

сообщения обьединеиного
 института пдерных исследований дубиа

$$
15 / 8 / 2-80
$$

$$
7 / 4-80
$$

E2-80-43
S.M. Dorkin, V.K. Lukyanov, A.I. Titov

THE SIX-QUARK STATE WIDTHS
IN THE NUCLEON-NUCLEON SCATTERING

The problem of the possible existence of dibaryon etates is widely diacusaed /1/. These states as 6aquark objecta are predicted by the quark epectroscopy calculations/2/. Furthermore, one of the sets of phase shifts extracted from the pp-scattering with parallel and antiparallel spins $/ 3 /$ has the resonance behaviour, the fact, which may also be interpreted as an experimental indication of the dibaryon-states existence. However, the investigation of this problem may have some sense if the theory estimates the widths of these states. Remember that the usual quark spectroscopy gives zero widths while experiments apparently deal with real widths, which have large values.

Wo consider this problem on the base of the coupled channel equations obtained earlier $/ 4 /$, which were used for eatimating the 6-quark admixture in the bound state deuteron wave function. Here we solve the equations for the continuum where the resonance behaviour of the pp-amplitude is asmumed.

The totel wave function of the six-quark system obeys the wave equation $\left(t_{6 q}+V-E\right) \psi=0$, where the real potential V generally mpeaking, is unknown. In the case under investigation thie function is usually represented as

$$
\begin{equation*}
\psi=\phi(\vec{k}) X(\xi)+\sum_{\alpha} C_{\alpha} \psi_{\alpha}(\vec{R}, \eta) . \tag{1}
\end{equation*}
$$

The firat tern here deacribes the nucleon-nucieon channel and includes the relative $\phi(\vec{R})$ and intermal motion wave function
$X=X_{1} X_{2}$ of the 3q-clusters which become nucleons at $R \rightarrow \infty$ $\left(\left(t_{3 q}+V_{y 2}^{q}(3 q)-M\right) x_{52}=0, M\right.$ is the mass of a nucleon). The second term in (1) is the true 6q-state existing only inside the bag region, $\left.\left(R_{j}\right\}<R_{b} \approx f f m\right)$, where the quark-quark potential $V^{q}(6 q)=\sum_{\alpha=1}^{\delta} V_{j j}$ acts $\left(\left(t_{6 q}+V^{q}(6 q)-E_{\alpha}\right) \psi_{\alpha}=0\right)$. These Gqstates in ${ }^{2 \pi}(1)$ have the amplitudes C_{α}. The function $\phi(\vec{R})$ and the C_{α}-amplitudes can be derived from the coupled channel equations $/ 4 /$:

$$
\begin{align*}
& (T(\vec{R})+U(\vec{R})-\epsilon) \phi(\vec{R})=-\sum_{\alpha} C_{\alpha} D_{\alpha}(\vec{R}) \tag{aa}\\
& \left(E-E_{\alpha}\right) C_{\alpha}=\left\langle B_{\alpha}(\vec{R}) / \phi(\vec{R})\right\rangle \tag{ab}
\end{align*}
$$

with

$$
\begin{align*}
& U(\vec{R})=\left\langle x_{1} x_{2} / V-V_{r}^{q}(3 q)-V_{2}^{q}\left(\xi_{q}\right) / x_{1} x_{2}\right\rangle \tag{3a}\\
& D_{\alpha}(\vec{R})=\left\langle x_{1} x_{2} / V-V^{q}\left((6 q) / \psi_{\alpha}\right\rangle\right. \tag{3b}\\
& B_{\alpha}(\vec{R})=\left\langle\psi_{\alpha} / V-V_{1}^{q}(3 q)-V_{2}^{q}(3 q) / x_{1} x_{2}\right\rangle \tag{Bc}
\end{align*}
$$

Here $\epsilon=E-2 M$ and $U(\vec{R})$ are the kinetic and potential energies in the nucleon -nucleon channels, \mathcal{B}_{α} and D_{α} characterize the apace distribution of the transition amplitudes from the 6q-etate to the nucleon-nucleon one.

