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1. INTRODUCTION

The determination of the asymptotic behaviour of form fac-
tors is an old - up to now not satisfactory solved problem.
There are a lot of methods to attack this problem/l . The
oldest one consists in a direct summation’? of the leading
terms of all Feynman diagrams in each perturbation order.
Another possibility is the usual renormalization group
equation/s/. However this method works without difficulties
only when all momenta tend to infinity. In our case two
momenta are partly fixed p2=- const, p°““=const,this leads to
infrared difficulties in the solution of the renormalization
group equation. Therefore the simplest diagrams do not deter-
mine the asymptotic behaviour, infinitely many diagrams must
be taken into account. Here we apply another method which we
have learned from the approximation procedure for the re-
normalization group equations for light-cone coefficients
In principle the method works as follows. We start with the
usual renormalization group equation for the form factor and
add additional derivatives with respect to p?
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For simplicity the squared external momenta 92 and 9'2 are
identified and fixed Pz-P'z-y2 . An essential step is the
treatment of this quantity as a renormalization point. Fur-
thermore we prove
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so that as final equation appears
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This equation is the starting point for all further physical
investigations. The main part of the present work is the
proof of this relation. It is achieved with an unusual sub-
traction procedure quite analogously to the subtraction
scheme introduced by S.A.Anikin and O.I.Zavialov for the
proof of the light-cone expansion/s/. At first relation (1.3)
is proved for scalar field theory, later on for gauge
theories as QED and QCD. The calculations of the anomalous
dimensions are carried out in the fourth section. For the
scalar field theory ¢ gy It is shown that the anomalous
dimension y(f) +yg vanlshes at large q? in all orders of
perturbation theory. For QCD the anomalous dimensions are
calculated in fourth and second order in the coupling cons-
tant. They increase logarithmically for large momenta. In the
following section the renormalization group equation is sol-
ved for both theories. In scalar field theory ¢£ the form
factor shows the same aiymptotlc behaviour for both limiting
procedures q® »~c0, p2=p and q%+-e , p%= p*2a #2 .
QCD behaves in both limits differently. The interpretation of
the solutions of the renormalization group equation for fixed
p? is more complicated. By taking into account the one-loop
calculation for the anomalous dimension the well known result
exp(—-cln(~g%) In In (%)) is obtained. However this behaviour
is strongly modified if two-loop calculations are taken into
account. Nevertheless it is not excluded that this result
reflects the true behaviour of the form factor because the
main contributions that change this behaviour come from the
wrong integration boundary. On the other hand, it is possible
to look at the solution of the renormalization group equation
as an identity in the renormalized coupling constant. Picking
out the leading terms, this means the powers of g21n2( - q?

on the right hand side, then as a result the famous Sudakov
summation formula appears. This result is certalnly
.Odlfled by the inclusion of non leading terms g " In _1( q )
gﬂn (-q%),. as it is indicated by the behaviour

exp( —cln(- q2)1nln(—<12) .

2. SUBTRACTION OPERATORS AND RENORMALIZATION GROUP EQUATIONS
IN SCALAR FIELD THEORY

For simplicity all problems are discussed in scalar field
theory at first. As current operator we choose
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Perturbation theoretically calculated quantltles as TE (s),
-T(iEy (8)); Ey(s) =exps, E,(8)=E (s) -1, s=i %, dx

are renormalized with the help of the Bogolubov R operation.
The symbol T of time ordered products is omitted everywhere.
The renormalization procedure is formalized with the help of
the technique developed by S.A.Anikin, M.C.Polivanov and
0.I.Zavialov /6/, In their notation the renormalized current

operator j 1is given by -
R(J(Q)E (8)=E (s ) —Le j(q), )
(G@E (6)=E (s) 1+ME1(Sr)J(q) (2.2)

8, renormalized action, whereby M denotes subtraction
operators. The renormalization of the S -matrix graphs con-
tained in Ey(s ) has already been performed at subtraction
points pe dlfferent from zero. The subtraction operator M

acts on coefficient functions containing the operator vertex j

Fla)= = A [ 4Dy gy (@D B 8(a+ Zp ) 6@, ) b ()
MFP(Q =+ J dpep P IP1GE )8 (aep+p): 6 06):
(2.3)
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Additionally to this subtraction operator we define the sub-
traction operator M acting on the same functional. It

defines a different unusual renormalization procedure for the -
external current operator.

