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1 . Introduction 

In the author 's paper[l1 stimulated by the urgent problea 
of classification and enumeration of all exactly soluable t wo
dimensional modele of field theory and devoted to the search a nd 
enumeration of two-dimensional Lorentz-invariant Lagrange 
equations for one complex scalar f ield which possess higher 
polynomial local conserved currents (PLCD), a new model has been 
found with the Lagrangiaa ( :JI' = ~ j , )' "o, ~ ) 

f ( L J. .t!f a .1. • :t 
;:._ • t.fl' t .... , 1.. }/' - trz. .sat </), ( l.la) 

or in the variab l es 'I' = Jill- "/2. e 
iJ 

t 
l " I '1',... I _ m• 1'·1' 1z (-1 - 1'1'/t) 

-1 - /'1'1 I . ( l.lb) 

This model ie a generalization ("complexification") of 
the mode l "sine-Gordon" (S .O.) integrable by the inverse 
scattering method (ISM) and it differs froa the earlier found 
and studied (2-4] integrable complexification with the Lagran
g i an ( If' "'sin 'f e'' ) 

"'f I ( t02 t ,,2 l 1.. z 
<tv = I T I' + 1 lf } I' - m si 11. <f) = 

z 
= .i { I t,,. l - rnz /4'/z] 

J. ~ - I 'f' l z. • 

(1.2) 

The model (1.1) may appropriately be called the "complex S. G.-II". 
In view of recant neulta by M. Wadati [S], Ibragimov, Zhiber 

and Shabat (6, 7] obtained in studying equations with a nontrivial 
group (or, the same, with an infinity of local conservation 
lowe) the possibility of integrability of the model (1.1) with 
an infinity of PLCD by ISM becomes almost obvious. 

In this paper the ISM integrability of the aodel (1.1) is 
established and some ita properties are studied. In Sec . 2 b7 the 



aethod the author has proposed in {B) the corresponding linear 
spectral problem ("Lax representation") is obtained in terms of 
matrices of the SU(3) -group algebra. The model (1.1) has soliton 
solutions with zero and nonzero asymptotics at infinity; in Se~J ,4 

these solutions are searched for. Also, a theorem is proved 
which is useful in calculating one-soliton solutions in models 
with Lagrangians of the type (1.1) 1 (1 .2).In Sec. , equations of the 
Hirota-type are found which allow a standard derivation of multi
soliton solutions. And finally, in Sec.6 the equation under con
sideration is deduced in a different way as the firet equation 
(after reducing to the Lagrange form) of the obtained infinite 
series of integrable Lorentz-invariant systems generalizing the 
S .G.equation for which the problem of reduction to the Lagrange 
or Hamilton form is nontrivial and unsolved in other cases. 

2 . Lax Representa tion 

The modern formulation of I SM [9-10] is based on the possibi
lity to represent the studied nonlinear equation ae the condition 
of coJJBtibility of two linear differential operators that are 
rational functions of the spectral parameter . 

Consider (8] the overdetermined system of linear equations 

()'"' 0,1. ) 

'd/' ~ = r WI'}-
(2.1) 

Here )C belongs to the NxN-matrix group o, ~,... ie the matrix 
Lorentz vector lying ,obviously, in algebra AG: w...., =-i,i'd__..,y.·y. - f 
and dependent on field functions t..f ... ( x> and spectral para-
aeter Kp , K~ = m .&. , that is a Lorentz vector in the case of 
Lorentz-invariant scalar equations . The condition of compatibili

ty of (2.1) in the covariant form .;.,~a,..o~j =O (~~=--t.JI',c .. =O 
reads: 

Herearter a:..., 
a)'= a..~ 

2 w,...... •J' t i. w }' c.J/1 = 0 
(2.2) 

is a vector dual to vector ~ : (i/' =E./~ a.., , 

2 

Expand 
(, "'-f l ' ' 

w/' over the coaplete set of aatrices ~o:: I , .A;. 
111

- i ) (wit h coaplex, in general, C -
number coefficiente): 

0 l I 
W/' :U)/' ). 0 -t W/'A< 

1 (2.3) 

where ,A;. are Heraitean generatora of group SU(N) . 
Inserting (2 . 3) in (2 . 2) we arrive at the systea of equations 

( f i..j K are structure constants of SU(N)) 

~" 
wJ'•J' 

1 j - /( 
+ 2 fi.iK w/' w,..... =O 

w 0 ~ 0 
/'•)' 

(2 .4) 

whence it follows that c.J~ can be regarded as a traceless 
matrix ( w;. "' 0) . 

