

объединенный ИНСТИтут ядериых исследований дубна

$11 / 8-80$
E2-80-354
B.S.Getmanov

INTEGRABLE TWO-DIMENSIONAL LORENTZ-INVARIANT NONLINEAR MODEL OF COMPLEX SCALAR FIELD
(Complex Sine-Gordon-II)

Submitted to TMФ

1. Introduction

In the author's paper [I], atimulated by the urgent problem of classification and enumeration of all axactly soluthe twodimensional models of field theory and devoted to the search and enumeration of two-dimensional Lorentz-invariant Lagrange equations for one complex acalsr field which possess higher polynomial local conserved currents (PLCD), new model has been found with the Lagrangiam ($f_{\mu}=\partial_{\mu} f, \mu=0,1$)

$$
\begin{equation*}
\mathcal{X}=\frac{1}{2}\left(\varphi_{\mu}^{2}+t g^{2} \frac{\varphi}{2} \beta_{\mu}^{2}-m^{2} \sin ^{2} \varphi\right), \tag{1.18}
\end{equation*}
$$

or in the variables $\psi=\sin \$ / 2 e^{i \beta}$

$$
\begin{equation*}
\alpha=\frac{|\Psi \mu|^{2}}{1-|\Psi|^{2}}-m^{2}|\Psi|^{2}\left(1-|\Psi|^{2}\right) \tag{1.1b}
\end{equation*}
$$

This model is a generalization ("complexification") of the model "sine-Gordan" (s.a.) integrable by the inverse ocettering method (ISM) and it differs from the earlier found and otudied [2-4] integrable complexification with the lagren$\operatorname{gian}\left(\psi=\sin \varphi e^{i \mu}\right)$

$$
\begin{align*}
\mathcal{L} & =\frac{1}{2}\left(\varphi_{\mu}^{2}+\operatorname{tg}^{2} \varphi \beta_{\mu}^{2}-m^{2} \sin ^{2} \varphi\right)= \\
& =\frac{1}{2}\left[\frac{\left.1 \Psi_{\mu}\right|^{2}}{1-|\Psi|^{2}}-m^{2}|\psi|^{2}\right] \tag{1,2}
\end{align*}
$$

The model (1.1) may appropriately be called the "complex S. G.-11".
In view of recent realta by H.Wadati \{5\}, Ibragimov, Zhiber and Shabat $[6,7]$ obtained in atudying equations with a nontrivial group (or, the a日me, with an infinity of local conservation
lows) the poosibility of integrability of the model (1.1) with an infinity of PLCD by ISM becomea alwost obvious.

In this paper the ISM integrability of the codel (1.1) is eatablishad and some the propertiea are studied. In sec. 2 by the
method the author has proposed in [8] the corresponding linear spectral problem ("Lax representation") is obtained in terms of matrices of the SU(3)-group algebra. The model (1.1) has soliton solutions with zero and nonzero asymptotics at infinity; in Secs 3,4 these solutions are searched for. Also, a theorem is proved which is useful in celculating onersoliton solutiona in models with Lagrangians of the type (1.1), (1.2). In sec. 5 equations of the Hirota-type are found which allow a standard derivation of multisoliton solutions. And finally, in Sec. 6 the equation under consideration is deduced in a different way as the first equation (after reducing to the Lagrange form) of the obtained infinite series of integrable Lorantz-invariant systems generalizing the S.G.equation for which the problem of reduction to the Legrange or Hamilton form is nontrivial and unsolved in other cases.

2. Lax Representation

The modern formulation of ISM [9-10] is based on the possibility to represent the studied nonlinear equation as the condition of comptibility of two linear differential operators that are rational functions of the spectral parameter.

Consider [8] the overdetermined system of linear equatione $(\mu=0,1)$

$$
\begin{equation*}
\partial_{\mu} x=\frac{i}{2} \omega_{\mu} x \tag{2.1}
\end{equation*}
$$

Here X belongs to the $N x N-m a t r i x$ group G, ω_{μ} is the matrix Lorentz vector lying, obviously, in algebra AG: $\omega_{\mu}=-2 i \partial_{\mu} x \cdot x^{-4}$ and dependent on field functions $\varphi_{i}(x)$ and spectral parameter $K_{\mu}, K_{\mu}^{2}=m^{2}$, that is a Lorentz vector in the case of Lorentz-invariant acalar equations. The condition of compatibility of (2.1) in the covariant form $\varepsilon_{\mu v} \partial_{\mu} \partial_{j} x=0 \quad\left(\varepsilon_{\mu j}=-\varepsilon_{j \mu}, \varepsilon_{o r}=1\right)$ reads:

$$
\begin{equation*}
2 \tilde{\omega}_{\mu, \mu}+i \omega_{\mu} \tilde{\omega}_{\mu}=0 \tag{2.2}
\end{equation*}
$$

Hereafter \tilde{a}_{μ} is a vector dual to vector $a_{\mu}: \tilde{a}_{\mu}=\varepsilon_{\mu}, a_{\nu}$, $\tilde{a}_{\mu}=a_{\mu}$.

