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1. In this talk, I shall describe a novel formulation of 
gauge theories proposed in my recent papers/1 •21. This formula ­
t ion explicitly demonstrates the common nature of the Yang-Mills 
theory With usual nonlinear (3 -QOdel and opens new avenues in 
attacking some fundamental problems of gauge fields. 

Let me first outline the mai n aspects in which the sigma-mo­
del representation s eems particularly promising. 

It hee been suggested recently/3 , 4/ that the Yang-Mills 
theory is completely integrable and this property could be visua­
lized by passing to suitable unconventional variables (closely 
related ideas were declared also in/ 5•61). The main goal he re is 
to represent the Yang-Mille equat ions as differential equations 
in some auxiliary space (for instance, sa conditione of triviali ­
ty of a certain connection) which would have the meani ng of con­
ditione of integrability of a certain spectral problem solvable 
by the inverse scatterin' method, Proceeding along this line , 
Aref'eva/3/ and Polyakov 4/ hove eucceeded in reformulating the 
Yang-Mille theory as a theory of the prinicipal chiral field on 
the space of closed paths ( contours) and t he sourceless Yang-Mills 
e quations as first - order differential c~nstreinte f or s vector 
form given in this apace . The crucial point of their construction 
is an effective reduct ion of the apace-time dimensionality by 
unity due to the reparametrizat ion invariance of contour functio ­
nelal the D-dimensional Yang-Mills theory turns out to be equiva­
lent, in a sense, to the D-1 dimensional theory of the principal 
chirel field. Thereby the )-dimensional Yang-Kills proved to be 
equivalent to the 2-dimenaionel chiral theory which is known to 
be complet e ly integrable (unfortunately, these arguments do not 
help in solving the 4-dimenetonel problem), The cost (perhaps, 
too high) is the essentia l nonlocality of this approach1 the pro­
cedura of varying a contour is employed , etc, I ' io tempting to 
find an a lternative scheme eo that an ordinary differentiation 
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be reta ined at each stage, It would be desirable also to under­
stand the group-theoretical meaning of the contour variables, eo 
called "string functionals" of gau1j fields, which are basic in­
gred i ents of the approach of refs . 3•4/(see also r efe,/7- 101), It 
will be argued that the sigma-model formulation of gauge theori es 
is constructive in both respects. 

One more important problem i s the problem of adequate descrip­
tion of the symmetric , nonperturbative phase of the Yang-Mille 
theory . This phase is associated with the gauge-invariant vacuum 
and is expected t o realize the colour confinement/11 •121, While 
the variables relevant to the standard, nonsymmetric phase of the 
Yang-Ki lls theory (perturbative phase) are we ll known and these 
are usual gauge f i elds, it i s not eo clear which variables are 
most suitable to r epresent the symmetric phase . Rendering gauge 
theories into the s i gma-model notation provides an answer to thi s 
question. It becomes obvious that the nonaymmetric and symmetric 
Yang-Mille phases are related just in the same f a shion as nonlinear 
and l i neor G -modele of conve nt ional symmetries. This dee p analogy 
pointe the way of how to treat the symmetric phase . 

2. The formulation I am goi ng to talk about is based upon the 
observation made earli er by Ogievetsky and myself , We have shown 
in/ 13, 14/ that any gauge theory can be looked upon as a generalized 
nonlinear ($-model for it results from the nonlinear realizat ion 
ot certain inl'ini te-parameter group K=G(~ ( (l< stands for a semi­
direct product) with G0 )( ~ as the vacuum stability subgroup (see 
also/151 ) , Hare G-0 i s the relevant globa l symmetry group, G- is 
isomorphic to the connected component of the corresponding local 
group spanned by all gauge functions decomposable in the Taylor 
aeries around ~..,0 and '5' i s the ordinary Poincare' group, It has 
been understood in/ 13•14/ that the Yang-Kills fields have the same 
meaning sa, say, the pion fields in chirsl dynamics; they can be 
viewedaa coordinates parametrizing a certain homogeneoua group 
apace (namely , the coset apace K/&0~L..,L being the Lorentz group). 
In other words , they are s i mply the Nambu- Goldstone fields a ccom­
panying the opontaneous breakdown of symmetry with respect to the 
group K , 

To make further considerat ion more clear i t is worth recall­
ing some de tails of the above-mentioned approach. The group ~ was 
represented sa an abstract constant-parameter group generated by 
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1'1~ Q ~- r:i· the infi_ni te. set of symmetric tensor generators ~, ~' . • , ~r"'t'n• .. 
with Q'" be1.ng generators of the global subgroup G . The 
commutators between them and wi th the 4-translation generator ~ 
are given by 

