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INTRODUCTION

The theory of the free massless scalar field in two space-
time dimensions is very rich and instructive. It is far from
being the simplest quantum field theory, requiring indefinite
metric state space or, alternatively, violating some of the
other Wightman axioms’1:2/ | Besides, the massless scalar
fields are essentially used in building explicit solutions of
nontrivial models as the massless Thirring model/L3A"&24£5/,
the Schwinger model/e’7 , the sine-Gordon model/S/, the
Schroer model/g/, etc. It was remarked by Skyrme/9/ and
rigorously proved by Streater and wilde /107 that properly
defined exponents of the massless scalar field behave like
fields with spin (in particular, with half-integer spin). The
theory of the massless scalar field can serve as an illustra-
tion/11,12/  for the methods of quantization in indefinite
metric/18/ and is a simpler analogue to the promising theory
of the dipole field in four dimensions 714,15/, see also ref./18/

In the massless Thirring model the potentials of the con-
served current and pseudocurrent play an essential role /1.4/ |
They satisfy a system of two linear differential equations
and as a result, the D'Alembert equation. The commutation
relations between the components of the currents /17.1,18/ show
that the potential of the current and the potential of the
pseudocurrent can be defined as canonical local free zero-
mass fields, but nonlocal with respect to each other. Sys-
tematically, though at a formal level, these fields were
considered in refs./19£°/ ]

In the present paper the two scalar fields are realized in
a common Fock %pace, equipped with indefinite metric struc-
ture (see ref. 137y | The theory is a generalization of the
theory of a single free massless scalar field /1,11,12/ (see
also ref.’?4/), each of the two fields acts conventionally in
a proper Fock space, which is a subspace of the common space.
The results of refs. /19:.20/ are essentially used and con-
firmed. The two charges, which correspond to the formal
Noether charges /82/ aye correctly defined and it is shown
that they generate translationally invariant states from the
vacuum. '

v VHCTHTYY 1
% TBannl




1. THE TWO FIELDS ¢ AND ¢

The peculiarities. of the theory of the free scalar massless

field in two dimensions are well known /1,2,4,11,12/ Tts two-
point function
) N 1 2.8 .n.0
-i-D (€3] =——Z——ln(—y 2% +1i0%°), p >0 (1.1)
w

is not positive definite distribution on S(Rf) but only on
the subspace congisting of the test-functions { which satisfy
the condition [f(x)d®x =0, i.e., whose Fourier transforms
belong to

§,(R®=1f € S(R®), £(0) =0} (1.2)

(It should be noted that defining the field ¢ on 50(82) one
automatically defines its derivatives on &(R®): if f<S(R?),
the functions

[e®% g, f(x) a®x =—ip 1), v =01 (1.3)

belong to 3,(R2)).

As it was noted in the Introduction, because of the current
conservation and the specific connection between the com-
-ponents of the current and the pseudocurrent in the massless
Thirring model their potentials ¢ and ¢ satisfy the system
of linear first order differential equations

Vo =0, 6®, I, =IypX (1.4)

and as a result, the D'Alembert equation. We shall postulate
that ¢(2) is a free scalar field with two-point function
(1.1) and shall see how the field ¢(x) can be defined in
order eq.(1.4) to be satisfied., In addition, we shall aim at
defining the fields ¢ and ¢ as (operator-valued) dis-
tributions on &(R2).-

To do this let us first write down the Fourier transform of
the two-point function (1.1):

w0 pl) (b O_ply 4(t 0,p1
2ew(p®,pl) (p0+p1)K+8(p P )4(pp_p1),<+8(p +p1) . (1.5)
K= E;Ler'(l) ,

where the distribution (%) is defined on S(RY) as
K-+

E BRI R (CIAL O LA 1
q K+ a

q=-f -1 Lpaq. (1.6)
k dg R

The RHS of (1.5) is an extension on 8(RZ) of the Ffunctional
6(p0)5(p2) which is well-defined on 50(R2) only. To con-
struct Fock space for the field ¢ one gives to the restric-
tions of the functions from &(RZ) on the cone C..