Expand ω_{μ} over the complete set of matricea $\lambda_{0}=I$, λ_{i}
$\left(i=1,2 ; \ldots, N^{2}-1\right)$ (with complex, in general, $C=$ nuaber coefficiente):

$$
\begin{equation*}
\omega_{\mu}=\omega_{\mu}^{i} \lambda_{0}+\omega_{\mu}^{i} \lambda_{i} \tag{2.2}
\end{equation*}
$$

where λ_{i} are Hermitean generators of group $\mathrm{SU}(\mathrm{N})$.
Inserting (2.3) in (2.2) ve arrive at the syotem of equations
($f_{i, j k}$ are atructure conatants of $\operatorname{SU}(N)$)

$$
\begin{align*}
& \tilde{\omega}_{\mu, \mu}^{i}+\frac{1}{2} f_{i j k} \omega_{\mu}^{j} \tilde{\omega}_{\mu}^{k}=0 \\
& \tilde{\omega}_{\mu, \mu}^{0}=0 \tag{2.4}
\end{align*}
$$

Whence it followe that ω_{μ} cen be regerded as a tracelese matrix $\left(\omega_{\mu}^{0}=0\right)$

Fixing now the rank of group N, properly choosing vectors ω_{μ}^{i} end requiring (2.4) to be identically fulfilled with respect to parameter K_{μ}, we can obtain nontrivial Lorentzinvariant syatems of equations integrable by ISM with the use of the linear problem (2.2).

The case of $\operatorname{SU}(2)(i=1,2,3)$ has been carefully analysed in [8]; the S.G.equation $\partial_{\mu}^{2} \varphi+\sin \varphi \cos \varphi=0$ is given by (2.4) at

$$
\omega_{\mu}^{\prime}=\tilde{\varphi}_{\mu} ; \quad \omega_{\mu}^{2}=-\tilde{\kappa}_{\mu} \sin \varphi ; \quad \omega_{\mu}^{1}=\kappa_{\mu} \cos \varphi \quad\left(\varphi_{\mu}=\partial_{\mu} \varphi\right),(2.5)
$$

and "complexification" of (2.5): $\left(\beta_{\mu}=\partial_{\mu} \beta\right)$

$$
\begin{aligned}
& \omega_{\mu}^{2}=-\tilde{k}_{\mu} \sin \varphi \rightarrow\left(-\tilde{k}_{\mu} \sin \varphi+\tilde{\beta}_{\mu} g_{1}(\varphi)\right) \\
& \omega_{\mu}^{3}=k_{\mu} \cos \varphi \rightarrow\left(x_{\mu} \cos \varphi+\beta_{\mu} g_{2}(\varphi)\right)
\end{aligned}
$$

appears to be consistent at $g_{1}=\sec \varphi \operatorname{tg} \varphi, g_{2}=\sec \varphi$ and results in the equation "compler $S . G .-I$ " following from the Lagrangian (1.2).

In the framewn of SU(2) there are no other complexifications of the S.G.equation, therefore, it is natural to consider the larger algebra of $S U(3)$ with diaension 8 into which the SU(2) algebra is enclosed as a subalgebra in different ways
given, e.g., by the explicit form of nonzero structure constants of $\operatorname{SU}(3)$:

$$
\begin{align*}
f_{123}=1 ; \quad f_{147} & =f_{246}=f_{257}=f_{345}=f_{516}=f_{637}=\frac{1}{2} \\
f_{452} & =f_{678}=\frac{\sqrt{3}}{2} . \tag{2.6}
\end{align*}
$$

To obtsin the syatem following from the Lagrangian (2.1):

$$
\left\{\begin{array}{l}
\partial_{\mu}^{2} \varphi-\frac{1}{2} \operatorname{tg} \frac{\varphi}{2} \sec ^{2} \frac{\varphi}{2} \beta_{\mu}^{2}+m^{2} \sin \varphi \cos \varphi=0 \tag{2.7}\\
\left(\operatorname{tg}^{2} \frac{\varphi}{2} \beta_{\mu}\right), \mu=0
\end{array}\right.
$$

we take firat $\omega_{\mu}^{1}, \omega_{\mu}^{2}, \omega_{\mu}^{2}$ in the form (2.5); then eq. (2.4) gives again the S.Q. equation since $\lambda_{1}, \lambda_{2}, \lambda_{3}$ form a subalgebra of $\mathrm{SU}(3)$. By analyaing (2.6) it can be verified that the aystem (2.4) is not obviousily oontradictory if we put

$$
\begin{array}{ll}
\omega_{\mu}^{4}=g_{1}(\varphi) \beta_{\mu} ; & \omega_{\mu}^{5}=\omega_{\mu}^{6}=0 \\
\omega_{\mu}^{7}=g_{2}(\varphi) \tilde{\beta}_{\mu} ; & \omega_{\mu}^{8}=\frac{c}{\sqrt{3}} k_{\mu} \tag{2.8}
\end{array}
$$