To solve the coupled equations (2) we note that for the enterBy E near the resonance E_{α} eq.(2b) demands C_{α} to be rather large. Thus the right-hand side of eq. (aa) cannot be neglected as has been done in calculating the \mathcal{C}_{a}-admixture for the ground state of a deuteron $/ 4 /$. Instead, we write the general solution of (aa) as follows

$$
\begin{equation*}
\phi^{(t)}(\vec{R})=\bar{\phi}^{(t)}(\vec{R})-\sum_{\alpha} C_{\alpha} g_{\alpha}^{(t)}(\vec{R}) \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
g_{\alpha}^{(t)}(\vec{R})=\int d \vec{R}^{\prime} G^{(+)}\left(\vec{R} \vec{R}^{\prime}\right) \mathcal{D}_{\alpha}\left(\overrightarrow{R^{\prime}}\right) \tag{5}
\end{equation*}
$$

where $\bar{\phi}^{(\vec{\prime})}(\vec{R})$ is the solution of the homogeneous eq. (aa) with $C_{\alpha}=0$, and $G^{(+)}(\vec{R} \vec{R})$ is the corresponding $G r e e n$
function. Substituting (4) into (ab) one gets the following set of equations for \mathcal{C}_{α}-coefficients:

$$
\begin{equation*}
\sum_{\alpha^{r}}\left[\left(E-E_{\alpha^{\prime}}\right) \delta_{\alpha \alpha^{\prime}}+\left\langle B_{\alpha}(\vec{R}) / g_{\alpha^{\prime}}(\vec{R})\right\rangle\right] C_{\alpha^{r}}=\left\langle B_{\alpha}(\vec{R}) / \Phi^{(t)}(\vec{R})\right\rangle . \tag{6}
\end{equation*}
$$

For simplicity we consider the one-channel approximation assuming only one 6 q-state to exist. Then the solution obtained is the following

$$
\begin{equation*}
C_{0}=\frac{\left\langle B_{0}(\vec{R}) / \bar{\phi}^{(t)}(\vec{R})\right\rangle}{E-E_{0}+\Delta_{0}+i \Gamma_{0} / 2} \tag{7}
\end{equation*}
$$

with the width and shift of the E_{0}-level

$$
\begin{equation*}
\Gamma_{0}=2 J m\left\langle B_{0}(\vec{R}) / g_{0}^{(\overrightarrow{1})}(\vec{R})\right\rangle ; \quad \Delta_{0}=2 R e\left\langle B_{0}(\vec{R}) / g_{0}^{(t)}(\vec{R})\right\rangle \tag{8}
\end{equation*}
$$

For estimating Γ_{0} and Δ_{0} we restrict ourselves to the case of s-bcattering ($1=0$). First, we need the matrix elements (3). The main difficulty in their calculation ts to determine the real interaction potential V. It is natural to suggest that inside the 6q-bag region $\left(R_{,}, \ll R_{6}\right)$ it coincides with the model one

$$
\begin{equation*}
V=V^{q}(6 q)=\sum_{i<j}^{6} V_{i j} \quad\left(R, \frac{y}{j}<R_{b}\right) \tag{9}
\end{equation*}
$$

where one can take the qq-potential in the oscillator form $/ 5 /$

$$
\begin{gather*}
V_{i j}=V_{i j}^{I}+V_{i j}^{I} \\
V_{i j}^{I}=-\frac{K}{2} \lambda_{i}^{a} \lambda_{j}^{a}\left(\vec{i}-\overrightarrow{r_{j}}\right)^{2} ; \quad V_{i j}^{I}=\frac{1}{6}\left(\frac{t}{m_{2} c}\right)^{Q} \vec{\sigma}_{i} \vec{\sigma}_{j} \nabla^{2} V_{i j}^{I} . \tag{9a}
\end{gather*}
$$