. Fixing now the rank of group N, properly choosing vectors w; and requiring (2.4) to be identically fulfilled with 
respect to parameter K/' , we can obtain nontrivial Lorentz
invariant.syetems of equations integrable by ISM with the use of 
the linear problea (2.2). 

The caee of SU(2) (i=l,2,3) has been carefully analysed in 
(s); the S.G.equation o;, 'f +.J(n<fcos<l ::0 is given by 
(2 .4) at 

4 "' 
c.J)' =~ 

~ ~. J (!':>) 
Wl':-1<./'sLnl{; W,.u = ~ cos<{ <fj, =o/''f, ( 2 •5 ) 

and "complexificet ion• of (2 .5 ): (J/' = ~ J> 
t - . 

Wp =- K)' Hn f - (- K ,M Sit~. f + 1/' ~ 1 ( cf) ) 

c.J~" K}' cos'(- ( K}' coS!/+ fpfJl. (<f)) 

appears to be consistent at a 1 :=: Jec f tg If ' g l = :lee <f 
and results in the equation "coaplex S.G .-I• following froa the 
Lagrangian (1,2). 

In the fraaework of SU(2) there are no other complexific
ations of the S . O.equation, therefore, it ia natural to consider 
the larger algebra of SU(3) with diaension 8 into which the 
SU(2) algebra is enclosed as a subalgebra in different ways 

3 



given, e.g., by the explicit form of nonzero structure constants 
of SU(3) : 

.f ~21 = 1 J ~~ l .:: f l'f' ":J 251 " j J'IS = f St6 .:: f 03J .:: -i. 

J <~S• : f 6 71 = 'fi. 2 

To obtain the system following from the ' Lagrangian (1 .1 ): 

l '0~:- 1 ~f. ~tc 2 1 }I~+ m2si.n-tf~<f== o 

l (~ i f.,u),)J = 0 

(2.6) 

(2 . 7) 

1 l .J 
we t ake first w/' ,w/' ,w/' in the form (2 .5); then eq. 
( 2,t ) gives again the S.O. equation since ) 1 A.a. A3 

> I 

f ora a aubalgebra of SU(3) . By analysing (2.6) it can be 
veri f ied that the system (2 .4 ) is not obviously contradictory 
if we put 

I( .r " (J.),!< : ~ 1 (<I)!!' ; w/' = w,.,u., o 

1 - ~ c 
w,.u =~2. (lf>Jr i w /( = t/3 K_.,u I (2.8) 

where ~ 1 , ~:. are unknown funct ions and Czconst . Inserting 
(2.5) and (2 . 8) into eq. (2 .4 ) we observe that the second, 
third, and eighth equations become identities; the f i rst and 
seventh equations ghe "the equations of motion" ( ~'=djfd<P) 

{ 

()2 I. .t. 
a I' tf + ~. ~ 2. J _,.. + m sin. Cf cos cf • 0 

"'l , 
~ :. o,-.. J ~ ~ ~ <f,.u J I' - ~, cf /' j I' • 0 (2 .9) 

the f ourth, fittb,and sixth equation• (by equating tha coeffic
ients of equal tensor structures ) lead to t he•equatione of con
straint• 

{ 

I I 
~1 + i ~L :: 0 

<lJ..Si.n. If- ~ 1 COS<f- C '}1 = 0 

~ 1 Si rt. l.f _. ~ t. cos cf - C 3 l. :: 0 
(2 .10) 

