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It is difficult to overestimate the significance of the 
spinor fields in the theory of elementary particles. They are 
used to describe the really fundamental stable constituents 
of matter like electrons, protons, neutrinos, quarks. The 
primary role of the spinor fields was brought to its philoso
phical extreme long ago by Heisenberg and his coworkers I 1--4/. 
The work of Finkelstein et al. 15.6/ where certain soliton
type solutions were written down is also to be noted. 

A new strand in this field of research was initiated by 
Nambu and Jona-Lasinio 1"7 .S/ • It was inspired by the works of 
Bardeen, Cooper, Schrieffer /9/ and Bogolubov 110 .11.' on 

superconductivity and intima'tely related to the idea of chi
ral symmetry (to account for the particle-hole symmetry in 
the assumed analogy with super conductivity). A more discus
sion of this model (related to the extended models of elemen
tary particles and in the framework of the relativistic 
Hartree-Fock-Bogolubov approximation) one can find in ref ! 12 ~ 
for instance. In ref/13/ it is applied to the electromagne
tic mass difference of the nucleon and pion. 

The general increase of interest in exact (localized) so
lutions to nonlinear problems in the last few years applied 
to spinor-field theories in particular /14-20/ , mostly in 1+1-
dimensional space-time solutions to certain spinor-field 
equations were even studied numerically/17 ,20/ . Let us also 
recall that the spinor theories present a way out of the dif
ficulties related to the Derrick theorem 121-23/. 

In the present work we find exact solutions to the equati-
ons 

(I) 

of the Nambu-Jona-Lasinio model 17 -81 (with commuting field 
components) in 3+1-dimensional space-time (in 1+1 space-time 
dimensions it is known as.- the (massless) Thirring model). Its 
Lagrangian ·is 

(2) 
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'I'he ordinary gauge symmetry, i.e., the invariance of (2) -._:mder the transformation 1./J ·) e ia r/J , implies the conservati-on of the nucleon number 

-·1'()0 ''i-1 J X = ' ( 3) 

common to a wide class of theories. The Lagrangian density (2) , however, is also invariant under a second gauge group, ljJ-)- eiay5 ljJ , which implies the conservation of the chirality 

(4) 

i.e., a higher symmetry is simply realized in this model which increases a priori the chance of solving the field equations. Following the procedure we have used in our previous work 124- 291 we look first of all for plane-wave solutions of Eq. (1), 

</f = <fr ( T)' r = n x, 
(5) 

where n is a constant vector (for definiteneGs we choose n to be a unit time-like vector, n2 = 1). Then Eq. (1) takes the form 

(6) 

We shall denote by ( and ry the real and imaginary parts of~ • It can be demonstrated that the system of ordinary differential equations (6) is derivable from the Hamiltonian 

(7) 

where 

(8) 

arid ' and ry are certain linear combinations of coordinates q and momenta p 
It is convenient to use a Maj.orana representation for the Dirac y -matrices. We shall work, in particular, with 
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0 
), y 1 ~ ( Y 3 ~( ia0 0 ), 

0 -ia
0 

( 9) 

where ao and an are the unit and the Pauli matrices. Then 
the Poisson brackets of ~~- and 77's are 

(10) 

We denote 

( 11) 

In this case the (non-unique) expression of ~ and Tf in terms 
of coordinates and momenta can be chosen to be 

/;a ~ _!_ q 
v'2 a 

~ _1_ ~--1 p 
Tf a vY an n 

The quantities (8) close a Lie algebra 

IJ J 1- 1 <r· 1J r- 1T r-'J - r- 1J ab ' mn - 2 am bn + bn' am - an bm bm an 

Defining a nev1 basis 

no -- J + J 
13 24 

n, ~ J1•- J2a G ~ J 14 + J23 

so that 

( 12) 

( 13) 

(14) 

( 15) 

and making use of the representation (9) of the y -matrices it 
can be brought into the form 
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{ n W F I ~ n ~ G, tn W G I ~- n ~F 

{F,GI~n.!i. 

Let ea be three vectors satis~ying 

ea·D= 0, ea.eb=-Oab 

and define 

y ~ e • n ~ .~ n" a a a r 

( 16) 

( 17) 

( 18) 

Then the Lie algebra (13) or (16) can be cast into a third 
form 

l ya 'y b I ~ 'abc y c 

{ Y a, Y0 I ~ 0, {Y ,FI ~O~ {Y ,GI a a ( 19) 

which makes it explicit 
It follows from (15) 

motion 

that it is the algebra of SU(2) x SU(2). 
and { 16) that niL are constants of the 

and 

tn 11 ,HI=O 

F ~ l F 'H I ~ -8 g ( n n) G ' 
0 

so that 

(20) 

(21) 

(22) 

This allows. one .to find out the general solution of the system 
-(6). The result in the rest frame,··n· = (1,0,0,0) is 

4 



(23) 

where 

and Ai , Bi, Oi , fi are integration constants.The solution 
in a moving frame is readily obtained by a boost transforma
tion on the spinors. 