Here λ^{a} are the $\operatorname{sU}(3)$ colour matrices, the parameters $m_{2} c^{2}=0.151 \mathrm{GeV}$ and $E_{0}=\left(\frac{t h}{m_{l}}\right)^{\text {th }} \quad \mathbf{0 . 0 7 5} \mathrm{GoV}$ are chosen so as to explain the masses of the $p-, \Delta$-particles and $\left\langle r^{2}\right\rangle_{p}^{1 / 2} \approx 1 \mathrm{fm}$. However, the model 6q-potential (9) does not include the long range part because of the necessity to confine quarks to the
region of an order of the nucleon radius $\left\langle r^{2}\right\rangle_{0}^{1 / 2}$. This means that outside of the $6 q-b a g$ region, when the $3 q-c l u s t e r s$ are eparated $\left(R>R_{b}>r_{i}\right)$, we have the following relationship

$$
\begin{equation*}
V^{q}(6 q) \approx V_{1}^{q}(3 q)+V_{2}^{q}(3 q) \quad\left(R>R_{b}\right) \tag{10}
\end{equation*}
$$

Ingpite of this the real potential V is known to contain the meson tails in the nucleon-nucleon channel and thus can be reprorented as a sum

$$
\begin{equation*}
V \approx U(\vec{R})+V_{1}^{q}(3 q)+V_{2}^{q}(3 q) \quad \text { at } R>R_{b} \tag{11}
\end{equation*}
$$

(For discussion of this problem see ref./6/). Now one can conclude that an interaction in the nucleon-nucleon channel (3a) may be better considered phenomenologically. We choose $U(\vec{R})$ throughout the region of R in the form of the hard core Reid potential

$$
\begin{equation*}
U(R)=V_{1} \theta\left(R-R_{\mathrm{c}}\right)+V_{2} \theta\left(R_{\mathrm{c}}-R\right) V(R) . \tag{12}
\end{equation*}
$$

where $V_{2}=-0.6 \mathrm{GeV}, \quad R_{c}=0.4 \mathrm{fm}$ and $V(R)$ falls exponentially down to a few MeV at; $R=R_{c}+\alpha$ with $\alpha \approx 0.25 \mathrm{fm}$.

The B_{α} matrix element describes a transition in the internal region $R, r_{j}<R_{b}$ because of the presence in (ic) of the 6q-state function ψ_{α}. Substituting (9), (9a) into (3c) one gets

$$
\begin{equation*}
B_{\alpha}=\left\langle\psi_{\alpha} / \sum_{\substack{i=123 \\ j \times 46}}\left(V_{i j}^{T^{\prime}}+V_{i j}^{T}\right) / x_{1} x_{2}\right\rangle \tag{13}
\end{equation*}
$$

The matrix element of this type was calculated in $/ 4 /$ and for the 3^{6}-space configuration of $\psi \times$ with the deuteron-like quantum numbers $J=1,(\ell=0), I=0$ one can obtain the following result

$$
\begin{gather*}
B_{0}=\frac{g_{0}(R)}{R \sqrt{4 T}} ; \quad G_{0}=\varepsilon \cdot \varphi_{0}(R) \tag{14}\\
\varphi_{0}(R)=\sqrt{4 \pi}\left(\frac{Q_{6}}{T}\right)^{\frac{3 / 4}{2}} R e^{-\frac{f}{2} Q_{6} R^{2}} \tag{14a}
\end{gather*}
$$

where $\varphi_{0}(R)$ ia the radial g-wave in the bag region, normalized to $1 ; Q_{6}=24 \sqrt{3} m_{q} c E_{0}=0.172 \mathrm{GeV}^{-2}$, so that the true $6 \mathrm{q}-$ configuration has dimensions of the order $R_{6}=\frac{1}{2} Q_{6}^{-1 / 2} \simeq 1 / \mathrm{m}$; $\varepsilon=0.108 \mathrm{GeV}$ is the calculated colour-spin-180日pin part of (13).

As to the \mathcal{D}_{0} matrix element (ib) we write it with the use of eqs. (10)-(12)

$$
\begin{equation*}
D_{0}=\frac{d_{0}(R)}{R \sqrt{k T}} ; \quad d_{0}=V_{2} \theta\left(R_{2}-R\right) V(R) \varphi_{0}(R) \tag{15}
\end{equation*}
$$

Thus, D_{∞} has the meaning of the peripheral transition $\left(R \approx R_{c} \div R_{c}+a\right)$ from the nucleon-nucleon to the $6 q-$ state. In calculating $\left\langle\mathcal{B}_{\alpha} / g_{\alpha}^{(+)}\right\rangle$by using eq.(5) we impose the condition $R^{\prime}>R$ for the Green function taking into account that $D_{a}\left(R^{\prime}\right)$ and $B_{a}(\vec{R})$ overlap weakly.