4 

The overdetermined systeo. (2 .10) ia consistent at c2:1 and at 
C=-1 has the solution 

4' 
~ 1 .:: ~ec ""}. ~ .l = - rec. '[ tg l 

Inserting these solutions into the system (2.9) we find that 
it concides with (2.7) , 

So , the system (2 . 7) is the condition of compatibility of 
the l inear equations (2 . 1) where 

w_,..-= w;A <; i- 1, ... , & ).i e. ASU(3) ; 

w;. = Cf,.u z "' · J ., " . 
w/' = - ~ s'n. cf ; w_,.. =~coscf; w/'=.sec;r j!', 

f " w_,.. :W/'=0 
~ If if',.. . 

w/' =- s~ r t~"IJ,... , I -t 
wl" ~-{3 ~ 

(2 . 11) 

Now , by using the well-developed ISM one can prove the complete 
integrability of (2.7) , find N-aoliton s olut ions, deduce the 
recurrence f ormula for higher integrals of motion . In this 
paper our considerat ion will be restricted to one -soliton 
s olutions which can moat easily be obtained by the direct in
tegration of (2 . 7) . 

3. Soliton Solutions with Zero As,mptotics 

From t he "potential" s hape i n the Lagrangian (l . lb) it can 
be observed that the corres ponding equation can possess solutions 
both with zero and nonzero asyaptotics as lxl~ 00 • To 
find soliton solutions , it is more convenient to work with vari-

.u · '-tie ._,. . . . < > ables T = s~n T 1n wh1ch the Lagrang1an l.la looks as 
follows: 

:1.. 
I '+'~ I 2 z 

l'f'W.-IIf'D -~m J'f/ l i- l'fl) (3 .1 ) 

The corresponding equation of motion has the form 

- z ( ot 'f' - 'f't'..., -t - Z. /'1'1) t 'fm"''f' (1-l'f/)(1-ZII./'1 )==0. 
I' 2. /'f/l. ( 1-l 'f' l) 

(3 . 2) 
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We will look ror the localized solutions of (3.2) of tl~ 
form stbnd~rd for co~lex equations (in the soliton rest frame): 

iwt 
't'=J(ne (3.3) 

j()l)-0, fx =O,f-0 ae /xl- 00 • Direct integration 
of equations of the type (3 , 2) that reduce , with solution of the 
form (3.3) , to the ordinary differential equations of second 
order is a practically nontrivial problem . This procedure may be 
considerably simplified and reduced to one quadrature through 
the following 
Theorem. Equations with the Lagrangians 

;;._ 
1 

:: I 'f/' l l - V ( I 'f I ) , 
(~1.4) 

and 

l 1 = A (Ill' I) 1 1 = A (/ lft )(I"/'/' 12 
- V (/ 'f' I) ) (3 . !>) 

where A (l'-1' 1) is an arbitrary function, have coincident 
• wt localized solutions of the form ljJ = f ( X) e (3 . 3) under the 

conditions: 
i 3) v (/'I' I) = v (f) - 0 as lXI- oo. 1) f ( J() -0 i :l ) f,.- 0 

For the real field Yi = 't' 
These solutions are also 

r11 ( f (Y> ' w ) • o 
energy-momentum tensor 

~· S9lutions of the 

the condition 1) is unnecessary. 
solutions to the first - order equation 

where T,. is a component of the 

Tp~ for (3.4). , 
equation following from (3.5) (A =dA/dl'f'l) 

'"\ ( u 2 ( I I ~ -0 ~ A'f,..>- 21'-l'l /'f'.l"'/ + llV+AV)~I'f'l- (3 . 8) 

satisfy the equation 

2 '.:±...-
()}I 't' ~ v ~1'1'1 - 0 (3 . 7) 

that follows from (3.4) under the condition 

A' f-f 'f; + V't')=O. (3 . 8) 

6 

With solutions or the form (3 . 3) eq , (3 . 8) takes the form 
(the trivial esse A 1 = 0 is neglected) 

w~jz + fxz - V(f) • 0 (3 . 9) 

wherea s equation (3 . ?) with the s ame solutions looks: 

- w.tf -.fxx +± V'(f) ~ o . 