where g_{1}, g_{2} are unknom functions and ceconst. Ineerting (2.5) and (2.8) into eq. $(2,4)$ we observe thet the second,
third, and eighth equations become identities; the first and seventh equations give "the equetions of motion" $\left(g^{\prime}=d g / d \varphi\right)$

$$
\left\{\begin{array}{l}
\partial_{\mu}^{2} \varphi+g_{1} g_{2} \beta_{\mu}^{2}+m^{2} \sin \varphi \cos \varphi=0 \tag{2.9}\\
g_{2} \partial_{\mu}^{2} \beta+g_{\lambda}^{\prime} \varphi_{\mu} \beta_{\mu}-g_{1} \varphi_{\mu} \beta_{\mu}=0
\end{array}\right.
$$

the fourth, fifth, and sixth equatione (by equating the coefficients of equal tensor structures) lead to the"equations of constraint"

$$
\left\{\begin{array}{l}
g_{1}^{\prime}+\frac{1}{2} g_{2}=0 \\
g_{1} \sin \varphi-g_{1} \cos \varphi-c g_{1}=0 \tag{2.10}\\
g_{1} \sin \varphi+g_{2} \cos \varphi-c g_{2}=0
\end{array}\right.
$$

The overdetermined syoter (2.10) is consistent at $C^{2}=1$ and at $C=-1$ has the solution

$$
g_{1}=\sec \frac{\varphi}{2} ; \quad g_{2}=-\sec \frac{\varphi}{2} \operatorname{tg} \frac{\varphi}{2}
$$

Inserting these solutions into the system (2.9) we find that it concides with (2.7).

So, the syotem (2.7) is the condition of compatibility of the linear equations (2.1) where

$$
\begin{align*}
& \omega_{\mu}=\omega_{\mu}^{i} \lambda_{i} ; \quad i=1, \ldots, s ; \quad \lambda_{i} \in A S U(3) ; \\
& \omega_{\mu}^{1}=\widetilde{\varphi}_{\mu} ; \quad \omega_{\mu}^{2}=-\widetilde{k}_{\mu} \sin \varphi ; \quad \omega_{\mu}^{3}=\kappa_{\mu} \cos \varphi ; \omega_{\mu}^{4}=\sec \frac{\varphi}{2} \beta \mu ; \\
& \omega_{\mu}^{s}=\omega_{\mu}^{6}=0 ; \quad \omega_{\mu}^{\#}=-\sec \frac{\varphi}{2} \operatorname{tg} \frac{\varphi}{2} \tilde{\beta}_{\mu} ; \quad \omega_{\mu}^{2}=-\frac{1}{\sqrt{3}} \kappa_{\mu} . \tag{2.11}
\end{align*}
$$

Now, by using the vell-developed ISM one can prove the complete integrability of (2.7), find N-soliton solutions, deduce the recurrence formula for higher integrals of motion. In this paper our conaideration will be restricted to one-soliton aolutions which can most easily be obtained by the direct integration of (2.7).

3. Soliton Solutions with Zero Asymptotics

From the "potential" ahape in the Lagrangian (l.lb) it can be observed that the correaponding equation can possess solutions both with zero and nonzero asymptotica as $|x| \rightarrow \infty$. To find soliton solutions, it is more convenient to work with variables $\psi=\sin ^{2} \frac{\psi}{2} e^{i \beta}$ in which the Lagrangian (1.1a) looks as followe:

$$
\begin{equation*}
\mathcal{Z}=\frac{|\psi \mu|^{2}}{|\Psi|(1-\mid \Psi J)}-4 m^{2}|\Psi|(1-|\psi|) \tag{3,1}
\end{equation*}
$$

The corresponding equation of motion has the form

$$
\begin{equation*}
\partial_{\mu}^{2} \psi-\frac{\bar{\psi} \psi_{\mu}^{2}(1-2|\psi|)}{2|\Psi|^{2}(1-|\psi|)}+4 m^{2} \psi(1-|\psi|)(1-2|\psi|)=0 \tag{3,2}
\end{equation*}
$$

We will look for the localized solutions of (3.2) of the form standard for complex equations (in the soliton rest frame):

$$
\begin{equation*}
\Psi=f(x) e^{i \omega t} \tag{3.3}
\end{equation*}
$$

$f(x) \rightarrow 0, f_{x}=\partial_{x} f \rightarrow 0$ as $|x| \rightarrow \infty$. Direct integration of equations of the type (3.2) that reduce, with aolution of the form (3.3), to the ordinary differential equations of second order is a practically nontrivial problem. This procedure way be considerably simplified and reduced to one quadrature through the following
Theorem. Equations with the Lagrangians

$$
x_{1}=\left|\psi_{\mu}\right|^{2}-v(|\psi|)
$$

and

$$
\begin{equation*}
\chi_{2}=A(|\psi|) \mathcal{\alpha}_{1}=A(|\psi|)\left(\left|\psi_{\mu}\right|^{2}-V(|\psi|)\right) \tag{3.6}
\end{equation*}
$$

where $A(|\psi|)$ is an arbitrary function, have coincident
localized solutions of the form $\psi=f(x) e^{\text {wht }}$ (3.3) under the conditions:

