMPUTING THREE~LOOP INTEGRALS

This feature of KR’G provides the basis for a simple and
efficient computational technique developed in/15/ which enab-
les one to evaluate analytically all three-loop contributions
to the renormalization group functions y and B in any renor-
malizable theory. It is shown in/1%/ that one may calculate
XR’G (properly differentiated, if necessary) with all its
external momenta equal to zero and with an auxiliary mass
m#0 introduced into one of its internal lines (which is suf~-
ficient to remove all infrared divergences). The momentum in-
tegration corresponding to this line is chosen to be the last
one. It looks like

. J
(®*)%pE+mY
and is readily done using Eg. (A8) in Appendix. We thus show
the last momentum integration to be trivial. Therefore, the
problem of three-~loop calculations reduces to computing the
QWQ;;oop‘massiess integrals depending on a single momentum pg,
.dtdg

t 29 2Fp—0) ¥ (g ¥ (t-q) 2P
with 8,70 and p being integers. If one of the denomina-
tors is missing (e.qg.,p=0,-1,-2,....) the integral (17) can be
evaluated by sequential use of Eq.(A9)., Otherwise one needs
the non-trivial two-~loop integration formulas deduced in/17/
through the x -space Gegenbauer polynomial technique. In Ap-
pendix we give a list of the relevant integrals. of the type
(17).

As an illustrative example we consider an integral

(16)

(17)

dp dqdt(qt) 2 ,
J =f 2 2.8 ° = i—-@—— . (18)
PP % (p-9 2 (-0 2 (k9% (x-1)% |

ry

Due to quadratic divergence, it should be differentiated
twice with respect to k. Using the relation



9F g1 ] 8k-g) k~t)+4e[ (k)% + (k1) 2]
T,k (k~0) B(kt)® -a)“k-t)*

(19)

we obtain K92R’J as displayed in Fig.2 in self-evident nota-
tion. Since KR'J=k%A(:7L we finally get

1 1 . , . 1 25
A=)=X Ko%R’J =—(in®H3 (L1 __ [ 25
- ) ry—r R’T = —(in®) (12€2 Ly ) (20)

The last two diagrams in Fig.2 diverge logaritﬁmically so that
one can compute them with k = 0 provided that a non-zero mass

X/ = 8@— +8¢ ‘@* ,
RS =TS 22fe Y] 2]
XoR' P =[RS + 8e XRS5

is introduced into one of the
differentiated lines, i.e.,
into that with a blob. The
_<§SZZ§~ - problem of evaluating XR‘G at
the three-loop level thus redu-
ces to the integrations (16)
and (17). The described proce-
dure has been employed in a con-
siderable part of the calcula-
tions presented in this paper.
One can also determine the pole part of (18), KJ, by
means of a somewhat different method, which involves trans-
ferring an external momentum to the other vertex in order to
simplify the denominator. Consider the difference (Fig.3)

Fig.3

dpdth(gt)2 k-o) %
202: 2 2 2 2 2 (- 1= (21)
P2q2t2(p-q) *(p-t) ®(k—q) B(k~t) q?
dp dq dt(qe)® -k?
‘p g dt(qt) (2%k,q, -k") =% J -k®j .
PPt2qt(p—9) 2(~-t) B (k—q) B(k~t)2 H M !

= s
i

Let us further subtract from J, the other integral havihg
a more simple structure of the denominator:
2
dpdqadt t
I~ pdq :y(q) y -
P?t**p-0)® @ - )F (k- ) ’

2 2 (22)
dpdqdt q,(qt) [k, t ,~k" ]

PRq 44(p~-q)2(p-t) ® (k—q) %k -t)®

There is only one (logarithmically) divergent integral in the
right-hand side of (22), namely

dp dqdt .2ql1tu(qt) 2
pPatp-q) ¥ (p-t) P(k-q) % (k—t) ?