[ Q t Ql ] - . tf m "' 
:;,u, •• :)'4K ) 'f4t<+l " ')4~ - L C ~~ .. )41'\ 

[ ?.P ' a; l = l ~f,M Q t ( 1) 

L pf, Q~,·· J4~1::: i. ( ?fJI• ~a'"f't;+- ··· + ~~nq!.-~,) (n~~. 
Here cttl'Y\ era the t otally antiaymmetric s t ructure constants of 

Go, '7""" ·d i ag <1,-1,-1 ,-1 >. 
0 

lien, the nonlinear realization of k=G(It S in the coset 
space K/fr0y.L_. has been constructed following the standard pres­
cr iptions of refs./16/ , The infinite set of the tensor Goldstone 
fi elds/};.(!.), f~.~~> , ... p i. .. ~ with quantum numbers of generators . r· , ·} ": ~ /'f,. , .. 

~ ~• 1'"\C: has been introduced, Xp playing the role ' ) ... ~.--.).4. . 
o Gel a onion associated with Pp , The se fields were identified 
with coordinates of the coset epace K,t0.~CL. and the group K was 
implemented as left multiplications of coas ts . It has been found 
that in this particular realization the i nfi nite - parameter sub-

~ ~0 group (j is represented by the stun~ard gauge lT -transforma-
tions, the vector Goldstone field ~~) be ing transformed just as 
the corresponding Yang-Mills field , Wo have evaluated the covari­
ant derivatives both of Goldatonions and extraneous , non-Goldstone 
fields ~(x)( t/. is an index of the global subgroup G0 > and have 
shown that ~ct!C) is identl.cal by ita couplings wi th the standard 
Yang-Mills tield on the group ~0 • The remaining Goldstone fields 
~-~Ot)Q\~2.) have been proved to be unessential, ~n the sense 
that they ere cova riantly expressible in terms of ~~~)and ita 
derivatives by putting zero those parts of r~lavent covariant de­
r ivatives ~hich are ~ymmetric in tensor i nd ices (the inverse Higgs 
phenomenon/17/ works), 

Now, I wish to show that this cons truction can be recast into 
an elegant and compact form by intr oducing an extra coordinate­
Lorentz 4-vector ~and using the following particular representa­
tion for genera tors of tho group K 11 •2/ 

~ v . . • • 
~=i.~ , L~.,=i(~dv -!1.-~), ~=~Q'", ., . ~,.;,:~~~~~2> 
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This choice is bas ically dictated by the condi t ion standard for 
the nonlinear realizations that the genera t ors ente ring into the 
group exponents commute with the related coset parameters . 

The representation (2) is convenient in that it allows one 
to convert the infinite set of Goldstone fields /)~(?.), .. . fi .h. (!t) , ~ ,..., 1\ ,. ' 

into the s~ngle object.: the bilocal Goldstone field ((X,~)== "cx,~Cf 
:::::=kf\! ~~-~~~":' .. ~0: It is completely specified by the require­
ment" of its decomposability in the Taylor series over ~~ and by 
the condition 

/(~ ,0) = 0 . ()) 
An element of cosets J<../G-01CL.. is given no.v by 

/"># I ~ ... 2~ Q~ -~ Pd,'~ . b.r, 0 G-(f,f)= e"><PPp e i.~.;1.hf~,· /'n I "=e-x ",P, ec.6(!C,:t . 

The transformation properties of compor.ent fields f..~· ·· ~, .. J-1110:!. 
Yith respect to the left action of the group K on '(J 11 3, 147 
imply for f(x,~) the follo.ving transformation laws : 

(4) ~~ j{x,'(j) == f?(A.1(x-a), l\-1 ~), 
G-: ex p { \ t 1(1,~)} = exp{l >.CX+~O }e xp{.: ftx.~J}e.xp[-iA(x)} < 5 > 

where /.(~)= ~(O)+ fi,TJ ~,--~1"\ ~}1~ -- ~X., is the generating Junc­
tion for constant parameters of ~ • It is seen from (4) that co­
ordinates )(~ and 'ap have essentially different properties in the 
Poincarri group : the fo~er undergoes both the Lorentz rotations 
and 4- translations while the latter only Lorentz rotat ions . One 
could say that x/4 behaves as the coordinate of centre of inertia 
of some extended object and ~f as the corresponding relative 
coordinate . 