C, =ip=(%p!), p2=0, p°> 0} (1.7)

the interpretation of one-particle stafes. The (indefinite)
metric in the one-particle space is given by the two-point
function (1.5). The general form of the restriction on C, of
a function fromd(R2) can be obtained in the following way.
Let f€S8(R?®) ana

f, (p°,p1)=~;~[f(p°.pl)i 1%, pHl. (1.8)

It can be easily seen that f_&§,(R?) and that £, (pl, ») =
=f @.p) =10 , f_(pl,p) =c®{_(p.p) = e@) T _(p) . Then

tlpl, ) =1, @ +eMI_(@, £_(0) =0, (1.9)

where the product €¢(p)f_ (p) is defined as the point p = 0O
by continuity (it equals zero). In order the operator equality
(1.4) to be satisfied, it is necessary that the product

-¢e(p) f(lp|, p) be a restriction on C, of a function from
8(R?) too. But this is impossible, in general, because if

f e Su(Rz), there is a discontinuity at = 0. Thus, to
define one-particle states of the field ¢ one has either to
consider the field ¢ on §,(R?) or to introduce a space,
larger than 8(R2) , in which the multiplication by - e(p)
has sense as an involution. We shall choose the second way,
To avoid working with discontinucus functions, we shall first
note that any function f & 8(R?2) can be presented in the form

@01 =f,0%01) +1,80%pY), ScSRY), (1.10)
where S0,0) = 1, fg= £(0,0) and fa=I~148 It is con-
venient to fix S8 so that (see (1.5))
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One can check that, for example,

S@%,pl) =exp{-b2[(E") 2+, b =f<exp—1;—'(11 (1.12)

satisfies all these conditions. Fixing ScS(R®) , 5(0,0) =1
in (1.10) decomposes 8(R®) into direct sum of two linear
spaces: SO(R'?) and one-dimensional space, isomorphic to €.
Therefore the restrictions of the functions from o(R2) on
the cone C, can be brought to the form (see (1.8) and (1.9))

tpl, p) =1, _(@.p) +e@) f_(p,p) +f s(), (1.13)

where s(p) =5(|p|, p)=exp(~2b°p?) and f, (p.p) +e(®) f_ (0.0) =f,(Ip|. D)
is the restriction on the cone C, of f , defined by (1.10).
The decomposition (1.13)suggests how to make meaningful the
multiplication by —-e¢(p) . It is sufficient to add to the RHS
of (1.13) a term of the type f;s(p) where fo& C and s(p) =
= ¢(p) s(p) thus enlarging the one-particle space with one
more dimension. If one puts, for definiteness, e(@ =1,
then e(p )%= 1 and () §Pp) = s(p).

In other words, we shall start with the linear space

&, =8,(R®)AC, eCoC (1.14)
on which the map
E=( .6y T5) = f =(=e@f @~y .~ (1.15)

is defined. We shall prove that a sesguilinear nondegenerate
form, which is an extension on .51 of the form, defined by
the two-point' function (1.5), is provided by

<f,g> =< f <5 S f s o o
8>, fs,gs>+f0<s,gs>+g0<fs,s>+f0<s,gs>+g0<fs,s>,
(1.16)
where in the RHS of (1.16)

<x,y> =—-1—‘ F ——E—m-z—(—gldp.

1.17
4.0 p| (A
For f~0 = go =0, «<f, 8> coincides with ’
e — d2
2n [1(p%p ) w(p?p!) g@° p!) —Be (1.18)

@t

where (% pl) and g(po,pl) are the corresponding functions
from S(R?2) (eq.(1.11) is used).

2. THE ONE-PARTICLE SPACE

Having the linear space &, and the sesquilinear form
(1.16) on it (the form (1.16) is nondegenerate, as it will
become clear later), one can use the standard procedure for
quantization in indefinite metric (see, e.g. /134 | One can
define a scalar product on &i:

(f,8)  =<f_B ) +<f ,8><8,8 >+f 5o +<f,,8><5,8 >+ g, (2.1)

and prove that the inequality

|<f,g>1125(f.f)1(g.g)1 (2.2)

holds for any two vectors f,B€ @1 . (In the case of a single
free massless scalar field, without the last two terms, this

scalar product is used in refs, 711,12/ y | The completion of 1@1
with respect to the norm Hf'H1=\/(t’,f)1 will be denoted

by }(1 (the elements of H1 can be realized as equivalence

.classes of Cauchy sequences). The sesquilinear form (1.16)

and the scalar product (2.1) can be extended on X, and so
can the map fo f (see (1.15)). Thus we obtain a Hilbert
space, }('1, equipped with a sesquilinear form - the extension
of (1.16). For fixed f &}y, because of (2.2), <f,-> =10,
is a continuous linear functional on H1 . Let-us denote the
vectors (0,1,00€¢ &; and (0,0,1) ¢ &, by B, and FE;, respec-
tively. The following equalities hold:~<E1,E1> -<E B 1> =
b — — — — =
=<B, BEp =0, &,ED =0, [[Eylly=HENN =1, The Riesz
lemma implies the existence and uniqueness of vectors W(MGHl
and Pp1€ H i such that
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oy 1)y =<BE >, (Wopf), =<BE, 0>, Vi ) . (2.3)