Due to the absence of divergent subgraphs, its pole part does
not depend on k and coincides with

dpdqdt 2q,t,(qt)?
P2t (- 2 (p-t) B(k—q)®

As to the integral: Jl' it diverges logarithmically and con-
tains divergent subgraphs. We note the difference

dpdqadt(qt) 2
I, - — (25)
p2q4t*p-Q) Xp-t) 2 (k ~q) ?

to be convergent, and combining the last five relations final-
ly obtain

. (23)

(24)

2
dpdqdt(qt) - [4(kt)(kq) +2q%t 2~ t2(k—q)®]
X3 -K[ p dqdt(qt) (kt) (k@) +2q (k-q) . (26)

p2q4t8(k-q) B(p-q) *p-t) 2

This integral is easy to evaluate with the use of formulas
listed in Appendix and gives the same answer as in (20).

The essence of the procedure presented above is as follows.
One subtracts from the initial integral J an infrared finite
integral J’ with a more simple denominator reducing thus the
degree of divergence. Such a subtraction is to be repeated
until the difference becomes convergent.




4., CALCULATION OF SPECIFIC DIAGRAMS

It is now seen that the three-loop momentum integrals con-
tributing to' Z‘s are always calculable., However, one must
introduce an auxiliary mass into the diagram (which as a rule
represents a sum of distinct integrals similar to (18)) and
into all its counterterms in a consistent fashion. For the
most complicated diagrams of the gluon propagator this task
appears to be unmanageable, Therefore, we deal with the diag-
rams of the topological type, depicted in Fig.4, as follows.
We reduce the numerator of the integrand to the scalar form
and then decompose it into a sum of invariants like k20y4)ﬂ
pzqg(p—t)z,.“« Cancelling numerator against denominator
and taking symmetry into account results in at most 66 dis-
tinct three-loop massless integrals. Their pole parts~are
to be found either by the direct use of (A9-A14) or by dif-
feérentiating, introducing a mass, and then converting.KR’
into K through the compensating subtraction. The latter pole
parts are given in Appendix.

- D> <A Q> <D

Fig.4

Fig.5

The propagator diagrams of more simple ("nested") topology
(Fig.5) can be computed straightforwardly using (A9-Al4). The
fémaining topological type is represented by a single diagram
(all others equal zero'owing to the antisymmetry of the group
structure constants) which can be easily calculated by means
of differentiation:

g#V(\’\<::;§gZ::>A/\;=
C .
) ; (27)
g®T(C;C Y(Cp-5) :
16 20 _ 32
i (am) S 2y %! (3 Ez+1r"‘:'€@)+00n,

All the diagrams'of the ghost-ghost=gluon vertex diverge
logarithmically. We evaluate them setting all external momenta
to be zero and introducing an auxiliary mass into one of the
internal lines. For each particular diagram this "potentially
infrared" line is easy to identify. .

Thus, all the diaqrams of a certain Green function are
calculated in the same fashion: with an auxiliary mass for thg
vertices and without it for the propagators. It enables one
to perform the subtractions either following 't Hooft /11 or
determining XR’G for each individual diagram. In order to
check the intermediate results, we choose the latter way.

The problem of evaluating the group weights appears to be
of no substantial difficulty. Mostly it reduces to making
contractions in the products of several structure constants
fabe  The following graphical representation is here of
great use /18

Y =fabc =8 ab

b
ca,d(.dbc=_CA‘S a

,A_ = -——(—;ﬁ) A —p> ¢ dae g ebg 4 ged =__02_Af abe (28)

-0 —> f&e fijdfjbhfhegfdce=0‘

The last two relations are derived from the Jacobi identity

) ‘/=I+ z =>fabcrade+fabefacd+fabdfaec=0. (29)

The only products of structure constants which cannot be con-
tracted by the sequential use of (28) are the following (Fig.6) .

9



From (29) we. obtain

A e

However, one fails to express
the graphs of Fig.6 separately
in terms of C .In a specific

Fig.6 case of the § (N) group, we
have found

- _321_ (31

Fortunately, the relation (30) is quite sufficient for the
three-~loop calculations of the renormalization group func-
tions. Only the sum of the diagrams of Fig.6 contributes to
the final answer. This fact is easy to explain. The non-trivi-
al products (Fig.6) might contribute to the vertex anomalous
dimension, frczzﬁh,only. But it is known to vanish 'in the
Landau gauge: 71(04;%=O.Hence these products do not contri-
bute to the gauge independent function B(g® and consequent-
ly, to 7,(e,g®) in arbitrary gauge as well.