The covariant derivatives of Goldston ions ~~(?<), ... ~~ - ~~<") 
combine into the bilocal Cartan form 1 1 ' 

~(X,~)= - ~(x) +!;; ~! ~ ~ •.. ~Vc) ~P' .•. ~p" (6) 

which is introduced by the relation 

l. ~(x,~)= exp {-i. f~.~)1 (~ -~:t)exp{l fex.~J} <7 > 

and as a consequence satisfies the generalized Maurer-Cartan equa­
tion 

(~)C-~~)W1 ~,~)-C?-~~~~~~)+L[~Cx.~/j".~~= o <8> 
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(~hich i s equivalent to saying that the generalized Yang-Mills 
connection defined by a vector formlc.>A(~1lf){Asl,. !) i s trivial on the 
eubepace )(s-~ of 8-d imeneionel epace )( 1~ ) , It follow a from the 
definition (7) that under transformations (5)W...AQc,~)behaves 
like the Yang~Mills f i eld (taken with minus)• 

(l.);(y.,~)= e )(P{'-~)}l w~~ ,~)- (~~1exp(-Li\09} . <
9

> 
Using the bilocal notation, i t becomes possible to render a 

simple geometrical meaning to the different i al constra ints by 
which unessential Goldstone fie lds ~-)/~)('n>;/l.)were eliminated in 
113, 14/ at the expense of i..(l.) . The' infinite sequence of these 
conditione i e now repreaen~ by the one manifestly covariant 

equations 

~~(Wr(l','a)-+ ~\.~)1==0 ( 10 ) 

or, with making use of the defi ni tion (7)1 

~,M(~- ~)e~pt-L~~~~)}= i. ~)g.>-Oc) exp{-lfc,l( .~}. <
11

> 
The aoat s imple way to aolve thi s equat i on i s as foll ows. One 

paeaes to new variablee~~~l,.., ~end makes rescaling~+,?~ 
As a result, (11) ie rewritten in the forms 

~fl ex p{-t e(t-p~ ,f~) }=-L<'/~(tjJ)expttf(iJ~~)} <11 • > 

Taking into account the boundary cond i tion (3), the solution of 
( 11'), ~i th setting ~-si at the end, i s gi ven by the formula (~e 
have returned here (o old variablee )s 

exr{-~TQc,~n}=\e)Cp{-i ~4r ~Pip(.x~-t)~1}! <12> 

where the symbol \ means the ordering in matrices Q.'- within 
the interval OS.~~ i . Tha t u:preee ion is i llllll8diately recognir.ed 
aa the path integral of the Yang-Mille field along the straight 
line going from the point )C+ ~ to X 1 

exp{-Ll~.~o}=\e)(J>{.t j~C14~)df1'4}, ~=~ ... O-r)~. 
Expanding both aides of (12) in powera of ~/4, one can be con­
vi nced that this tor.ula exactly reproduce• the expre aaione tor 
tenser Ooldetoniona which haTe been obta ined earlier by exploit­
ing the inTerse 111&8 phenoaenon a t the coaponent l eTel/13, 141. 
Being expreaaed in t erma of the ainiaal bilocal Ooldstonion ~~~ 
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the Cart an form W.f' () 1 ~) reads a a .-1 

~ 6c I~)=-~ (x) + f ~_pCX)~P t-~(.h'rt)!'1; ··l?;.t)t.· .. t"; 1 J) 

where '3"")-i,e-=d f,-~g,.-t(~,~) is the standard Yang-Mills strengtl., 
v;; ,.~ _ t[ fp 1 ~a the Yang-Mills covariant derivative. 
~ Thus, the string functional of gauge fields wh ich is now 

under intensi ve etudy/3 , 4 •7- 10/naturally arises in our approach 
as the most economical representation for cosete fJ./G-0 (ita di­
rect ana log i n chiral dynamics i s e){p{il'O'>ft'-~s} which i s an 
element of the coee t apace SlA'(.2) )(.$l.{~(2)/ ,S U(2) ) • Nhile in 
/),4,7-10/theee functionale are introduced "by hand" , thei r appe­
arance in our scheme i s the result of the consistent appl ication 
of methode of the general theory of nonlinear reali zations/161. 
'He eee that this theory prescribes quite definite rules of hand­
ling such functionala: covariants should be defined according t o 
the formula ( 7) , i .e. , through ord ina ry differentiation of t he end 
points of the path (:1hich can be conceived as an infini teeimal 
rotat ion of the path as a whole around the point )(T-~ ). In the 
standard approach to the path integrals, covariants ara defined 
in the essentially nonlocal faehion , through infinitesimal defor­
mations of separate sections of the path . 