There are three more constants of the motion 

x,=; (~r~-qrq) 

X 2 = ~ <~r~ qrq) (24) 
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which close the algebra of SU(1,1) 

(25) 

and are in involution with Y a (or n11 ) 

(26) 

(Even more generaly, { Jab ,X j ! = 0) • In this way we see that 
the Lie algebra of the constants of motion Ya , Xj is U(1) x 
SU (L:) x St' ( 1, 1). These seven constants, however, are not in
dependent. They are related by 

22 • .2 222 
Y, + y 2 + Ys ~ - X 1 + X2 -X 3 ' (27) 

i.e., the Casimir elements of the two algebras SU(2) and 
SU(1,1) should be equal. The Hamiltonian is also expressible 
in terms of these constants 

(28) 

The constants H, Y0 , Y2,and X2 form a set of four independent 
constants in involution, i.e., the dynamical system we are 
studying is completely integrable. 

Let us note that the one-parameter subgroups generated by 
the constants Ya (or 0 f1) and X j can easily be found sol
ving the equations 

-i<f 

(29) 
a.p 

- ~I If , X I ~ -i<f aa 2 
2 
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In particular, if t/1 (r) is any solution of Eq. (6) in the 
rest frame, the set of constants in involution generates the 
following three-parameter family of solutions to Eq. (6) 

We shall proceed further looking for more general solutions 
to the field equations (1). To do this we shall make a second 
step allowing the parameters r , w 0 , w 2 , a 2 "" t- a to be 
space-time dependent and applying a local boost 

( 31) 

to the field 1/J , i.e., we suggest the ansatz 

(32) 

Inserting (32) into the field equation (1) yields the fol
lowing two systems of equations for the unknown functions 
A~(x) , c(x) , a(x) , w 0(x) , and w 2(x) 

yr (a~c)S(x)yO ~ A2 (x)S(x) (33) 

(34) 

The solution of Eq. (33) is remarkably simple 

a~, ± n~ v (a;}2 
v2[nac ± v(ac)~·;," 

(35) 

Then Eq. (34) can be considered as a complicated system of 
eight first-order partial differential equations for r(x), 

a(x) , wo(x) , and w 2(x) . We do not know its general soluti
on. The simplest possibility is to assume r = r (x 0) , 
n = (1,0,0,0). Then it reduces to 
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au a w2 
--~--

ax, ax3 

!12__ ~ 0 
ax2 

Q_q__ =- aw2 

ax 3 ax! 

and has the obvious solution 

awo (h)2 

ax2 ""- axo 

awo~o 
ax3 

(36) 

(37) 

with f and g arbitrary and K(x1 ,x 3) and A(x 1,x 3 ) the real 
and imaqinary parts of an arbitrary analytic function. This demonstrates that the class of plane-wave solutions is essentially enlarged by our second step. 

There are also other solutions of the system (34) which one could write explicitly. For instance, let us assume that w0 and w
2 

are constants 

w 0 = const, w 2 = const (38) 

and that 

¢ arbitrary. (39) 

Then it turns out that four of the equations (34) are satisfied identically and the other four take the form 
2 fJ- I' 2 ava~ A2 (Ai'a Av-Ava Ai')- avinA . (40) 

The integrability condition for this system is 

(41) 
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Let u(x) be any solution of the wave equation 

DU = 0 

obeying 

a~uavu=l 

and let 

c(x) = F(u(x)), 
-1 

F (;)= 
dr 

f ¢(r)' 

(42) 

(43) 

(44) 

-1 ' ' . . 

Then, inseiting u =F (r) in {42) and .(43), one readily veri-

fies that r satisfies (3.9) and. (41). That is, any solutiop _of 

(42), {43) y.ields an infinite family of solutions to .(3_9) -and 

(41) for which the system (40) is integrable and in this way 

one obtains an infinite family of solutiofis to the field eq~~

tion {1). Equations {42), {43) were discussed in124-29/ • 

For any such solution one can calculate explicitly the 

energy-momentum 

and the angular momentum 

MA =X TA-x TA +SA 
p.v v p. p. v p.v 

(45) 

(46) 

densities as well as the nucleon number (3}. and chirality (4). 

One could look further for physical (finite-energy) soluti

ons and investigate their stability and possible deviation 

from the Derrick theorem121 - 231 • And these are not the only 

problems which arise but we put off their discussion. 

We thank Prof. I.T.Todorov for valuable discUssion and en

couragement. 
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