* Concluding this section we wish to discuss one more example
where the Slavnov-Taylor identities/10/ have been fruitfully
used. To facilitate the computation of the vertex diagram
with the two-loop three-gluon vertex insertion

/1
dp p
KR’ =X 1 v [R ]
4-2e¢ f(27r)4p (o2 m?) \P

B '

(32)

- [ Wy
we employ an identity
abe
p,I (&, g, p) =
“op b e a (33)

P v 1,

0§ e k

=GO®) M 52°(k,q,p) TYq?)q? Boy=0,0)+ .

where a notation is as follows:
k5
§

=T 0 (k,q,p) ,

Ld

v‘ e

op
P =~ :
A
ab
LI -~12_a*),
——n P

ab P p P pV
2 g =-—i——-5 (g -—2)T @2 +a———-—u2 1.
—_— vV 2 TR p® P
A P P (34)
In our case k=0 so that (33) transforms into
- b
P, L ons (0-p.p) =G0HT 0% 0%, -2, P, Mgy%0,p.p) . (35)

Identity (35) allows us to calculatibcM;:)’c rather than fair-
ly complicated three-gluon verteX'FpV#,

5. THREE-LOOP RESULTS FOR QCD

A total number of topologically dist%nct three—l9op diagrézs
contributing to B(g% amounts to 440 §w1thout counting opposite
directions of the ghost and fermion }1nes). ?og performlgg_
the Lorentz and Dirac algebra, redu01ng the 1ntegr§nds,t e-
composing the scalar products, evaluating and suégtyg s zgen
dard integrals, the computer program_SCHOQNSCﬁIP asd'ffi_
substantially Used. The total execution time is rther i :
cult to estimate. Here we only indicate t?at the dlagrams o
Fig.7 require 110 and 90 seconds, respectively, at the
CDC-6500 computer.

~C e

Fig.7
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Our final results obtained in collaboration with A.Yu. Zhar-

kov are as follows (f is the number of flavours, h = g2
(47)R
T (L,h) =_E.éh--3-czh2+h3(— 125 o3, 15 p 2y (36)
Vit 2 1A 32 A g AT
wile _4 h? 23 2
}/3(1,h)_h(3CA 3Tf) he(— C SC Tf-4C Tf)+

+h3 [( 4051
144

——4( NC3+(~ +18¢(3))02Tf - (37)

'-(-—+24g(3))c c Tf+202’1‘f+ 6 ¢ (TR 4chT2f2],

C
Lh)= ——h+h®(——C%——C Tf)+h3[ (=21 4¢3 -
Y gL h) g b+ (24 A g lATD+ [(27+4cj())cA
_(216 +94°(3))CATt'+(--—4 +12¢(3))CACFTf——27CAT 21, (38)
9, 11 4, _ 3452, 20 Tt
B(h) =h (__._3._CA+.§.1‘f)+h3( 3 CR+ 3 C,Tf+4C, )+
eSOy 27 A
205 44 2,2 2
C_Tf- —C_T=f%~2C2Tf) . .
+ Calr 9 F F (39)

The cancellation of the transcendental {(3) in the expres-
sion for PB(h) is in complete analogy with !QED treated in the
minimal subtraction scheme, where /20/

B (a)— 2% 4 ad 62 _a*
QED 417 (4n)2 9 (47)8

In a particular case of QCD, when fermions transform ac-—
cording to the fundamental representation of SU(8), B(h) reads

(40)

12
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e

PR

=

S

~h2(-11 4+ 2 3( 38
BQCD(h)_h (11+3f)+.h (-102 + 3f)+

4 2857 5033 325 2 (4
+h* (e o - ).
2 18 54 -

Now we are in a position to find an effective charge h(—Q— h)
from

QZ

h
dx y
In = f——=yMm)-y®m, 42)
r? o BB (

where ¢ (h) represents an indeéfinite integral f Let us ex-
press h in terms of the renormalization group’B(l.xrzvarlant quan-

tity ln-@-g+ Yh) = 1n7\Q—25L, where A is the momentum scale.