Tne inverse Higgs phenomenon , in its standard minima l formu­
lation/13•141, pi cks out the straight path in a lot of paths 
between )1:+~ and Y. • However , without contradiction with the 
transformation laws (4), (5 ) , it ie poss ible to take as a repre­
sentative of coeet e G-/G-0 also the string functional along any 
other path (this path , of course , should be such that the related 
g(J,~) admits the power expansion about ~=0, i.e ., the path 
should contract into the point ~ when+..,. 0). The choice of the 
curvilinear path corresponds to a certain modificat ion of differ­
ential condi t ione of the inverse Higgs phenomenon. Namely , in 
this case the "straight - line" condition ( 10) i s replaced by the 
more general one 

'a~( wr \:1-,'<0+ ~ \?')j = 11 (f ~ ~) , < 14) 

where L\(X, ~) is a covaria nt functional of the strength '3j>.Vt)and 
degrees of covari ant derivatives of ~~(~) • Knowing the struc ­
ture of 6{2c 1~ completely specifies the path configuration in the 
corresponding string functional . Indeed , the latter can always be 

• 

represented by the fo=ula ( 12) in which ~~~Ot) is changed to 

~P~(f)-f6~,~!j): 
ext> fl. l~.·zO}=Texpf\. ~{~;.~J.x•Q·n~l-yD("+<.,-n~,~~J)}Jr} < 

12
'' 

the straight path cleurly corresponding to ~()( 1~)=0. r:ote that 
any such generalized string functional ia reducible, in the sense 
that jt can be decomposed into the product of the minimal, 
straight - line factor and a nounimmal onf'> : 

,....,_ -
e')(p{{f~,'d))=e><p{l~~~~)~e,cp{l. h.(x,ao)}, (15) 

The mear:ing of the second factor ia that it descrite!; a deviat:.cr_ 
from the straight path• ) , It is expressed , 1n ite ~-expansion , 
through powers of covariant deri vat. vee of '3J>~QI). The relation 
between functionale h(Y. 1~) and fl(x,~) is as follows : 

L1~~~)~fexp{-i.h(x,~)}~~c~-~~)exp{l hex ,~o}. 
So, there exist many inequivalent , but from the group-theore­

tical point of view equa lly acceptable ways to come down from the 
generally parametrized coset apace K/G-0'1-L to ite minimal connec ­
ted invariant subspace character! zed by the e1 ngle field ? (x) . 
More vi sl..\ally, we may form a "string" be tween the points X+~ ,)( 

in various manners. Is it possible to indicate an extra dynamical 
principle choosing a definite st r ing functional from all those 
admissible within the pure group-t heoretical coneidei'ations? Some 
s te ps towards an answer to this question are outlined in t he 
following Section. To avoid s possib le misunderstanding , it is 
appro7riate here to say that, in cont rast to the approach of refs. 
/),4, - 101, there i s no actual path-dependence in our formulation; 
as soon as a definite aneatz f or excluding une ssentia l degrees of 
freedom from f(!.,~) is chosen , the path in the result ing string 
functiona l is fixed once for all ••) 

'")such a"polar" decomposition exists, of course , f or any general 
coset repreeentati ve e>C? {il(.J~). all the superfluous Goldstone Lo: 
fields ~r~"'l'-~)be ing included" into t he corresponding functionslr!IJC.'lj· 

••)In fact, it i s not proved t hat anY. f unctional of the form (12 ' ) 
may be rewri tten as the integral of ~ along a certain path bet ­
ween ~•~,~ . It may happen that (12 1 ) describes more general situ­
ation and reduces to a path integral only under certa in restrict-
ions on A ()( 1 ~) • 
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ro conclude this pwrt of my Talk I emphasize that the simple 
group meaning explained above can be a ttribut ed only to the "open 
string" functional of gauge fields . It is se yet unclear how to 
accomodate within the present scheme the closed paths (contours) 
which are of primHry interest in papers/3, 4/, The moat direct way 
to embrace the csse of contours is to admit pat hs which do not 
contract into point as ~~~ 0 (and eo do not supply the condition 
(3)). !t is likely that auch an extension of the class of paths 
may naturally emerge upon ullowing for the nontrivial topological 
structure of gauge group (i.e-, including into play, along with G , 
a lso those components of the whole gauge group which ere not con­
nected with an ident ity element by continuous gauge trer.sforma ­
tiona) . 