MF@) =2 [ dpdp” F 171 (@, 12 1D 5(aep+p”): () $p7) :
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In these definitions we used

B ( %)= __p 24 ¢ g ((L+1)8;-1)
M l(q )lq2=p,2 , [J_]J =W ——-“J.—E R #2< 0.

The subtraction operator M is used to establish an identity
for the renormalized current operators
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With the notation
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this relation takes the form
R(j (QE((S) = R(Ex(SINRE (@ Ey(9)]) (2.9

R denotes the usual renormalization procedure. R is a modi-
fied renormalization procedure which applies the operator Ji
for graphs or subgraphs containing the operator vertex i
Now it is possible to extract relations concerning the
form factor itself. Taking into account eq.(2.4) we obtain

i1PI ~ 1P1 ~
RG(DE()= Fy (i uHRG@DE0 () + 1 (@R ($(-9E o(s))*" 1

which means for { = 2

1P1
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Fo (@%5p%.p"%)= Fy (qz.u.uz)F‘ PLeq2, p2p 9. (2.11)

The relations for the form factor appear here as relations
for coefficient functions with two external legs. F2 is the
normal in standard manner renormalized form factor. By
eq.(2.11) it is connected with the form factor Fz which is
renormalized in a more_complicated manner. From this equation
it follows that also Fy is a finite - therefore renormalized
quantity. Of course a general proof of the renormalization
properties of the R operation must be considered, but this
is not done here. If now the standard machinery of renormali-
zation is applied, then we have automatically renormalization
group equations for the usually renormalized form factor

9 gl ,s9 _y _ 1P 208 572) _
(gt Byg+dgn-vemyy) Fy (aRp2p7%) =0 (2.12)
~-2(29 +p2 2 9 2 p2
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f Fo(2.13)



and for the form factor ﬁg

aJ aJ 9 - ~1P1
Z 8- 5%y _5)F 2 p2nr2) .
("af'ﬁag’L E yj) o (4%p=2p” %) =0 (2.14)
- E] .29 (=1PI, 2 3
Vo+y, ==2(p%54p L) F (g% p3p D]
i 2 op° gp’g 2 pzzp'a=#2 - (2.15)

Both expressions (2.13),(2.14) are special cases of generally
valid expressions

Let us now discuss the main problem to be solved. The main
task is the determination of the. asymptotic behaviour of the
form factor F1FI for q®s-w, p2=p’2= fix . . Equation
(2.12) is exadtly valid but in most cases useless because its
solutions contain infrared divergent diagrams. So we want to

.

derive directly a renormalization group equation for Fﬂf‘(q%u%

that does not have these problems. The starting equation is
(2.11). Taking into account eq.(2.12) and eq.(2.14) and cal-
culating

_Q__ d Jd LPI, o o o _1PI
(#au +BE+3‘5&?‘}/2‘)’1)F2 (@Wr%k)Fy  (¢%p2p 9=0

we obtain

tPI

(q®pu2,u2)-9, (2.16)
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This equation can be solved directly and applied for physical
problems. The remaining task consists in the calculation of
the modified anomalous dimension ;. and a discussion of its
solutions. It should be remarked tkat similar equations have
been written down earlier without proof.

3. SUBTRACTION OPERATORS AND RENORMALIZATION GROUP EQUATIONS
IN GAUGE FIELD THEORY

At thirst we consider the case of QED. As functional we
introduce

(3.1)
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The operators M and M must be defined on 1PI diagrams that
are renormalization parts only. The operators needed for the
renormalization of the 8§ -matrix Eg(s,) must not be defined
explicitly because the rencrmalization program done with
these operators is already carried out. Let us turn to the
definition of the operator M which is used to renormalize
the current operator in eq.(2.2). As current operator we
choose the electromagnetic current

Jp==e:d @y $0)i=c[dpdp’5(pep4a) :%(p) y Y(p*): (3.2)

{(In QCD the flavour structure of the current does not change
anything essentially, so it is suppressed) .