Assuming
B =-Bx*- x%-p x*+0(x>) : (43)
we arrive at
2
Bzﬁo" B 1,

+ —L1nh +06, +

B BT 53

w(h) =

h + O ?) (44)

and obtain from (42)

h(L) = r By L N BB(%‘QIIHBO . BflnzL _
O
2 2 '
- IEI; Z; + Z;@ﬁ%—ﬁllnﬂo)] + (45)
0 4]

1n3L
4

+ —-————L 3; 3 [Bzﬁg-ﬁf+ﬁl(5[3g—ﬁllnﬁoh(cﬁﬁ 6‘3..5 [nB,
0

with § being an arbitrary constant. Fixing the momentum scale

a=_§_1£1£0

A by choosing, as usual, » we finally get

1 Bt L

Bz(lnzL—lnL) BoBo-B2
Bl BE LE

h(L)= ,85L3 BSL3

3
sodELy  (46)
L4
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Using (41), (43) and (46) one readily finds the QCD effective
charge in the three-loop approximation.

6. VANISHING OF gB(g?) IN A SUPERSYMMETRIC GAUGE MODEL

Some time ago a very interest%ng /52(/4) —sxllple'alrzir}rix;lle)ti:z;.ctgzn
Abelian gauge model has been derived % wl'.u.ce e chorge
vanishing charge renormalization effects, sI:L)nczero hroon
renormalization function g(g® pFove&? tj)4/'e
the two-loop order 75/, The Lagrangian is :

i Tag 2 1 ay2 _
£-2 M+—21—->\;$7\?n+§1-($#¢>f) +—2—-($‘lxr)

S

Y

(47)
be a T b Br Xb])\c -
gfa cA [a ¢’l’ +Y5 mn T n

— on
2 m

b b 2
S BE(rategdg )2 4 (100 Dy 0y g abe 4 by 0y
1 .

»

ith a,b,c =1 N?-1;mn= 1,...,4; r,t=1,2,3. Here EYM ;'.ls the
w. ’ » = yevey » ’
pure Yang-Mills Lagrangian with 8U(N) gauge symrnaetryé Ts:udo_
matter fields (Majorana spinors )\Kz, scalars' .qu an L;ar) >
scalars x &) transform according to the adjoint (regu

r

presentation of SU(N). Hence
a abe b, ¢
Durpm = AT, +8f Audg

i & . The six real
with similar expressions for $u<}i, and $I»¢Xl1 e
antisymmetric 4x4 matrices af , BT cbey the rela

la®,a®], =[8%,8'], =-25", [a",B']_=0. (48)

The other properties of these matrices and their explicit form

e given in Appendix. ' .
* Tg determine the contributions to the renormalization group

functions of the model (47) from the diagrams withoutBZS«;;?r
and pseudoscalar particles, one may use the results ( >
with

(49)
CA=CF=N' Tf=2N.

14

&= a

This leads to

101
=~Nh? + J0N2h 8, 291 N3p4
B(h) without secalars +10NZh 3 4 2

intriguing result B =o0.
The method of our three-loop calculations is described

Proceeding in the Spirit of ref, 721/ o write down the fol-
lowing rules of the "supersymmetric dimensional regulariza-
tion" which is to maintain both gauge invariance and global

as in four dimensions (see Appendix) while the numbers of
scalar and pseudoscalar fields equal 3+¢ rather than 3, Thig
modification of the regularization maintaing equal (and in-
tegral) total numbers of Bose and Fermi degrees of freedom
even in 4-2 dimensions: 8 components of four Majorana spi-
nors correspond to (2-2¢) massless vectors +(8+¢ scalars +
+(3 £¢) pseudoscalars =8 bosons. It is thig matching of the
Fermi and Bose field components that is crucial for pPreserving
supersymmetry /21/