1) $f(x) \rightarrow 0$; 2) $f x \rightarrow 0$
; 3) $V(|\psi|)=V(f\rangle \rightarrow 0$
as $\quad|x| \rightarrow \infty$. For the real field $\bar{\psi}=\Psi \quad$ the condition 1) is unnecessary.
These solutions are also solutions to the first-order equation $T_{11}(f(x), \omega)=0$, where T_{11} is a component of the energy-momentum tensor $T_{\mu \nu}$ for (3.4).
Proof. Solutions of the equation following from (3.5) ($\left.A^{\prime}=d / A / d / \psi 1\right)$

$$
\begin{equation*}
\partial_{\mu}\left(A \Psi_{\mu}\right)-\frac{A^{\prime} \psi}{2|\Psi|}\left|\Psi_{\mu}\right|^{2}+\left(A^{\prime} V+A V^{\prime}\right) \frac{\Psi}{2|\Psi|}=0 \tag{3.6}
\end{equation*}
$$

satisfy the equation

$$
\begin{equation*}
\partial_{\mu}^{2} \psi+V^{\prime} \frac{\psi}{2|\psi|}=0 \tag{3,7}
\end{equation*}
$$

that follows frow (3.4) under the condition

$$
\begin{equation*}
A^{i}\left(\bar{\psi} \psi_{\mu}^{2}+V \Psi\right)=0 \tag{3,8}
\end{equation*}
$$

With aolutions of the form (3.3) eq. (3.B) takes the form (the trivial case $A^{\prime}=O$ is neglected)

$$
\begin{equation*}
\omega^{2} f^{2}+f_{x}^{2}-V(f)=0 \tag{3.8}
\end{equation*}
$$

whereas equation (3.7) with the same solutions looks:

$$
-\omega^{2} f-f_{x x}+\frac{1}{2} v^{\prime}(f)=0 .
$$

The result of its integration coincides with (3.9)

$$
w^{2} f^{2}+f_{x}^{2}-V=c
$$

(Here $\mathrm{C}=0$ in virtue of the boundary conditiona).
The solution (3.9) is given by the quadrature

$$
\begin{equation*}
\int \frac{d f}{\sqrt{v(f)-w^{2} f^{2}}}=x+c_{1} \tag{3.10}
\end{equation*}
$$

And finally, equation $T_{11}=0$-ith solutions (3.3) for

$$
T_{\mu v}=\psi_{\mu} \frac{\delta \alpha_{1}}{\delta \Psi_{\nu}}+\bar{\psi}_{\mu} \frac{\delta z_{1}}{\delta \bar{\psi}_{v}}-g_{\mu v} \alpha_{1}
$$

has the form (3.9)

$$
\begin{aligned}
T_{11} & =2\left|\psi_{x}\right|^{2}+\left(\left|\psi_{t}\right|^{2}-\left|\psi_{x}\right|^{2}-V\right)= \\
& =\omega^{2} f^{2}+f_{x}^{2}-V(f)=0 \text { B }
\end{aligned}
$$

The Lagrangian (3.1) can be represented as (3.5) where

$$
A=(|\psi|(1-|\psi|))^{-1}, \quad V=4 m^{2}|\psi|^{2}(1-|\psi|)^{2}
$$

Then a solution (3.3) to eq. (3.2) ia given by quadrature (3.10)

$$
\begin{equation*}
\int \frac{d f}{\sqrt{4 m^{2} f^{2}(1-f)^{2}-w^{2} f^{2}}}=x+c_{1} . \tag{3.11}
\end{equation*}
$$

By integrating (3.11) we obtain finally
$\Psi_{1}=f e^{i \omega t}=\frac{2 \cos ^{2} \alpha e^{2 m\left(\cos \alpha\left(x+c_{1}\right)+i \sin \alpha t\right)}}{1+2 e^{2 m \cos \alpha\left(x+c_{1}\right)}+\sin ^{2} \alpha e^{4 m \cos \alpha(x+c+)}}$

Here wet $\omega=2 m \sin \alpha$ as the localized solutions exiat for $|\omega| \leqslant 2 \mathrm{~m}$. only.