Renormalization parts are diagrams with two external Fer-—
mion lines or one external photon line. In electrodynamics
these diagrams are identical to the self-energy diagram and
the vertex part. Graphs with two external photcen line vanish
because of Furry's theorem. By the consideration of the cur—
rent operator as an external operator it is possible to
define its renormalization independently. For simplicity we
define the subtraction operators on the kinematical in-
variants directly. These are

CLd i
F =cy F @%p%p'3+3K (app’)G (a%p%p-?), (3.3)
2 n2 #
(two Fermion lines)
2
Fo=(8,9%-49,)B\") (3.4)

(one photon line) ;
The kinematical factors k# depend explicitly on the momenta,
so they need no subtractions finally. So we define

MF, ()= [dp dp"F1*T (a2,p2 p72)| g @(p')y#¢(p):6(q+p+p’)

p Z=p %y
¢®=0
. (3.5)
+(8,9"° —9,0,) BO):A (~q):
- 2 g . 2 _ <A (—a):
=Fo . pmn™) i+ (glw " ~q,9)BO):A (~o:



and

P by 0 = 7\ ’
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With the given definitions all relations (2.6) are valid, so
that the formal calculations of the foregoing section remain.
The important relation (2.10) reads now

(3.7

RG @ Eg@) =F ' (@%0% kARG @ E()) +(8,9%-9,8)B (@) RAL-DE(S)).

From this we extract for £ =2, k =0
, = 1Pl .
F‘;PI (q2'p2'p 2) =F21PI (qz'“z,llg) le (q2’p2'p 2). (3.8)

In similar manner also renormalization group equations can be
written down.

Let us now turn to QCD. In this case the functional F# is
more complicated because we have to take into account ghost
operators too, also if they are not contained in the original
expression of the bare current operators. A renormalization
part is the diagram with two external Fermion lines. All
other diagrams containing one electromagnetic vertex are not
divergent or vanish because of the different group structure
of the electromagnetic current with respect to the colour
group. For example, diagrams with two external gluon lines
are not.allowed. According to Furry's theorem it follows that
the representation of the colour group built up from the two
external gluons does not contain the identity needed for the
contraction with the external current operator. Thus it is
possible to choose as subtraction pperators

P - ’ ’
MF,= [ dpdp’ Fy (q%p%p %) o707 Y@ : 3@+’
‘ p2=p ‘2=p?

q%=0

“ — —
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iPI
F = 2 2 2y .
L F (@, p% p=)4,00)
Again all earlier used relations are fulfilled. The equation
for the Dirac form factor takes the form (3.8). The renorma-
lization group equations include derivatives with respect to
the gauge parameter a in general.

4. CALCULATION OF THE ANOMALOUS DIMENSIONS

The anomalous dimension ¥,
with its definition (2.15)

must be calculated starting

~ ,2 g (oIPL o 5

vty =—2(pg-ﬁ—é+p —d)F (¢ p.p 3)1

j 2 dp ap”’ 2 o so_. 9
pe=p *=p

To apply standard calculations we take into account eq. (3.8).
Performing the p? differentiation we obtain an equivalent

definition
9 2 J 1PI ,
2(f L-+p L )F  (aZp2p D)
2 J ,2 2
7oty =- ap P | . (4.1)
i 2 1P1 , 2p a8
F (¢ p%p’®) p2=p S=p

For our purpose it is sufficient to know its asymptotic
behaviour for ¢%, - .

For the scalar theory it is possible to show §j+y2»0 R
for all orders of pexturbation theory. It is achieved by a
discussion of the g -representations of all possible dia-
grams '

da,...d Gy(@)g®  Qua)p® Qa)p? '
F =R X [ agl : xp i 1 o« +Q3 - +Zai(fm2+1e))(4_2)
2 Grapns D (@ D(a) D(a) D(a)
As interesting quantity we have to discuss az F2
dp
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.4 Q(@q® Qfa® @
day.day, Gyl expi (9q i )P + 3(ah)+Ea.i(—m2+iu€)).(4.3)

D¥(a) D(a) P D(a) D(a) D(a)