For lack of a rigorous proof, we have verified the inva-
riance of the Supersymmetric dimensional regularization by

direct calculation of B) at the two~loop level in two dif-
ferent ways:

AW =hl27 () -y, () -2y, ()] (51)

and

B) =nl2y,(n) ~yg®) =2y, )1 52)

Here y and V4 a@re the anomalous dimensions of the ghost- .
ghost-gluon anlé fermion-fermion-scalar vertices, and Yar Vg,
y . and y )are those of gluon, ghost, scalar and fermion pro-
pfgators, respectively. In the standard (with 8T -.3) Qimen-

sional regularization, these anomalous dimensions are (in the
Feynman gauge) ;

Y, =—5Nh +5NZp2

15



N 2p 2
= —2Nh ——— = ~2Nh ,
Ys 2Nh + 5 Y¢ (53)
7 -Nh _N2he v, =—4Nh + 6N 2h 2.
3 2 ! A

With the use of supersymmetric dimensional regularization (with
8™ =8 + ¢ ), we obtain

~ Nh a2 2 11 2. 2
=— — _ 2NZp*, =-5Nh + ==N*h ¢,
Yy 2 4 74 2
(54)

2 2
yg =—2Nh + N%h %, y$=—8Nh —N *n %,

> _Nh 52,2 . 6N2h ",
7o=Tn - 2N ¥y ==4Nh +

Using (51) gives B(h) =0 for both regularizations while rela-
tion (52) leads to S(h) =—-2N®h3for the standard regulariza-
tion and to pB(h) =0 for the supersymmetric one. This discre-
pancy shows the former regularization to be noninvariant under
supersymmetry transformations.

For our three-loop calculations we employ formula (51).
Below we write down the scalar contributions to anomalous di-
mensions' through the three-lodp order calculated in the super»
symmetric dimensional regularization scheme (in collaboration
with L.V.Avdeev):

y 8eal __Nh + 53N, (89 L ig(g)) N3h3,
3 8 4

4
~ scal _ __]_-i 2, 2 719, 3 NBhS' (55)
Vg = 8Nh +(———32+8§())
7 scal _ 101 N8ﬁ3‘.
1 32
From (55) and (51) we obtain )
g seel () = Nh® - 10N%h 8 - lgl N3nt (56)

16
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e

- »

O py wm

- — i, V. i T e

and using (50), arrive at the final result

B(h)

three loops 0. (57)

It is worth mentioning that the use of the standard dimensio-—
nal regularization yields

scal _ 51 .2, 2 193 9 3,3
Y, _—Nh+TN h +(—;1—§—-—~74—§(3))N h°,

~ scal 11,0, o 527 9 3,8 ~scal 87 8,8 (58)
== ==N2%n 2 (2L 4 2 (3)) N3n 8, = =L N3%h3,
Ys 8 G Yy 32

a3y 4
B(h)three loops =8N"h".

The result (57) implies the absence of the charge renorma-
lization effects in the model (47) to the three-loop order.
It confirms a conjecture that B(h) in this model vanishes
to all orders. If it were the case, the model (47) would be
unique in the four dimensional quantum field theory. The va-
nishing B(h) might imply, for instance, that this model
would be free of supercurrent anomalies/28/, In any case,

a rigorous argument proving this conjecture on symmetry
ground is now a great urgency.

We would 1like to thank L.V.Avdeev, G.A.Chochia and
A.Yu. Zharkov for the help in some calculations.

APPENDIX

1. Feynman rules for the model (1)

[} . ﬂ : P p
A L ~1) —EY
j‘N\MA/A'/ P2 (glw+(a 1) p2

),
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gt " L(p-0) & g +(@-K) g, + (kD) 2, g,

4 c
. 2r .abey cd
J4 p - i e(2ga#gﬁy—gwgﬁ#—ga[;g#v)+
ace , bde
p ” J +f f (2gaﬁgw—gau gBH _gay gBV)]’
v

2. Additional Feynman rules for the model (47)

n 2 mn
a ¢
P ¢, } _%Bab .
p=mmgf o
h? 1l
Y /q _gyu f abe o o
h
k l' ‘(/ ~
ST A ~g(k +p), £ **° 8
Q’W\'i-\_ — CNW(..\ / [ ) It
P £ I'4 P\\,\f
18