For a compact repreaentation, in an arbitrary reference frame, of the solution obtained from (3.12) through the Lorentz tranaformation it is convenient to use the formalism of complex Lorentz-vector proposed in [3]. So, introduce the complex variable

$$
\begin{equation*}
z=z^{\prime}+i z^{n}=k_{\mu}\left(x_{\mu}-x_{\mu}^{(0)}\right) \tag{3.13}
\end{equation*}
$$

where K_{μ} is the spacelike complex vector

$$
\begin{equation*}
k_{\mu}^{2}=-m^{2} ; \quad k_{\mu}=m[\operatorname{sh}(\beta+i \alpha) ; c h(\beta+i \alpha)] ; \tag{3.14}
\end{equation*}
$$

$x_{\mu}^{(0)}$ is an arbitrary constant vector fixing the soliton position in space-time. Finally, we arrive at the most general form of the one-soliton solution dependent on four parametera

$$
\begin{align*}
& V=t h \beta, \alpha, x_{\mu}^{(0)}: \\
& \quad \psi_{1}=\frac{2 \cos ^{2} \alpha e^{2 z}}{1+2 e^{2+\bar{z}}+\sin ^{2} \alpha e^{2(2+z)}} \tag{3.15}
\end{align*}
$$

The solution (3.15) is the soliton moving with velocity V, the amplitude and oacillation frequency of which in the rest frame are defined by the parameter α. At $\alpha=0, \bar{z}=z$,

$$
\varphi=2 \arcsin \sqrt{\psi_{1}}=2 \operatorname{arctg} e^{z}
$$

is the one-soliton golution to the S. G. equation.
Note that at $\alpha=0 \quad$ the solution (3.15) "jumpan to the solution with nonzero asymptotics as $x \rightarrow \infty$. This fact does not destroy the validity of the above theorem in integration.

4. Soliton Solutions with Nonzero Asymptotios

We shall search for solutione to eq. (3.2) with the asymptotics $|\psi| \rightarrow 1$ when $i x \mid \rightarrow \infty$. In this case the theorem is inapplicable; however, this difficulty can be surmounted [12,3] by reducing eq. (3.2) to the firet-order equation through the evaluation from below of the energy functional (in the soliton reat frame) via the topalogicel charge that always exista for
solutiona with the nontrivial asymptotics. Let ue rewrite the energy functional of eq. (3.2) (aseuming $\psi_{t}=0$)

$$
\begin{equation*}
H=\int_{-\infty}^{\infty} d x\left[\frac{|\psi x|^{2}}{|\psi|(1-|\psi| \mid}+4|\psi|(1-|\psi|)\right] \tag{4,1}
\end{equation*}
$$

identically as rollows

$$
H=\int_{-\infty}^{\infty} d x\left|\frac{\Psi_{x}}{\sqrt{|\Psi|(1-|\Psi|)}}-2 \sqrt{|\Psi|\left(1-\left|\Psi^{\prime}\right|\right)}\right|^{2}+2 \int_{-\infty}^{\infty} d x\left(\Psi_{k}+\bar{\Psi}_{x}\right) \geqslant 4 Q
$$

where

$$
Q=\psi^{\prime}(\infty)-\psi^{\prime}(-\infty) \quad\left(\psi=\psi^{\prime}+i \psi^{\prime \prime}\right)
$$

It ia obvious that the function $\Psi(x)$ realizes minimum or the functional (4.1) provided it obeys the equation

$$
\begin{equation*}
\Psi_{x}=2|\Psi|(1-|\Psi|) \tag{4.2}
\end{equation*}
$$

From (4.2) it follows immediately that $\Psi^{\prime \prime}=c=$ const.
Then for Ψ^{\prime} we get the equation

$$
\psi_{x}^{\prime}=2\left(\sqrt{\psi^{2}+c^{2}}-\psi^{\prime 2}-c^{2}\right)
$$

Direct integration gives

$$
\Psi^{\prime}=\frac{\cos \alpha\left(1-\sin ^{2} \alpha e^{4 \cos \alpha\left(x+c_{1}\right)}\right)}{1+2 e^{2 \cos \alpha\left(x+c_{1}\right)}+\sin ^{2} \alpha e^{4 \cos \alpha\left(x+c_{2}\right)}}
$$

here we put $c=\sin \alpha$ since the locslized solutions exist only for $|c| \leqslant 1$. And finally, in an arbitrary reference frame, by using (3.13)-(3.14) and having respect to that the solution of (3.2) is determined up to an arbitrary phase factor ε, we arrive at the most general form of the one-soliton solution dependent on 4 parameters $V, \alpha, x_{1}^{(0)}, \varepsilon$:

$$
\begin{align*}
\psi_{2}=\psi^{\prime}+i \sin \alpha & =e^{i \varepsilon} \frac{1+2 \sin \alpha e^{z+\bar{z}+i(\overline{1}-\alpha)}+\sin ^{2} \alpha e^{2[z+\bar{z}+i(\bar{I}-\alpha)]}}{1+2 e^{z+\bar{z}}+\sin ^{2} \alpha e^{2(z+\bar{z})}}= \\
& =e^{i \varepsilon} \frac{\left[1+\sin \alpha e^{z+\bar{z}+i\left(\frac{1}{z}-\alpha\right)}\right]^{2}}{1+2 e^{z+\bar{z}}+\sin ^{2} \alpha e^{2(\bar{z}+\bar{z})}} \tag{4,3}
\end{align*}
$$

At $\alpha=\varepsilon=0$ the solution ψ_{2} (4.3) degenerates into the solution $\Psi_{1} \mid \alpha=0 \quad(3.15)$ with the opposite topological charge $(x \rightarrow-x)$

Note also an intereating fact (an analagous fact holds for the equation "complex S.G.-I" (3)):

$$
\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}=1
$$

what is, probably, valid (like in case [3]) for multisoliton solutions.