Rf

The factor Qy(a)/D(a) 1lowers the degree of the graph itself.
This m9§5/be taken into account by the app%ication of the
method for an estimate of the large (“-behaviour. The
rules given there consist in counting the so-called essential
subgraphs. These are graphs that are crossed by each ¢®-cut
(cut that separates the ¢ -vertex from the p? andp’? ver-
tices), that have maximal divergence degree and do not con-
tain the forbidden divergent subgraphs. Then the maximal
divergence degree determines the asymptotic power, the powers
of logarithms are determined more complicated by the number
of essential subgraphs. In our case all subgraphs of 1PI -
diagrams that are crossed by ¢2-cuts have the divergence
index = -1, The largest divergence index ® = O has the
diagram itself. If we remember that the pR-differentiation
has reduced also this divergence index then we conclude

2 9 24 1PI 2n 1 1
20" < +p" L) F =X P’ (Ing? )i -nt O(—). 4
P 32 2 s % e o (4.4)

All quantities appearing in eq. (4.1) have to be considered as
formal power series in the coupling constant

~

2
")/

Y.

jrreTr=2 8

2n

(4.5)
w1 2n 2 1
F, =1+ n§=‘41g Pzn(lnq )+0(-§§)

(the vertex itself is always included), so that the 2N-th
order term of the anomalous dimension reads

1 ’ ] N

A p 5 P ,+ O(-L).

aN g2 eN nf‘m,:l Vonen’™ (q4)
: n+n =N

Because of egs. (4.4),(4.5) it is now possible to see
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For gauge theories as QCD and QED useful general calculations

of the anomalous dimension yj are not available. The simp-
lest calculation give

PP, A2 gt 1.2 g2 g
=+t - C b=L L , A =— 2 - R PR3
2 2 g2 N2 v &TzCN[Lt Lorg e 2 Uul
(4.7)
_gi #2 C
L =In L =l N group theoretical -
t p? S p? factor eq- (5.5)
2 4
2 } 2
Y 4y =- g (CNln(iﬁ-—)H:onst)—E—(C blnz—q-—-+...)+...
J 2 472 p? 8z2 N u? (4.8)

All results are valid for general gauge parameter. The
results of the two loop calculations with general gauge

parameter are extracted from the corresponding calculation of
the Dirac form factor /117,

5. SOLUTION OF THE RENORMALIZATION GROUP EQUATION

The well-known standard solution of the renormalization
group equation

El ] a3
(et Bt 462 N T -
#a# +B8g+ . yI(p.g.m,u)=0 (5.1)

reads

d — —_
T'(Ap, g, m, ) =A r(p,gw.%—,g,-‘;—),m(.u),m x

(5.2)
#//\ du”’ -
xexp [ SEey@E(L g, B)m(.),u0)
b B PN
1



=BE.n)  8lp.p.8)=g (5.3)

u%‘—:=6(ﬁ,g,#). (5.4)

In lowest order we have

2
g e d.me?
B=-e® B2y 0= & 5w -6-Cy=-dme®  (5.5)
1+g2b1n 167
Ho
- m
m (g, 8)= — (5.6)
(1+2bln ﬁ‘“)
0
, P .
With the help of the new variable p =u-%— the solution
(5.2) reads
InA
C(Ap.g.mpu) = 2 pm, ) exp - f dpy(p. 2, #———) (5.7)

Some words to scalar field theory. Here we have to apply eq.
(4.6)

Y. o =y +-———2g P (lnq )C
2 (12 n=1

in the renormalization group equation (2.16)

9,89 59 o yF TN R =0
(,L-GTJrﬁag +05%my +y ) Py (@55 )

If we perform the limit.q24—m directly in the renormaliza-
tion group equation, then this equation is identical to the
renormalization group equation (2.12). This means the asymp-
totic behaviour of thls form factor 1s the same for both
limits qg—v—-oo ' p p and q 2,00 -p'2+- , as
it is expected from already known results/3/. Of course, this
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behaviour can also be checked more correctly for the

solutions by careful estimates of the integrals in the ex-
ponential.