3. The basic rela tion {7) has the form typical for decomposi­
tions by •hich the Cartan forme are defined in nonlinear (j -modele 
for princ-pal chiral fields . Therefore, the Yang-Mille ~heory can 
be interpreted aa a a~ctor of the nonlinear () -model for the a­
dimensional principa l chiral field ((Y..,~) on the group (;-0 , Ibis 
sector is extracted by the condition (10) or, more ge~erally, by 
(14) •ith f(J. ,o)=O, ~(lr.)::r. ~~~~\~-ob:r definition . 

In d -mod ele ofsuchatYPe the equations of motion (with no 
sources) are written aa the condition of vanishing of the diver­
gence of the corresponding Cartan form (continuity equation) . It 

i s interesting to look whether i t is poss ible to represent the 
standard source-free Yang-Mille equation 

v~ ~,ex)= o (16) 

as an analogous c losed differential condition on the bilocal Car­
tan formW./""(lt,!#) (supplementary wi th respect to the "kinematical" 
conditione (8) and (10) or (14)), Keeping in mind the hypothesis 
ot complete integrability of the Yang-Kills theory it ia deeirable 
that this condition be of the first order in derivatives. 

In the Abelian case , the equation (16) (i.e., the free YE:nell 
equation)can easily be seen to be equivalent to the manifestly co­
variant condition of that the "stra ight - line" Cartan form W_,(_)(,c!j) 
{13) be divergence l e sa with respect to y-differentiation1 

g.,.v wA()C, ~) = o . <17> 

Unfortunate ly, in t he moat interesting non-Abelian oaae such an 
equivalence (for the straight path) holds only up to the third 
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·) 
) 

J 
1 

order in ~~ , ir. tn.!... eenee thet the coe!ficier.te of higher 
powers of ~ in~V~~~~)do not vanish .n vlrtue of the Ya~e­
Mille equat~n (16) alone. One may checK that the equivalence 
cannot he restored without adding to the l.h.a. of ( 17) terms with 
higher derivatives of GJ./-'()t 

1 
~) . 

l'hue, eo far I;!B the stra1ght-line Carten form ~QI 1 ~) is con­
sidered one does not succeed in finding a simple representation 
for the Yang-Kills eq4ationa. A pooaible ~ay out ~e aa follows. 
Aa has been pointed c1..t at the en;d of previous Sect,, the etraigh~ 
path, though being the simplest one, io not favoured, from the 
group-theoretical point of view, over other paths between the 
points X+:J , X • Accordingly, the coat generic tom of the a~r-ng 
functional arising upon covariant exclusion of redundant Goldetur.e 
fields from f6t,:l) ia given by the fo:nn<.~la (12') dth ti(}c1~)being 
nonzero in general. '!'h~refore, tne problem of recasting the Yang­
Mille equations into the sigma-model notation can be though; 
about as search for the string !uncttonal in terms of wnich these 
equstione have the s 1 cp1eet form. One can che~k that the only 
pcsaibl" cover; ant differential conetrair.t .,hich has the first 
order ln derivatives, 1 r.cor~orates the Yang-Kills equations (16) 
and is formulated solely in terms of ~(~W)1a just the condition 
of vanishing of the divergence of the tter Nith respect to gl~ . 
So, the question to be answered is1 ~y we find a dtring functio­
nal ex?{~ 1°('1( \~)) such that the aoaociated Cart an form ~(xI~ 
satisfies the continuity equation 

3!W0J'4(l(1~):0' (18) 

when the Yang-Mille field ~(!.) obe ys the a+.andard equation (16)'? 
The answer turns out to be affirmat ive. The corresponding functio­
nal ~(")( 1 ~) (by which n ,N)ia completely specified in virtue of 
(15)) ia date rained from the equation s 

d; fexp{-i~~,~)1[~:-~;.l.c.J. ~ .~)lexp{l~(x.v)~\= 0 <19> r /- -7"' V!C~_,•O 
uniquely, up to possible terma vanishing on solutions ot eq,(16). 
The equat ion (19) i a obtained by subetitutins the decomposition 
{15) into the def inition (7) and by 1apoa1ng (18). Although t he 
aolut ion to eq. (19) in the cloaed fora ia at1ll not found, the 
fWlctional ~(Jt,~) can be evaluated to an,y des irable order in ~ 
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,.......,0 
by Herst • The JHference between UJ)-1 and W_./-'\ Legins 
from the ~uurtb order in ';J)-1 : 