5. Hirota formaliam

Multisoliton solutiona can be easily found by the Hirota method [13]; we do not write them here because of their cumbersome form and cite only the system of equations in the bilinear form. Details of calculations are quite analogous to those of [3]. It is remarkable that both $\psi_{1}(3.15)$ and ψ_{2} (4.3) atisfy the same system. Substitution $\psi=g / f$, where f is a real function, allows us to write eq. (3.2) as a system of two equations $\left(m^{2}=1\right)$

$$
\begin{align*}
& D_{\mu}^{2} f \cdot f=8\left(|g|^{2}-|g| f\right) \\
& g\left(D_{\mu}^{2}+4\right) g \cdot f=4 g^{2}|g|-\frac{1}{2}(f-2|g|) D_{\mu}^{2} g \cdot g \tag{5,1}
\end{align*}
$$

so that both $\Psi_{1}(3.15)$ and $\Psi_{2}(4.3)(g$ and f are numerator and denominator of Ψ_{1} or Ψ_{2}, reapectively) obey the system (5.1). Here D_{μ}^{2} are Hirota Lorentz-invariant operators [3]:

$$
\partial_{\mu}^{2} g \cdot f=g \partial_{\mu}^{2} f-2 \partial_{\mu} g \partial_{\mu} f+f \partial_{\mu}^{2} g
$$

with the following property most important in applicetiono

$$
D_{\mu}^{2} e^{z_{i}} \cdot e^{z_{j}}=\left(k_{\mu}^{i}-k_{\mu}^{j}\right)^{2} e^{z_{i}+z_{j}} ; z_{i}=k_{\mu}^{i} x_{\mu} ; k_{\mu}^{i \ell}--1
$$

The second of eqs. (5.1) is trilinear in functions g and f; however, introducing an auxiliary function h by the
relation

$$
D_{\mu}^{2} g \cdot g=2 g h^{1)}
$$

we arrive at the aysten. of equations
in the standard bilinesr form

$$
\left\{\begin{array}{l}
D_{\mu}^{2} f \cdot f=8|g|(|g|-f) \tag{5.2}\\
D_{\mu}^{2} g \cdot g=2 g h \\
\left(D_{\mu}^{2}+4\right) g \cdot f=4 g|g|-h(f-2|g|)
\end{array}\right.
$$

Functions g, f, h are looked for as series of the form

$$
\begin{aligned}
& G=G_{0}+\sum_{n=1}^{4 *} \varepsilon^{2 n} G_{2 n}, \quad \text { here } G_{2 n} \sim \exp \left(\sum_{i=1}^{2 n} x^{(i)}\right), \\
& f_{0}=1, \quad n_{0}=0 ; \quad g_{0}=0
\end{aligned}
$$

for the solutions with zero asymptotics, $g_{0}=1$ for those with nonzero asymptotics; an arbitrary parameter ε can be put to equal unity at the end of calculations. It ia not difficult to show that in this model the interaction of goliton is of the character standard for aimple models with the trivial dynamica: in collisions solitons are elastically acattered acquiring the complex-phase shift.
6. \quad "U-V-Formalism"

In this section, the "Lax representation" for (2.7) will be deduced in a different way, within a rather general scheme. Let $2 h=t+x, 2 \xi=t-x$ be "cone" variables in the twodimensional space-time, C, r, x are complex (NxN)-matrix functions of ?, ξ. Consider the system of equations ("U-V-system") [14-15]:

$$
\begin{align*}
& i C_{\eta}=\left[A_{0}, \Gamma\right] \\
& i \Gamma_{\xi}=[\Gamma, C] \tag{0.1}
\end{align*}
$$

1) The author is thankful to Professor Hirota who has drawn his attention to this "device".
where A_{0} is diagonal matrix independent of η, F. This system is manifestly Lorentz-invariant; it is the condition of competibility (identically in the spectral parameter λ) of the system of linear equations

$$
\left\{\begin{array}{l}
i x_{\xi}=\left(C+\lambda A_{0}\right) x \tag{6,2}\\
i x_{\eta}=\lambda^{-1} \Gamma x
\end{array}\right.
$$

A happy choice of C, Γ, $A 0$ consistent with eqs. (6.1) (the system reduction) diminishes the number of unkown functions and leads to phybically merningful equations.