ObViOUSly~(‘I’01 ,E 1)1=(‘P0‘,E 1) 1=(‘P01,E1)1= (qj()l’ El) 1 =0 and
Yo1#0, ¥5,£0. If 01 1s the subspace

Ko =the M, @y, =E,, 0, =W ,h) =E, 0, =01 (2.4

and {en }:=1 is an arbitrary orthogonal basis in }(01 , then
Yo Eyqr Yo Eqs0y.09, o form an orthogonal basis in X
and in this basis the operator B defined by

<f,g>1=(f. Bg)i, (2.5)

(its existence and boundedness are guaranteed by the Riesz
lemma and eq. (2.2), respectively) has a nondiagonal form. The
operator 8 is self-adjoint and /3’3= I and therefore <.,.>;
is nondegenerate. From ¥4,=BE,, Yoy =BE; and (2.5) it
follows that

Vf,gé}(1

IR IS 2]

IR 7 )= “||% ||, =1.
01’ 0171 01 > =W ¥py > =0 g p¥yy) 0'”“’01”1 I 01”1 .

0171 01 0171 01’01 1
(2.6)

The standard representation of the translation group f(p)
> P2 f(p) induces_the following transformations of the
vectors from @1 with f ;= O:

_ ¢ ipa ipa _

U(a)(fs,fo,O)_(e fEi +fos(e 1),f0,0) . (2.7
The transformations of arbitrary vectors from 51 can be
obtained from (2.7), assuming in addition that

~ e~
Ua) f = U(a)'f . (2.8)

It can be proved that, for fixed &, the operator U(a) is
bounded on & 1 (though not uniformly with respect to 2):

U@ ]l <c(la®{+]aDil]l, for some ¢ >0. (2.9)

The extension by continuity of U(a) on the whole }{1 is a
pseudounitary, i.e., unitary with respect to <.,.>1 operator.
The equalities

010> =<U@¥,,U@h>,Vhel  (2.10)

<‘P01,U(a)h>1=h0=-%<‘l’ or

and the nondegeneracy of <.,.> 1 imply that the vector lP01
is translationally invariant, i.e., U(a) V¥, =‘V01 One can
prove gquite analogously the translational invariance of ‘1’01.
The existence of translationally invariant states in the: one-
particle space is a nontrivial fact. The vectors ¥,; and ¥,
do not belong to -51, rather they appear as a result of the
completion of 51 (with respect to the norm ||-||,). Their
existence and translational invariance, however, do not
depend on the special choice of the scalar product.

Since on 1‘;01 ={ f@gl , t‘0=f0= 0} the form <.,.> is non-
degenerate and positively definite, 601 can be completed

with respect to the norm ||fl] =\/<f,f|>1 <l le , thus
obtaining a Hilbert space }(ph ¢ -+ In this case U(a), rest-
ricted on 501, can be extended on thys as a unitary

operator. The Hilbert space }(phys can be identified with

dj
L2 RY, T;pT) . on H pnys the dependence on the arbitrary
parameter

depends in general on

k drops out (each term in the RHS of (1.16)
K ).

3. THE FOCK SPACE

The Fock space over }(1

FHHY = o K, (3.1)

n

where Hg= € ana X, =squs>}(r1l (n =1,2,...) is the sym-
metrized tensor product of n copies of }(1, is defined as
the completion of the finite particle space ?0 consisting of
all finite linear combinations of vectors from Hn, n =0,
1,2,...

We shall define on ffo a generalization (because of the
indefinite metric) of the Segal quantization over }(1
(see 72L13/ ) | Tet (I)i(f) ’ f(;}(l be the maps

TS _(f,0f,0..0f )=yn+l S  (fof ef,0..0f) (3.2)

n+1

n =0,1,2,...

O (f)8, (fiefge.0f )=
1 n
= k2',=1<f,fk>ls mg(fyeof, o f j0..0f), n=1.2,..