The result or its integration coincides with (3 . 9) 

(A) .t f l. + f ]it - v = c 

(Here C=O in virtue of the boundary conditions) . 
The s olution (3 . 9) is given by the quadrature 

J elf 
'v;::v=(J=,=_ =(.&)=1=5=.,_. = x + c 1 . (3 . 10) 

And finally , equation TH = 0 with solutions (3.3) for 

T _ w o J.1 + Ui ~ _ a "1 

/"~- TJ' o'f'v 11' s 'F~ "/~ ol. 1 

has the form (3.9) 

z ( 2 2. T11 == 1 I 't,. I + I 'ft I - I 'f }(I - V ) = 
:l. .l. ).. 

:: c..U f ..- fx - V (f) = 0 • • 
The Lagrangi~n (3 .1) can be represented as (3 . 5) where 

- 1 2. .t.. 
A = ( I 't' I ( 1 - I 'f I ) ) , V = it m t I 'f' I ( 1 - I '!-'/ ) 

Then a solution (3.3) to eq. (3.2) is given by quadr ature (3 . 10) 

I cif 
V'fmtfl £1-f)'l.- wlr' = x ~ c1 

B.y integrating (3.11) we obtain finally 

2,., [COjO( ( ><+C ,) ~ LSi>t.o<t) 

...... t. .t~J."' e 
'+'1=fe = 1 ~ 2mcos0lo· • cd "mco.so< c x+c,) 

+ € + SC: n._ol.. € 

7 
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Here we set w • Zm s'n. « 

exist for /WI~ :tm . only . 
as the localized solutions 

For a compac t re presentation, in an arbitrary reference 
frame , of the solution obtained from (3 . 12} through the Lorentz 
transformation it is convenient to use the formalism of complex 
Lorentz-vector proposed in [3) . So , introduce the complex 
variable 

I ( O} 

l:. = ~, + i. ~ I = K_p ( X)" - 'l ) (3.13} 

where k/" is the spacelike complex vector 

K~:.-m.?.; ~-m [shfJ+i."'); ch(f+i.c<.)]; (3 . 14} 

col ( K/"~)=-m,l,cos.!o< 
)( /' is 11n arbitrary constant vect or fixins the soliton 

position in space-t i me. Finally, we arrive at the mos t general 
form of t he one-soliton solution dependent on f our parameters 

( o) 

V :: Hf 1 ol , X/" : 
2~ 

u; -~&~.~"'~e~--~--~~ 
T-1 - 1 + 2.e~+t.,. sin.*ot el t;~.>i , 

(3.15) 

The s olution (3 . 15) is the soliton moving with velocity V ,the 
amplitude and oscillation frequency of which in the rest fr ame 
are defined by the parameter o' , At oi • 0, i :: l , 

~ 
~ = 1 a.M. s<. n. y-;r; = ~ a;u. t~ e 

is the one-sol i ton solution to the S . G. equation . 
Note that at ol :0 the solution (3.15) " jumps" to the 

solut ion with nonzero asymptotics a s x---oo • This fact does 
not des troy the validity of the above theorem in integration . 

4. Soliton Solut ions wi th Nonzero Asymptotics 

We shall seardhfor solutions to eq. (3 . 2} with the asympto
t ice I '4' I - .{ when J x f - oo , In this caae the theorem is 
inapplicable; however , this difficulty can be surmounted (12 , 3] 
by reducins eq. (3 . 2} to the first - order equation through the 
evaluation from below of the energy functiona l (in the s oliton 
reet frame } via the topological charge that always exists for 