$$
\text { Let } \Gamma=\Psi \Gamma_{0} \Psi^{+} \quad \text { and }
$$

$$
\begin{equation*}
\Gamma_{0}=A_{0}=\operatorname{diag}(0,0, \ldots 0,1) \tag{6.3}
\end{equation*}
$$

Obviously, $\left(\Gamma_{0}\right)_{a}=\delta_{a b} \delta_{6 N} \quad(a, b=1,2, \ldots N) ; \quad$ then $\Gamma_{a b}=\psi_{a N} \bar{\psi}_{e n} \quad$ where $\vec{\psi}$ is a function complex conjugated to ψ, Γ is a bivector: $\Gamma_{a c}=a_{a} \bar{a}_{c}, a_{a}=\psi_{a N}$. Substituting Γ into ($5.1 a$) wee that C should be of the form

$$
C=\left(\begin{array}{cc}
& c_{1} \\
0 & \vdots \\
-\bar{c}_{1} \cdots \cdots \cdots \bar{c}_{N-1} & , \\
c_{N-1}
\end{array}\right)
$$

where c_{j} obey the equation

$$
\begin{equation*}
i c_{j \eta}=\bar{a}_{\mu} a_{j} \tag{6.4}
\end{equation*}
$$

Here $i, j=1, \ldots N-1$. The second of eqs (6.1) gives the equations for a_{i} and a_{N} :

$$
\begin{aligned}
& i a_{j \xi}=-c_{j} a_{N} \\
& i a_{N \xi}=-\sum_{j=1}^{N=1} \stackrel{\rightharpoonup}{c}_{j} a_{j}
\end{aligned}
$$

Denoting $B=a_{N}$ we obtain finally

$$
\left\{\begin{array}{l}
i c_{j n}=-\bar{b} a_{j} \tag{6.5}\\
i a_{j \xi}=-b c_{j} \\
i b_{j}=-\sum_{i=1}^{N-1} \bar{c}_{i} a_{i i}, j=1, \ldots N-1
\end{array}\right.
$$

The system (6.5) has "the conservation law". Multiplying (6.5.2) by \bar{a}_{j}, auming over j, adding to (6.5.3) multiplied by \bar{b} and then adding the complex conjugated reault, ws arrive at the expression

$$
\begin{equation*}
\frac{\partial}{\partial \xi}\left(\sum_{j=1}^{N-1}\left|a_{j}\right|^{2}+|B|^{2}\right)=0 \tag{8.6}
\end{equation*}
$$

Further reduction is to take real c_{j}, a_{j} and imaginary $B=i z$. Then (6.5) becomes

$$
\begin{align*}
& c_{j \eta}=z a_{j} \\
& a_{j \xi}=-2 c_{j} \\
& \tau_{5}=\sum c_{i} a_{i} \tag{6.7}
\end{align*}
$$

With the help of eq. (6.6) variable η can be eliminated (equating, without loss of generality, the integration constant to unity):

$$
z=\sqrt{1-\sum a_{i}^{2}}
$$

Inserting this 2 into (6.7) gives

$$
\left\{\begin{array}{l}
c_{j \eta}=a_{j} \sqrt{1-\sum a_{i}^{2}} \tag{6.8}\\
a_{j \xi}=-c_{j} \sqrt{1-\sum a_{i}^{2}}
\end{array}\right.
$$

and eliminating C_{j} we obtain

$$
\begin{equation*}
\partial_{2} \frac{a_{j y}}{\sqrt{1-\sum a_{i}^{2}}}+a_{j} \sqrt{1-\sum a_{i}^{2}}=0, \quad j=1, \ldots N-1 \tag{6.9}
\end{equation*}
$$

In the aimplest case $N=2$, setting $a_{1}=\sin \varphi$ we arrive at the S.G. equation for φ :

$$
\varphi_{25}+\sin \varphi \cos \varphi=0
$$

For $N>2$ eq. (6.9) gives an infinite series of sygtems geperalizing the S.G. equation. In such a form these syotems (and more general syatems (6.5)), except for the case $N=t$ have no Lagrangian; determination of the Lagrangien requires nontrivial changes of variables. The transformutiona given in this section are found by V.E.Zakharov/16/.

Now we demonstrate what is the way to bring the systems (6.9) and (6.5), in two aimpleat cases, into the Lagrange form,

At $N=3$ in (6.9) the complex variable
$a=a_{1}+i a_{2}$
can be introduced, end in parametrization
$a=\sin \varphi e^{i \omega}$
the aystem (8.9) becomea

$$
\left\{\begin{array}{l}
\varphi_{2 \xi}-\operatorname{tg} \varphi \omega_{\eta} \omega_{5}+\sin \varphi \cos \varphi=0 \tag{6.10}\\
\omega_{\eta 5}+\operatorname{ctg} \varphi\left(\varphi_{I} \omega_{\eta}+\sec ^{*} \varphi \omega_{\xi} \varphi_{\eta}\right\rangle=0
\end{array}\right.
$$