—eeh T T
¥ e ———— -

PR,

aQ
r . abe 1
TR <€ -igf " a_

n
a c
f cr N A ./_//'
: = i i 2 ace p bde ade , bee
, . 8%, o, (*°t +f 2@y bee,
r P
at, e
Y _igza S (t ace ¢ bde +f ade fbce )
é . it su
N, u
¢ d°
atl % ig?fabegcdeas 5 5 5 -5 5. )
R a\-’\' f./c, ~1g (0,1 0y =015 04y By 8y ) +
é ~d B ¢ /'Y'\
N i N4 ace , bde
u w +f f (28rs Stu —Srta 81 "amats ]

In addition to this:
a) each closed loop brings a factor 8xn) 4 ,
b) each fermion or ghost loop gives an extra minus sign,
c) arrows on the Majorana spinor lines should be ignored in
calculating the symmetry factors.
3. Dirac matrices in 4 -2 dimensions

We use -the metric g#" =(1,-1, -1, ..), g

=4 -2¢.
e

Ly, v, 1, =%, YuYu =4-26 vy )y, =@Re-2)y

Y, Y, ¥ =48, ~2ey, Y, s Y, ¥,V V.V, =2€y vy y -2y y v (a.1)
pivip vp v'p rviplolu viplo op v’
== 2—— = = =
[y5,y#]+~0.y5— 1, wy_ =0, ul=4, tl'(y#yy) 48
tr ) =4 - + , tr( )=0.
(y#y,,yayﬁ G 8o "Bua Bug T Bu88 ) Yu, y“zNﬂ
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4., a-and P-matrices of the model (47)

These real antisymmetric 4x4 matrices have an explicit re-
presentation in terms of the Pauli matrices:

¢ o 0 - i
al- (-a 01 ), a?=( gg)’ ad=( e .0 ),
1 Tg 0 io,
i 01 -io. © (a.2)
Bl %2y, BR=( ), B3¥-( "2 ),
io 0 -1 ¢ 0 ia2

Their relevant properties are

[al', t] =[ !, t] =‘-23rt; [ l” t] =01
e pToF + “oF B (A.3)

et =T =tr(@Bl) =0, trla’al) =r(BTBY) =—48 Tt .

The supersym:metrlc regularization used in section & implies
5™ .34¢ giving rise to the following ' relations:
T-B'BT=-8-¢, afata®=(1 +e)a ,Btﬁtﬁr=(1+e)/3t, (A.4)

whereas the standard dimensional regularization prescribes

r

§T 23 a'a’=B'B' =-3, a'd'a’=a',p'B'BT=B" . (A.5)

5. Properties of the Euler T -function

T+ =2, TH=I® =1, T(N+1) =N!,

(R.6)

T(1+35) =expl-yx + “_ZQ‘, )" —g—n)—x"] )

where y is the Euler constant and { the Riemann function. We
note -that y and {(2) do not occur in Xr‘G, and consequently
in the renormalization group functions.

6. One-loop integration formulas

We choose a volume of the unit sphere in 4-2¢ dimensions
2n2 .

- €

to be

20

fdp(pz))‘= 0 for any A , (r.7)
dp _ ir2I(a+B-2+e)[(2=a—¢) 8)
2a, 2. 2B , 2 a+f-2+e ‘ ’ 1a.
P (p +m") (m*) 1L-arP
dq _ i7°T(1-)T(a+ B-2+6) [ (2—a—e) (2= PF—¢) (2.9)
0Bp-q)2P  2)atB-2+€ [(QOT(B)T(4 ~a=P-2¢) i
dg q, inzp“l"(l-—e)F(a+[‘3—2+e)F(3-a-—e)f‘(2—-/3-—e)
2 m‘ = 2 a+ﬁ_2+€ 3 (A.lO)
*1p-9 ®®) M@ T(A T (5~a—B~2¢)
dq 9, 9, - irraf(l—e)l"(a+ﬁ—3+e)F(3—a-—e)F(Z-—/S—e)
2a 28 2ya+ B~2+e *x (a.11)
““(p-q ®*) M) (BT (6-a~B-2¢)
x[(a+,8-3+e)(3—a-—e)p#pv+é—(2—ﬁ—-e)gwjp2],
(A.12)

d9 9,8,9)_ i7®I(1-e)T(a+B-8+)T(4~a-e)[(2-B- )
9% p- q)zﬁ (p2)e+B=2+¢ D)T(B)T(T-a-F -2¢)