VN

(3.3)



|

and @ (f) }(0 =0 (S means symmetrization). The maps @ ¥(f)
can be extended by linearity on dense subspaces of Hn. It
can be easily proved that these maps are bounded and therefore
can be extended by continuity on X and by linearity on ¥, .
The field (analogue of the Segal field)

B() = —— @ (1) + & (1) (3.4)
ND

will be the basic construction, with the help of which the
scalar fields ¢ and ¢ will be defined.

A nondegenerate sesquilinear form <.,.>, a scalar product
(.,.)  and an indefinite metric operator on F(H ) can be
obtained in a standard manner from the corresponding objects
in }{1. The following general theorems can be proved (see
refs, /21,18/) .

1. The operator ¥(f) ,f<H; is symmetric with respect to

the form <.,.> , i.e., for Vgh & ?0
<g, DAY h> = <B(f) g, b> . (3.5)

2. The vacuum ¥,=(1,00,..)¢& }(OC 5o is a cyclic vector.
3. The following commutation relations hold:

[07(), @ "(@lh=<t,g> h, VigeH , vhed,. (3.6)

Eg. (3.6) implies that

[ o), @(g)]h=i1m<f,g>1h. (3.7

Let us_ define for any function f € &(R ) a corresponding
vector Ef ¢ &, C X 1t iF

t) = [oP* f(x)d®x (3.8)

is the Fourier transform of ?(x) , then by E?G@l we shall

denote the vector (f4.fg,0)  which corresponds to the restric-
tion of f on the cone Ci .

The fields ¢(f), 4(f) (f < S(R %) are defined by
() =47 () +¢7@ . (3.9)

sH=¢"M +¢ O, (3.10)

B

sras s v —tr W i o i

-

where
4+ A + ~ + ~
¢~ (f) =P (ERef) +i® (EImf), (3.11)
—t g + s
¢~ (£) =@ " (ERef) +id " (EImf) . (3.12)

The maps fo gb(f) and f ng’-(t’A) are complex linear maps
(fr D) is only a real linear map). On ?0 the usual com—- ¢
mutation relations hold:

(47, ¢ =Tln“(x—y> “lé"®, o*M1, . (3.13)
and
- ~4 1= ~ o +
¢ ®, ¢ ] =—1,—D -y =l ®, ¢ M, (3.14)
where
Ap=(g) = Lgp 22510
N D (x) = 477ln N (3.15)

is the nonlocal (and Lorentz noninvariant) two-point function
of ¢ and ¢ (it may be verified that

<Ef.Eé>1=fff(X)~i1—D (x-y) g(y)a%xd %y, (3.16)
~
<Ef,Eg>, =ff?(x)il—D (x-y) g(y) 4% %y. (3.17)

One can construct a physical Fock space (X hy starting,
with }(phys instead of X, and realize the fields o), $(f)
as operators in it (assuming that the Fourier transform of f
belongs to 84(R? ). In this case all the complications con-
nected with the indefinite metric will drop out. One can
prove that the set of finite linear combinatiens of vectors
of the type ¢(f1)f/‘5§‘f2);..’\¢(fn)?9 , n=20,1,2,,., {(or of vec-
tors of the type #(8,)¢(gy) ... #(8 ) ¥, -~ they coincide),
where the Fourier transforms of  f;(g;),i=12,...,n belong
to &(R?) and the field ¢ (or ¢ ) is defined through
(3.9) and (3.11) (or (3.10) and (3.12)),is dense in FU(, ).



4. THE CHARGES

The formal charges corresponding (by the Noether's theorem)
to the shifts of the fields ¢ and ¢ are equal to
(4.1)

Q=[9,6@ dx, G = fo, b ax’.

We shall try to define correctly the charges as operators in
the Fock space constructed above (see refs./22,283/ ),
Consider the operators:

Q =-¢(f af),n=12,...; d>0, (4.2)
where ’I:n(xl)‘~ and ;d(xo) are real functions belonging to
S(R1) and a, satisfy the condition

fa,x%yax%=1, vd. (4.3)

If in some sense

2 ~ 0 4]

f x!) — 1, X 8 (x 4.4

NC) e ay(x7) e (x7) ( )

~

(we shall not assume that fn and @, have compact supports) ,
it is intuitively clear that the corresponding limit (if it
exists in some sense) of the operators Q, is a candidate
for the charge operator Q. .