Introducing the new variable β

$$
\left\{\begin{array}{l}
\omega_{\eta}=\frac{1}{2} \beta_{r} \cos \varphi \sec ^{2} \varphi / 2 \tag{6.11}\\
\omega_{\eta}=\frac{1}{2} \beta_{\eta} \sec ^{2} \varphi / 2
\end{array}\right.
$$

we obtain from (6.18)

$$
\left\{\begin{array}{l}
\varphi_{\eta \xi}-\frac{1}{2} \operatorname{tg} \frac{\varphi}{2} \sec ^{2} \frac{\varphi}{2} \beta_{\eta} \beta_{\xi}+\sin \varphi \cos \varphi=0 \tag{6,12}\\
\sin \varphi \rho_{\eta \xi}+\varphi_{\eta} \beta_{\xi}+\varphi_{\xi} \beta_{\eta}=0
\end{array}\right.
$$

The condition of compatibility of the overdetermined system (6.11) coincides with the second equation (6.12) and this ensures the construction to be consistent. And Iinally, in variables X and t we obtain the syatem (2.7):

$$
\left\{\begin{array}{l}
\varphi_{\mu \mu}-\frac{1}{2} \operatorname{tg} \frac{\varphi}{2} \sec ^{2} \frac{\varphi}{2} \beta_{\mu}^{2}+\sin \varphi \cos \varphi=0 \\
\left(\operatorname{tg}^{2} \frac{\varphi}{2} \beta_{\mu}\right)_{\mu}=0
\end{array}\right.
$$

The second system that can be brought into the Lagrange form follows from (6.5) at $N=2$. With due regard to (6.6) one can introduce new variables by the relations $\mathcal{C}_{1}=\sin \varphi e^{i \omega_{1}}$,
and $b=\cos \varphi e^{i \omega_{\lambda}}$ then in the system obtained for φ and $\omega=\omega_{1}-\omega_{2}$ perform the changa of varisbles (6.11); as a result, for the variable $\psi=\sin \varphi e^{(\beta}$ we get the system with tha Lagrangian (1.1) ("complex S. G.-I").

Finsily, we show that the syster. (6.10) is a result of the nontrivial reduction of the system of three S.G. fielda interacting with nontrivial dynamica atudied in ref. [15]. If in syster (1.9) of ref. [15b] (obtained also within the U-V-syster (6.1)) we set $E_{12}=\gamma_{+2}=0 \quad$ that corresponda to our choice of matrices Γ_{0} and A_{0} in the form (6.3), then this system takes the form

$$
\left\{\begin{array}{l}
\theta_{2 \xi}+\psi_{\eta} \psi_{\xi} \cos \theta-\sin \theta \cos \theta=0 \tag{6,13}\\
\varphi_{\eta \xi}-\varphi_{\eta} \theta_{5} \operatorname{tg} \theta-\theta_{\eta} \psi_{5} \sec \theta=0 \\
\psi_{\eta \xi}-\theta_{\eta} \psi_{5} \operatorname{tg} \theta-\varphi_{\eta} \theta_{5}-\sec \theta=0
\end{array}\right.
$$

Multiplying the second equation (6.13) by $\sin \theta$ and aubatracting the third one, we get

$$
\left(\varphi_{\eta}-\Psi_{\eta} \sin \theta\right)_{\xi}=0
$$

whence it can be put

$$
\begin{equation*}
\psi_{\eta}=\varphi_{\eta} \csc \theta \tag{6.14}
\end{equation*}
$$

Substituting (6.14) into (6.13) and changing the notation $\varphi \rightarrow \omega, \theta=\varphi+\frac{5}{2}$ we arrive at the syatem (6.10).

The author is grateful to Y.E.Zakharov for stimulating discusaions.

References

2. Pohlmyer K. Com. Math. Fhye., 46, 207, 1976.
3. Teтманов Е.С. Письме в татФ, 25, I32, I977; TMФ, 38, 186, I979.
4. Lund F., Repge T. Phys. Rev. D14, 1524, 1976;

Lund F. Ann. of fhys. 115, 251, 1878.
5. Wadati M. Atud. Appl. Math. 59, 153, 197 A.
6. Нбрагимов Н. Х., Шябат А.Е. ДАН СССР, 244, 57, I979.
7. सибвр A.B., Lабат A.E. МАН СССР, 247, $1103,1979$.

9. Кузнецов E.A., 以ихайое A.B. TR4, 30, 303, 1977.
10. Захарое В.E'. Шабат А.Б. ᄃуниц. анелиа, I3, I3, I979.
II. Захярое B.E. Глава е книге 1.А.Кунина "Теорня упругих сред с макроструктуроИ". "Науга", м. 1976.

I3. Hirota R. In: Lecture Notee in Mathematics, 515, 1976.

15. а) Еудегов А.С., Тахгаджнн Л.А. ДАi СССР, 235, 805, I977;
 1878.
16. V.E.Zakharov, S.V.Manakov. Phys.Rev., 1 , 113, 1979.

Received by Publishing Department on May 161980.