1
%[ (a+ﬁ—3+e)(4—a—e)p# PP+ —-2—(2—B—e)p2 (p#gwﬁpvg“)\ *PAB ).

. Two-loop integration formulas 711/

2. a+B+y+ -
(p) ﬁ Y+0+p—4+2¢ dq dt

: =Via, B, y,0,0).
(in 2) 2 222 B0 (o ()P Fryio-p)

r 3(1—5)F(—1 +2T (L —a—e ) (L -y-e)(a+y—2+2¢)
x
M) P(I(3—a~y-8e)

V({a,1,%,1,1) =

[ [@B~a~y8)  Tla+y-l+e) . I'a) (A.13)
I'2-a-y-e¢) IM(a+y—2+3¢) Ma-1+2¢)
() _ I'(@-a-2¢) I'@-y-2¢) .

Tl -1+2¢) I —q) Fi-y) '
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3 {
V(o B,1,1,p) = AT RmaT(2-B-) [@-p-c)
I'(2-2) (@) T(B) T(p)

§°\l° (m)m‘r(n+2—26)[‘(m+n+a+ﬁ +p—2+2€)
mn=0 mal(n+l-e)(4-m-a=B-p-8e)(m+n +2—¢)

X

1 1 1

xf

(n.14)

1 1 1

+ . + +
(n+p)(m+n+a+p-l+e)  (+p)(m+n+PB+p-1+e)  (miira) (mintatp —L+e)

+ + +
(m+n+B)(min+Bfrp-l+e)  (m+n+a)(n+2-p-20 (m+n+B)(n+2=p—2¢)

8. Individual two-loop integrals

Here we write down the relevant integrals Ve, B,y,0,p)

with all the arguments being positive integers, retaining the

-—]!--- 1 and (1) terms.

b
e ¢

V({1 1,1, 1, 1) = 8(9),

1 11
Ve L, - S S T
( ieurail s
VA, 1, 1,1, 8) = — L 3
€

€

v e,y oo
€

mim

viee, 1, e 1, 1)=_lé. -1y
[3

€

ve Lt =2 .2 oy,
2 €
11

1 5
V3.1,1,1’1=.___ S-SRI, -L. S
¢ R R T:

9. Pole parts of the essentially three-loop integrals of the

form

(k) 31 dp dq dt Y(p, q, t, k)

(in®)3 p2q2 tB(k-p) 2(k~q) & (k~1) 2(p-q) E(p—t) B(q-t)
. 22

o -

T ——e e, ia

Y=(p—t)8=>__.2__~_51___._§'_77_ 4 3
3¢3 182 108¢ € <@,
®-)% k2 .4 3 8
) ST eE Y . {3,
@-t)¢ K 2,
(k ~q)8 2 H o, 4
st e O,
(k-q)8%x®? 1 4 4
) sEt e rTe,
k-g* k* 2o,
(k~q)2 kO -2,
k-9 *(p-1)* SR VIR
2¢2 3¢
(k~q)®(p-t)? 5, .13, 66L
12¢3 2462 48¢
(k-2 (p_1)° __1 65 85
4¢3  24¢2  48¢ 7
(k-q) 4(p~t) 2k 2 P SR
3¢3 32 3¢
k-9% (p-t)* k2 L, 3 .58
33 e 2 3¢
(k—q)*p ¢ 1, 199
6¢3  12¢2 24
(k=) p 2 1, _49 531
8¢3 48¢ 2 9%e
(k-q)% p?k ® L, 3 55
Ge3 2¢ 8 Ge
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