• 

~ 

~ 

solutions with the nontrivial &symptotics. Let us 
energy functional of eq. (3 . 2) (aseumins 'f't E 0 

rewrite the 

H - Joe> d x [ I Y' .t It + 4 /4' I ( 1 - I 'f'l ) 1 
- l't'l U-t'l'll {4 . 1} --

identically as follows 

H-; j dx /J "~'• • -iVt'f/(1-t 'f'/)f+.tjd.x('f. +'P") 'lit() 
1'+'1(1-/'+'f) ' -- - oo 

where 
Q = 'i''( oo) _ 'f''(- oo) ('f= 'f'' + i.'f'"), 

It is obvious that the function 'f' ( Jl) realizes ainimum of 
the functional {4.1} provided it obeys the equation 

'l'x = J. l't'l (1- /'Pl). {4 . 2) 

From {4 . 2) it follows immediately that 'P"== C 
Then for 4' 1 we get the equation 

I .r. I , t 
~ x ~ J. ( v '+'' + c .~, - 'f ' - c ~ ) 

Direct integration gives 

Y' '= eosoL ( .f- sin. z« e ltcos« ( x ~ c') 
' + 2.e2c.osol / >( •c,J . .. __ _ ) . 

,. s~..n. to< e 

con..St, 

liere we put C :si n.o<. since the localized solutions exist 
only for 1 c I ~ i . And finally, in an arbitrary reference 
frame , by using (3.13}-{3.14) and having respect to that the 
solution of {3 . 2) is deterained up to an arbitrary phase factor 
e • we arrive at the most general form of t he one- soli ton · 

• t o) ,. 
solut1.on dependent on 4 parameters V, eX. , x 1 , c : 

~..i. .;. cl -o~.> .t z[z+i•Ltf -·oJ 
I • • i.E It .l.5t.n.tl(. e +sin «e \.f'

1 
= \f' .. t..St-n"' == e .........:-....:;,..:,:, ____ , _________ -:-=-~ 

i.e 
=e 

~·l. z 2(l+i) 
1 + .te • s,:n.a. e 

[1 . l•i . .. d-J.) J.t 
+ SLn.ol e ---=------

= 

1 
Hi . l l{ l+l ) 

+ ~ e + s'n. a. e {4 . 3} 
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At d. = E. • o the solution '¥~ (4 . 3) degenerates into the 
solution '1-', ~ · 0 (3 . 15) with the opposite topologica l 
char ge ( x -- x) 

Note also an interesting fact (an analogous fact holds for 
the equat ion "complex S.G . -I" (3)): 

I 'f1 I J.. T I "¥ .z I:. = i 
what i s, probably , valid (like in ca se (3] ) for multis oliton 
solutions. 

5. Hirota formalism 

Multis oliton solutions can be easily found by the Hirota 
method l l3) ; we do not write them here because of their cumber
some form and cite only the system of equations in the bilinear 
form. Details of calculations are quite analogous to those of 

[ 3). It is remarkable that both 'f1 (3 . 15) and 't'J.. (4.3) 
satisfy the same system. Substitution '+':: ~ / 1- , where f 
is a real function , allows us to write eq . (3 . 2) as a system of 
two equations ( ml . 1) 

2 
CI:J /' f · f = 8 ( I~ 12 

- I~ I :f) 

0\~ I ( :. 
~ (.v,..u t4)~ ·f = 4~l.l~/-~ 5-.t/~f)<))f'~ · ~ (5 . 1) 

(4. 3) ( ~ and f are so that bot h '+'1 (3 .15) and 'f' .1. 

numera tor and denominator of f
1 

the system (5 . 1) . Here ~;. are 
or 'f.t , r espectively) obey 
Hirota Lorentz-invariant 

operators [3): 

t. .t. l 
CJ:>)' ~ . f = ~ 0 )' j - ~ 0)' ~ ~ f + f (}/' 9 

with the following property most i mportant in applications 

1. l ;_ lj i. j t l , . lj i 
~e . e :: (K~ - 1<.1') e ; zi ·K_,..x""; k':. ,.. - ·J. 

and The second of eqs . (5 . 1) is trilinear in f'unctions ~ 

:f ; however, introduc inB un auxiliary function h by the 
relation 

10 

2 1) 
'Zl_,u ~ ·'J =!9h 

we arrive at tt~ syste L of equat i ons 
in the standard bilinear form 

ClJ~f·f = 8/~/ ( 1~1 - :f) 
J.. 