..- o w l. ~ d.~( 2 ~ c: rJ.) {[It"' (7-' l Wf - f = S! 2o 'J 'a ~ ~ d 0,~ "~Vd ~,o( -
-~ ?>.e>i L~.J->~ , 'lc;~y.r l~ + 0(~5). 
It si1ould be strc;Jr.Ed that 'W 0(]<,~) Lus tl:e compl:cated r:ortri­
·::ul tr•1ctur" tnt this ctruct~re ie such that all h:€;heet termeo 
in tlH' ~ -P.XJ•1HJSiOn of0) coo,;., lJecOJr.C zero as soon as the low­

eRt term (which ir just 1/3 !'V1'4~1~) vani&tes. ::t is clear that 
the r.ecess!lry cond1t1 .n for (1t3) to oe follfille? is that ~([.)obey 
tbe eq•1at ~ on ( 16). 

i:ow we u.a;.r forget abo<.~t all reasonir.gs which led us to the 
string reprcsentutior: for e.Xf>{t 1('1-1'#)fnd formulate the above re­
sult as the follc.~!ng Theoren:. 

Let the Yang-Liills field i (J9 on the group (T0 be given . 
Then there ex ! flts the oi local ~ctional ~Xp{t.l~~~Jof the form 
(12') with the following rerr.erkeble property . The vector fonn 
W~('IC 1 H) d~f~ned thro1•g1'1 Tt}(,:J) according to the formula (7) 
is dh·ergenceleaa with respect to y-<lifferentietion iff ~(ll) eetis­
f ~es the source-free Yang-l4ills equation . 

If i t is true that enJ functional of the type (12 1 ) can be 
represented as the contour integral of ~()<.) along a certain path, 
then the path in ~¥p {~1<t},'d)~should be essentially curvilinear ( it 

becomes straight for an arbitrary ~f only in the Abelian case ). 
This curve is likely formed by the Yang-Mills field i tself ( i .e., 
it is defined by a func tion explic i tly depending on ~(K)). So , 
one may expect the one-to-one correspondence between different 
classes of solutions of the Yang-Mills equation and permiss ible 
configurations of paths ln e)(p{i_ 7t )(

1
c':1)}· Moreover, one may spe­

culate on the possibility of the complete exclusion of ~(K) in 
favour of paths . To confirm these conjectures , it seems of prima­
ry importance t o regain the equations (8),(14),(18) proceeding 
from a certain action principle . It is as yet unsolved teak. 

For the time being , I do not know to wh:ch extent the above 
considerations msy be useful in proving th~ hypothetical complete 
integrab i lity of the Yang-Mille theory . But the fact that the 
Yang-Mills e quations can be represented as ordinary first-order 
differential constraints on a certain vector form in the extended 
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space (the conrHtior. of t~h'"i'll ccr.rwcttrr. (8) tllld t>.P ccntin'.lit.:r 
equation (18)) sec::1s une:.:pcctc,J '\f,d r'NlP:-v-:s ·.1rtlH'r ex"''llir.<'..tior •• It 
remains to f ind the corresponding s pectral problem (if exists). 
Closely related is the question as to whethe r the equation (18) 
impli es the existence of infinite series of currents conse rved in 
the standard sense, with respect to X -d ifferent i at ion . 

4 , The understanding of the fact that the Yang-Mills theory 
in the standard , perturbat ive phase is the nonlinear realization 
of the group K= GG-~w ith (7°~ ~ being the residual symmetry of 
vacuum led in ref . / 14/ to the problem of constructing linear, al­
gebraic realizations of Y\ which would naturally corre spond to 
the completely J< - invariant ground state . It has been pointed 
out in/

1
4/that the relat ionship between theories associated with 

these two different k ind s of the gauge group r ealization should 
resemble the we 11-known relet ion between nonllnesr and linear d -
mode ls of usual finite - parameter symmetries. It has also been con­
j ectured that the linear () -modele of gauge groupe might bee r 
direct relation t o duel t heori es of strong interac t lons •>. One 
more important aspect is as follows . As suggested by the analogy 

with () - models, just the linear reali za t ion of K shoul d descri ­
be the aymmetric, nonperturbative phase of the Yang-Mills theory. 
Thie phase is associated with fully gau,e-invari ant vacuum and is 
responsible, by the hypothesis of ref s . 11 • 121, for the colour 
confinement . The knowledge of transformat ion laws of linear mul­
tipleta of K would allow one to construc t the invari ant Lagran­
giens relevant to the symmetric phaee end to study the struc ture 
of this phase in the purely algebra ic way , without any reference 
to the standard Yang-Mills theory. Such a consideration would be 
helpful , for instance, i n clarifying the quest i on as to whether 
the confineaent is a direct consequence of gauge invarience of 
vacuum or extra dynamical assumptions are required for confinement 
to be valid . 