In QCD such a general statement is hardly possible. For
this reason we consider the one-loop approximation at first
(eq. (4.8), first term). Then the solution reads

InA

Pl
le (qug.yz,g,m,u)ﬂ T (q%4® B exp— fdpy(q2 = ——)
(5.8)
2 2,2
y =y, -y, = g (CN In 3 + const).
! boo4n® u~e

P 2 2 2 1P1 — -
F; ! (A" q%, .g,m,;t)=F2 (qz.yz.g.m,u) exp 12 {——t1)~1n(1+bg21n)\)x
4
(5.9)
x(const + Cy ln-—-—A )+ —C N (ln )\————ln(1+g blnaA) l.
pe g b

The leading behaviour for asymptotic free field theories is

C
N ninAln A% Y,
472

1PI 1PI o gu
Py W% ufemp) F, (% BRmexpt-

(5.10)

There is however another possibility to look at equation
(5.9). Of course equation (5.9) expresses the invariance
properties of the function F_ under transformations of the
renormalization group. This leads to special functional
dependence expressed in this equation. . (5.9) is therefore
an identity, that holds also if both sides of this equation

are expanded in powers of the coupling constant g (formal
power series)

I n
(% g =F,  @3p28R e~ L3 (1"t CEWY

4 7°p n=1
(5.11)

x(const+Cy (2 /\2)) Cn (m—-z-_ z( )™ ®bman 1.

pe 4n2b ghp n=1
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Thereby

22=g%% (1) (&ZbmA)",

n=0

R (90 pinn)"

oo’ D (5.12)

has to be taken into account. The result for the leading
logarithmic terms g°In®\ is

1P1 PI 2 C
Foo(A2q2,p2g.mu) =F7T (o 1%, ) exp —g° “NIn)2

(5.13)

This is the well-known Sudakov result.

The remaining guestion is: Are these result stable if cor-
rections coming from the next orders are taken into account?
If "'we neglect for the moment corrections coming from the two
loop calculations of the effective coupling constant, then
the exponential in eq. (5.8) has the additional term

ln}\ 2 2 2 C b
Sf ap(—E—— P2 matozp) N
0 1+g%bp p B ®

It is easily seen that the leading contribution now comes
from the lower boundary O (where all calculations are ques-
tionable) and from the explicite Az—dependence in the term
In®A ®
2 InA
E-N-—-—-g———l -1n2)\2=—9-N—1n2)\231
872 1+bg2p 0 872

This modifies the foregoing results strongly and more worse,
every further correction of the anomalous dimension will
change the result again. Modifications of the effective coup-
ling constant (two-loop calculation), approximately expressed
by

- -1
g? =(a1. + 8, In £ +a_Inln(E—+8 )
) Ko 3 p,o 4

do not change anything essentially. On the other hand, the
Sudakov result remains stable if two-loop calculations are
taken into account. They give no contribution to the one-loop
result and we believe that this is the case for all higher
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loop calculations. Up to now there is no general proof,
however. What can be said is the following. Perturbative cal-

PI
culations of F, give the leading behaviour F; =3 (Fuf e c.
n

The calculation of the anomalous dimension with eq. (4.1)-

~ 2 -
leads to y =X gt g2 b
n=1i

to reproduce the Sudakov result. To see this directly we put

the correction terms from higher loops

But this is not sufficient

~ 2n
y= g  In
n, My I

n=z

2

m

nd_ 4 m < 2n-1
2 mn n -

into the argument of the exponential of eq.(5.8). Thereby we
have to take into account eq.(5.12) for the effective coup-
ling constant. Higher loop calculations of the effective
coupling constant change this power series by an addition of
nonleading logarithms only, which are uninteresting in this
connection. The additional terms in the exponential function
read

ln)\ ) 2 m

~f ap T (3 g(-g?bpf Y (mEA® —2p) "a

0 =2 k=0 12 mn

m
My m_+1
= = 35 2 () * 22 a .
n, m ) mn
m, max

This means there appear no further leading terms if a =0
for m, > 2n -1. mn

We are indebted to S.A.Anikin, N.I.Kartchev, V.A.Matveev,
D.V.Shirkov, A.N.Tavkhelidze and O0.I.Zavialov for stimulating
discussions.
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