Oowing to (4.3) and (4.4) the Fourier transforms of f

~ . 0
and a4 satisfy ay(0) =1, vd> O;fn(pl):jﬂé?(p ) and a4(p )&':61

’

and theéréfore the Fourier transforms of the functions fna(1

are of the form

erip®y 0Da, 0%, SRV Sy 6H-0Y . (4.5)
on the cone C_ the corresponding sequence tends to -2ni|p|8(p)
(after taking the limit the dependence on d disap-
pears; that is why we attach only one index to the operators
(4.2)). These heuristic considerations suggest that

Nl -

Q=@ (——=¥,)

(4.6)
Ve

10

¥

| LR

v T aTaewr g wre

T e v

is an appropriate definition for the charge operator (it can
be easily seen from the definition of \P01 that, roughly
speaking, W¥gq~4r|p|8() ).. We shall prove that (¥ is the
vacuum vector)

’

i :
5 oy =Q¥p ~w= limQ ¥y € X, (4.7)

n- oo

assuming that the functions Fn and a q in (4.2) are properly
defined and w-lim means the weak limit in X 1. It is necessary
and sufficient to prove that the norms ||Q, ¥,||; are bounded
and that on a dense linear subspace L C Jt,

lim(Q ¥, -Q¥,,f),=0,

-0

vieL. (4.8)

The boundedness of the norms

e, ¥, H1 becomes obvious, sup-
posing in addition that

~ ~xl -~ ~
el ===, feS®RY, {0 -1, (4.9)

Indeed ( ¢y 1is the Fourier image of —2—1-—? )
(s

& % [1®=nflp|n®ly@p)a (oD ®dp =

~ Ipl ., 2 (4.10)
~n 1ol 9@ a g (12D P

(see (4.5)) and this expression is bounded in n ., The limit
(4.8) 1s a simple corollary of the definitions of @, and
GL=88&. ) R

The definitions of @ and ¢(f) imply

[Q, () Ih=-1h [(x) d*x =~if h, VIcS(R®), vhe F . (4.11)

For f0=ff(x)d2x =0 (i.e., f@) < S(R ?) ) the field
#(f) commutes with @, but this does not mean that the state
¢ ({)¥y has zero charge in the common sense. Obviously @

does not leave the n-particle sectors N\, invariant:

; - * iqt
Q=@¢*+@", @ =_4;-2—<I> Woy) (4.12)

1"



and besides

QY Oggizb‘“ ¥, (4.13)

(the invariance ¢+~ ¢ + const
operators &+ and Q~ commute:

is spontaneously broken). The

- at1_ lra~ + 1
[Q‘ ,Q ]=Z—[q) (‘I’Ol),(b ("1’01)]=Z‘<‘P01,q’01>1 =O. (4.14)

The second charge é‘ can be introduced in a quite analogous

manner:

~0 (= )
V2

(4.15)

We shall define, at the end, representations of the Lorentz
boosts and the dilatations in F(} ) . Let us denote the cor-
responding parameters by x and A > 0', respectively. Deman-
ding the vacuum vector WU and the form <.,.> to be Lorentz-
and scale invariant, one is forced to define on gl(:Kl

(4.16)

\ B~ X
U(x)f:ix+(f0‘i’01+f0‘}’m) ypual

where the mapping f{w»f is induced by the transformations
(AX is the hyperbolic rotation)

(@) ~ 1, 0 =1 p),  fES(R? (4.17)
G "f\’). 1 1
and U)X=( aE Analogously, |
InA
UMW =1, -(f, ‘*01”0 1) an ), - (4.18)
where on S(R?)
t@) = f, @ =207 p). (4.19)

These operators are bounded on &; and can be extended on N
by continuity. It is not surprising that the translationally
invariant vectors ¥y, and ¥;, are also Lorentz- and dilatation
invariants.

12

T g

We can construct the corresponding operators on F(H, ) ,
denoting them still by U(x) , UM . It can bee seen 718/
that for Vfe H1 and vV €3,

ot nuTty -0t wnvy, (4.20)

where U is UQQ or UWM) | From (4.16),(4.18) and (4.20)
follow the transformation properties of &% and (ﬁ— which
+ ¥
contain nonhomogeneous terms proportional to @F and QF (see
719,20/ .

refs. ).

The representations of the Lorentz and scale transfor-
mations on the physical space are unitary.
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