1.))' ~ . ~ = i~h. 

(~;:t 4)~ · f " 4~1 ~ 1 - k (f - !1~1). 

Functions 'J , 5, h are l ooked for as series of the form 

(5 .2) 

'fK 2n 
G- = c;.o T L E. G-zn. 

2n. . 
here G zn. "" eXf ( L. r (<) ) 

n:-1 i..~1 

f o = :1. , ho = 0 ; c; .. = 0 

f or t he s ol utions wit h zero asymptotics) ~o = i for t hose with 
nonzero aaympt otica; an arbitrary para~eter t can be put to 
equal unity at the end of ca l c ula t ions . It is not difficult to 
show that in this model the interaction of soliton is of the 
character standard f or simple models with the trivial dynamics: 
in collisions solitons are elast i cally scattered acquiring the 
complex-phase shift. 

6. "lJ-V-Formalis m" 

In this section , the "Lax representation" for (2 . 7) will be 
deduced in a different way, within a rather general scheme . Let 
2. ~ = t +X , 2 s:: t- )( be "cone" variables in the two-

dimensional apace-time, C, ( • .J. are COJIIplex (NxN) -matrix 
functions of 7 , J . Consider the system of equations 
("U- V- system") Ll4-l5]: 

i..C'l = [ Ao, r] 

i. r5 = ( r, ~ J ( 6 . 1) 

1 ) The aut hor is thanld'ul t o Profe ssor Hir ota who has drawn his 
attention to t h is "dev1 ce". 
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where A 0 is s d iagonol matrix independent of 'l , l • This 
system is manifestly Lorentz-invariant; it is the condition of 
compatibility (identically in the spectral parameter ~ ) of 
the system of linear equations 

\ 

i...JJ .: (C +- AAo ).J.. 

i. .J.'I. = X 1 r .J 
(6.2) 

A happy choice of c . r, Ao consistent with eqs. (6.1) (the 
system reduction) diminishes the number of unkown functions and 
leads to physically meaningful equations . 

Let r .. '¥ ro 't' + and 

ro = A o = d.i. ~ ( o, o, o, 1.) . (6 . 3) 

(a., & = -t, 2. . . . "') ~ t hen Obviously. ( ro )a., = bcJ, s,N 
~ : 'II o..J\1 -+-,,., 

lex conjugated to 
Substituting r 

where -fi is a function comp
't' • r iS 8 bivectOr: r a.( =a..._ a.., ,a_,._ : 'faN. 

into (6.la) we see that C should be or the 
form 

c1 

c ::: 0 

c, .... .... · eN-< 
c"'·t _ - 0 

where ci obey the equation 

i.e. =ii..,a. · J'l J (6 . 4) 

Here i.., d" ~, ... . f'l- i . The second of eqs (6 . 1) gives the 
equations for Q.;_ and Q.."' 

La.. . =-c - Q .., 
J} J 

~ i. a..,., , = - 2- Cj O.j 
j::-4 

Denoting f:. =a.,,. we obtain finally 
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\ 

~ CJ 'l "- 'j, Q..i 

t.an=-/,cJ 

~gJ =-~c.a.. ... J o: f, . .. N-1 (6.5) 

The system (6.5) has "the conservation law". Multiplying (6.5.2) 

by Q_j , summing over j , adding to (6 . 5.3) multiplied by l 
and then adding the complex conjugated result, we arrive at the 
expression 

'(l N-1 

lfi (~ (ajl:.+ 1&1l.) =o 
J • .. 

Further reduction is to take real Cj , O..j 

& = i1. • Then (6.~) becomes 

cJ'l = 't a., 
Q.,j y =--'Z-Ci 

7-i = L. co.a...: 

(6.6) 

and illagin.ary 

(6 .7 ) 

With the help of eq. (6.6) variable ~ can be eliminated 
(equating, without loss of generality, the integration constant 
to unity): '(, ::: v 1 - 2. -~~~ . 