To determine the scattering matrix we substitute (7) into (4) and tend asymptotically $R \rightarrow \infty$, where $G^{(+)}\left(R R^{\prime}\right) \sim \frac{e^{i k R}}{R} \phi^{(-1}(R)$ Thus for the a-wave radial part of $\phi(\vec{R})$ one gets

$$
\begin{equation*}
\phi_{0}(R) \approx e^{-i \hbar R}-e^{2 i \delta_{0}} S_{R} e^{i \hbar R} \tag{16}
\end{equation*}
$$

With the resonant part of the S -matrix

$$
\begin{equation*}
S_{R}=\frac{E-E_{0}+\Delta_{0}-i \Gamma_{0} / 2}{E-E_{0}+\Delta_{0}+i \Gamma_{0} / 2} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{0}=\frac{4 M}{\hbar k} \int f_{0}(R) d_{0}(R) \alpha R \int f_{0}(R) G_{0}(R) d R \tag{18}
\end{equation*}
$$

Here $M=M / 2$ is the reduced mass and $f_{0}(R)$ is the regular solution $\left(f_{0}(R \rightarrow-)=\sin \left(A R+\delta_{0}\right)\right)$ of the radial part of the homogeneous equation (aa) with the potential (12). In the most significant region near the core $R_{c} \div R_{c}+\alpha$ one can take a simple approximation of an exact numerical solution /8/

$$
\begin{equation*}
f_{0}=\cos \left[A\left(R-R_{c}\right)\right] ; \quad F=12 \mathrm{GeV} / \mathrm{c} \tag{19}
\end{equation*}
$$

Substituting (14), (15), (19) into (18) we obtain for the energy $\in=0.3 \mathrm{doV}$ in the com. nucleon-nucleon system (k m0.8 GoV /c):

$$
\begin{equation*}
\Gamma_{o} \approx 20 \mathrm{meV} \tag{20}
\end{equation*}
$$

It is the qualitative result and the influence of relativization should be taken into account. However, it is partly accounted for by the choice of the kinetic and potential term parameters in the nonrelativistic wave equation. The coupling with the other α channels will lead to an enhancement of Γ towards the discussed value ($\Gamma_{\text {exp }} \sim 100 \mathrm{MeV}$) from $\vec{p} \vec{p}-$ scattering $13 /$.

In conclusion we note:
Firgt, the coupled channel method we exploit here may be used succesafully for calculating the quark-nuclear wave functions and then for considering the quark-nuclear exotic phenomena (widthe and shifte of the multiquerk levels in nuclei (if any exiat), nuclear form factors, and reactions at high mowentum transfers, etc.). Second, the quark spectroscopy calculations based only on the gq-interactions should be revised when an application to nuclei is needed because of the strong coupling of the multiquark and nucleon channele.

References

1. In "Proc.of the Neeting on Exotic Reaonances", Edited by I. Endo et al., Hiroshima, Japan, Sept. 1-2, 1978.
2. Matveev V.A., Sorbs P. Nuovo Cim. Letters, 1977, 20, p. 443 Jaffe R.L. Phys.Rev., 1977, D15, p.p.267, 281.
3. Auer I.P. et al. Phys.Lett., 1977, 67B, 113; Phys.Lett., 1977, 70B, 475.
4. Lukyanov V.K., Reznik B.L., Titov A.I. JINR, P2-12754,Dubna, 1979.
5. Liberman D.A. Phys.Rev., 1977, D16, p. 1542.
6. Brown G.E. and Rho M. Phye.Lett., 1979, 82B, p. 177.
7. Reid R.V. Annals of PhyE., 1967, 50, p. 441.
8. Jaffe R.L. and Low F.E. Phye.Rev., 1979, D19, p. 2105.