The formulation I have described in previous Sec tions indica­
tee a possible way in which the linear multiplete of the group ~ 
c an be constructed. Indeed , once the Yang-Mille theory in the non­
symmetric phase admit s embedding into the bi local nonlinear () -

•) This conjecture seems to be confirmed in t he recent papere/1 8 , 19/ 
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model on the group ~O it is natural to assume that the symmetric 
phase of this theory can be interpreted within the corresponding 
bilocal linear (j -model. In other words, linear representations 
of ~ should operate on bilocal linear mult iplets of (r0

, I shall 
consider here the simplest multiplet of thi s kind, It will be 
shown how the gauge f i elds may appear within the linear realiza­
tion of K . Por simplicity, I t ake G-0 =SU(7), 

The simplest multiplet can be constructed by completing the 
coset space K,.tT~L to a l inear space just as , for instance, the 
vector multiplet of the group 0(4) can be arrived at by comple ting 
a )-dimensional sphere ,-.; 0(4)/0(3) to the 4-dimensiona l Euclidean 
space ( 0 -part icle is added to three "pions"} , 

Let us consi der an arbitrar.y biloca l matrix U~~~)with the 

transfonnation properties (5): ~~ ·~(jc 

U'(')( , ~)= u.tc~,~)~i'-'"t~u~ex,~)=e tte-\. )<20> 
( uu.-+= u•t.A. ~1) 
It i s not hard to see tha t all components in the decomposit ion of 
U<1,1) in ~)'I transform linearly and homogeneously (in contras t 
to components of bilocal Goldstonion ~(X,~) }; 
s.u.o<-->=0 , 8GrUk(l')= Ekt~ttN(x)U"'(J<) (21} 

S" ~k ( • ) = Uo(?C)~).k(.x)- £Kb..,~t0c) U~C.X)+~~OC)Utt\(19), 
s " uf411k(x):a l(o(!)"()"~ ~)+ •• .. 
~. K realizing thereby the linear representatiop of tha group • 

If< lAe)\ltl~o the infinites imal t ransfonnations of fie lds u:(x) 
11 K r• l 

... ~v(•)) ' .. s tart with inhomogeneous t erms jus t typica l for trans-
formation l aws of component s of l(x ,~) 1 