Insert ing this ~ into (6 . 7) give s 

t 
CJ2 == a.j V1 - 'La.f 

v 3., 
Q..jJ ::- Cj 1- 'l:ct., 

and eliminating 

Q..· 

'd .:::::.Ll t. • 

'2 .J-t--ro., 

c.; we obtain 

+ aj /1- ~a. ..... ·=o J"' 1, 

In the siapleet case N:2, setting (1,1 = ${.'n. cf 
the S.G . equation f or ~ 

lfn + ~n.. <f co-5 f = o 

13 

(6.8) 

N-i. (6.9) 

we arrive at 



For N > .t eq. (6.9) gives an infinite series of systems 
general1~1ng the S .G. equation . In such a fora these systems 
(and more general systems (6.5)), except for the case N:: .t 
have no Lagrangian; determination of the L&.grangia.n requires 
nontrivial changes of variables . The transformations given in 
this section are found by V.E.Zakharov/16/. 

Now we demonstrate what is the way to bring the systems 
(6.9) and (6.5) , in two simplest cases, into the Lagrange form. 
At N=3 in (6 . 9) the complex variable a.. =a..., r i..a.L 

can be introduced, and in parametrization a_,= 4in.<f e'w 

the system (6 . 9) becomes 

{ 

Cf'(J - t31f w 7 c.JJ + &in.<{' co~ <f == 0 

w 75 + vt3 tf ( 'f1 w7 + Uc- .t.rf c.JJ <fe> =O. 
(6 .10) 

Introducing the new variable ~ 

{ 

WJ :.J. ~J CO-t> o.f ~e.c2 ..P(J. 

w'l = ± ~< ~u. z <f/2., (6 .11 ) 

we obtain from (6.18) 

lfn- :2. t~r-~u :rP?h +~n.tf~f =o 

{ 

L 'f 2..<f . 

~n. tf _p z J + tf z .h + 'f.s p z :::: o . < 6 . 12 > 

The c.ondition of compatibility of the overdetermined system 
{6 .11) coincides with the second equation (6.12) and this 
ensures the construction to be consis t ent. And finally, in 
variables X and t we obtain the aystem {2.7): 

{ 
~)' -± t~ 1: -!U-1. i; p ~ + -!.i.n. 'f co.&'{'"" 0 

( t.~ ~ ~ p .1' ~ = 0 . 

The s econd systea that can be brought into the Lagrange 
for11 follows fro~a (6 . 5) at N = 1 . Wit h due regard to (6 . 6) 
one can introduce new variables by the relations Q, = !<n.rf e.: "'1 
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" ,o LWJ.. • .D and "r ~.,. e then ~n the system obtained for -r and 
w "w1- w2.. perform the change of variables {6.11); as a 
result , for the variable If= l.:tt- <f e •I' we get the system 
with the Lagrangian (1.1) ("complex S . G.-I") , 

Finally,we show that the syste~ (6 .10) is a result of the 
nontrivial reduction of the system of three S .G . fields inter
acting with nontrivial dynamics studied in ref. [15) . If in 
systeru (1 . 9) of ref. [15b] (obtained also within the U-V-system 
(6.1)) we set E. 11 = ~1.1. .,Q that corresponds to our choice 
of matrices ro and A o in the form (6 .3), then this system 
takes the form 

! 
e1J + Cf'l 'fJ eo-:~ e - :ii.n. e Co-J B = o 

tfn - 'f7. eJ t~ e - e'< '1'1 -1u e = o 

'-~'n- e 1 'f'Jt~ e - <foz e5 -kG&,. o 

Multiplying the sec ond equation (6 . 13) by ~n. B and 
substracting the third one, we get 

( lf-z - 'f'l sl.n..9)~ = 0 

whence it can be put 

't'7 = 'f~ est: fJ 

{6 .13) 

(6.14) 

Substituting (6.14) into {6.13) and changing the notation 
tf -- w) e= <f-tf we arrive at the system (6 . 10) . 

The author is grateful to V. E. Zakharov for stimula ting 
discussions . 
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