-~ u; ('K) = <.lAo"/'vo.c. d ~ ~(x) + . . 4 

~~~()c):< U.07vClc. ~~ )..K(x)-t- •• • 
Actua lly , in this case (....(~.f~) IJ~ can be equiva l ently rel ated 

0 ,~V' , -)!4'11 •·. 
to Goldstonions ...... .'< ~_.><, by means of the po lar decompos ition .r- ' r-", ... 
of matrix U(}t ,~) 1 

Uoc, ~)=expt~ fex ,~n1{<'u~cac.Tu~.~)+}1;k l.lxO<)J <22 > r.- , 
where l..t(.ll1~) ie pu~ sca lar wi th res pect to the a ction ot k . 'l.'be 
matrix U.(.l , ~)exclusive ly belongs to the coset apace J</(7°JI(L pro­
vided tha follow ing covari ant condi tiona are fulfilled 1 
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+ + ~ U. u_ = U. U :::. <3-(o'>vd.c.., U(x 10) = <:Uo')-va.c. 

or , in terms of polar components : 
r- • 
!.A()c 1 ~) = 0 ) U.l. (x)-== 0. 

Thus , the oilocal linea r (3 -model ~onstruct~d on the basis 
of representation (20} is expected to crn~ody , after spontaneous 
breakdown of k·symmetry , the conventional massless Yang- Mills 
theory. 

The main protlem is the construction of the relevant Lagran­
gians with which the nonzero vacuum expec tat l on va lueo for differ­
ent component fields Noul::l naturally emerge from the standard ex­
tremum conditions . It is not difficult to indicate the general 
form of the potential part of such an nvar1ont Lagrangian : 

~v .- T~ V( U(J ,~)U.\x,'<f)). (24} 

As to invar~sGts includiLG derivot vee of componeut f~elds, it is 
l'kely that :n the case of exact Y\ -e:j~metry it le not poss~ble 
at all to construct bil:.near invariar t'1 for compor.e:.ts :1 i tl; ir,tcr­
nal indices (confinement?) . At the saMe time , the ~r.variant ki­
netic term for the G - scalar , "colourless" cor.Jpor.er.t U0~ exists 
and has the standard forn: ~~U0()~U 0• The s:nplee:t wvariant 
1'1 i th deri vat i vee of "colour" f1el::lo 1 e of the four~h order an<} 
ie given by the lattice ansat?./ 11 / : 

\,f /l.~l'\ T {u + t l <2~> cJ.. ,..., T ()( 1~) U.(x+l,-l)U. ~+l,~)U()(-t-A!'-t- '4 ,-Z)J 
' where the coordinate ~ transfonns under the Poincare' group just 

as j'./'1 , The main difficulty encountered when trying to expose the 
particle content of Lagrangians of the type ( 24) ,(25} is the pre­
sence of numerous mixinga between component fields and their deri­
vatives . So some diagonalization procedure is required . 

rhus, the careful treatment of dynamics associated with Lag­
rsngians of the type (24},(25} is the complicated business and it 
will be performed separately , Here we would l i ke to focus on some 
things clear already at the pura group- theoretical level . In line­
ar Cf -models of gauge groups there are no Ysng-Llills fields eo 
far as the symmetry with respect to K=(T(Il~ia unbr oken . The inva­
riance is achieved without these fields, due to the specific form 
of transformation rules (20}, (21} of linear J< -mult iplets , 
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Soce vector c~~~onente of the 1n~t:al o~:~-~let acquire the sta­
tus of gsu~ fields only upon breaking c~ cr -symuet~y due to the 
appearance cf no:-1zero vac<.~.t;r. expec:;atio~ ·;al·.lea of certain other 
componerr:s, i:1 close paralle 1 with the ecergence of the Golds tone 
fields in the ordinary linear () -modele. It ie instructive to 
see how the standard kinetic term of gauge fields arises in this 
picture . Suppose ~Uo)'....,.fO by virtue of some dynamical reason (which 
.ve are not interested in for the moment). Then the Yang-Mills com­
ponent of u~.~)is unambiguously defined by the polar decomposi­
tion (22) . By substituting the latter into (25) end expanding (25) 
-~ powers of ~~t can be shown that the first nonvanishing term 
~f the i'eng-Mills field ~(!t.) ie given by :he expression 

-- ~l4'>2.\.U(1.,o)+~U~ 12 ~~ll<.)~j.>. (x)('a11z~~"zJf)(~'i'~fzP) 
.vnich, upon appropriate integration over ~ 1~, yields the con­
'lentional Yang-Mills Lagrangian. 

Finally, let me point out once more that the linear d -mo­
dels of gauge groups are expected to manifestly realize the idea 
of gauge - invariant vacuum. They may be a useful tool for studying 
the structure of gauge theori es in the region of phase transitions 
(which should manifest themoelvee in this language ss the appear­
ance or vanishing of vacuum expectation values of certain fields). 

5. I have shown that the i~terpretation of gauge thooriee as 
theories of spontaneous breakdown/13• 14/ naturally leado to their 
new description in terms of the 8-dimenaional nonlinear sigma-mo­
del. Thereby, the intimate relevance of the latter to the gauge­
field dynamics is eat a blished. Note the difference at this point 
from the consideration of refa./3, 4/ , the main idea of which is 
the reduction of the Yang-Mills theory to sigma-models in lower 
dimensions. On the other hand, the path integrals of gouge fields 
play the central role in both formulations. It ~till remains to 
unde rotend at which more points these approaches are overlapped 
and what is the actual uae!ulneee o! .each of them. 

In conclueion,I list some open questions (apart from those 
already mentioned in the text). How to take into account, within 
the present scheme, the conformal invariance of the Yang-Mills 
theory? Is 1 t posai ble to reformulate gravity and auporgl'ftvi ty in 
the analogous fashion and what new consequences could follow from 
thts? May the sigma-model formulation help in exposing 

14 

hypothetical hidden sy-weetries of gauge theories? He hope to 

snaRer these questions in Jue time. 
I thank Professor Ogievetsky for his permanent interest in 

the work and numerous valuable diacuaei.ons . 
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