

объединенныи институт ядерных исследований дубна

$3574 / 2-80$
$4 / 8-80$

E2-80-315

E.A.Ivanov

SIGMA-MODEL REPRESENTATION OF GAUGE THEORIES

Talk given at the International Seminar "GroupTheoretical Methods in Physics", Zvenigorod, USSR, 28-30 November 1979.

1. In this talk, I ahall describe a novel formulation of gauge theories proposed in my recent papers $/ 1,2 /$. This formulation explicitly demonatrates the common nature of the Yang-Milla theory with usual nonlinear σ model and opens new avenues in attacking some fundamental problems of gauge fielde.

Let me firat outline the main aspects in which the aigma-model representation seems particularly promising.

It has been suggeeted recently $/ 3,4 /$ that the Yang-Milla theory in completely integrable and this property could be visuslized by pasaing to suitable unconventional variables (closely related ideas were declared also in $/ 5,6 /$). The main goal hera is to represent the Yang-Mille equationa as difforential equations in some auxiliary space (for instance, es conditions of triviality of a certain connection) which would heve the meaning of conditiona of integrability of a certain spectral problem solvable by the inverse scattering method. Proceeding elong this line, Aref'eva $/ 3$ / and Polyakov ${ }^{7 /}$ have succeeded in reformulating the Yang-mille theory as a theory of the prinicipal chiral field on the space of elosed pathe (contoure) and the sourcelese Yang-mills equations a firat-order differential conetrainta for a vector form given in this space. The crucial point of their construction is an effective reduction of the epace-time dimenaionality by unity due to the reperanetrization invariance of contour functionels; the D-dimenaional Yang-Mille theory turns out to be equivalont, in a sense, to the D-1 dimensional theory of the principal chiral field. Thereby the 3-dimensional Yang-Milla proved to be equivalent to the 2 -dimenaional chiral theory which is known to be completely integrable (unfortunately, these argumenta do not help in solving the 4 -dimensional problem). The cost (perhape, too high) is the eseential nonlocality of this approachi the procodurs of varying a contour is employed, otc. It is tempting to find an alternative schena so that an ordinary differentiation

be retained at each stage. It would be desirable also to understand the group-theoretical meaning of the contour variables, so called "string functionsls" of gauge fields, which are basic ingradients of the approach of refs. $93,4 /$ (see also refs. $/ 7-10 /$). It will be argued that the sigma-model formulation of gauge the aries is constructive in both respects.

One more important problem in the problem of adequate desoriptron of the symmetric, nonperturbative phase of the Yang-M11日 theory. This phase is associated with the gauge-invariant vacuum and is expected to realize the colour confinemont/11,12/. While the variables relevant to the standard, noneymetric phase of the Yang-Milla theory (perturbative phase) are well known and these are usual gauge fields, it is not so clear which variables are most suitable to represent the symmetric phase. Rendering gauge theories into the aigma-model notation provides an answer to this question. It becomes obvious that the nonsymmetric and symmetric Yang-Mills phases are related Just in the same fashion as nonlinear and linear \mathcal{G}-models of conventional symmetries. This deep analogy point e the way of now to treat the symmetric phase.
2. The formulation I am going to talk about is based upon the observation made earlier by Ogievetaky and myself. We have shown in $/ 13,14 /$ that any gauge theory can be looked upon as a generalized nonlinear σ-model for it results from the nonlinear realization of certain infinite-parameter group $K=G(\mathbb{S} S$ ((xatanda for a semidirect product) with $G^{\circ} \times S$ as the vacuum stability subgroup (see also $/ 15 \%$). Here G° is the relevant global symmetry group, G is isomorphic to the connected component of the corresponding local group spanned by all gauge functions decomposable in the Taylor series around $X_{\chi}=0$ and S is the ordinary Poincare group. It has been understood in 1 13, $14 /$ that the Yang-Mills fields have the same meaning as, say, the phon fields in chiral dynamics; they can bo vienedas coordinates parametrizing a certain homogeneous group ${ }_{\text {space }}$ (namely, the coset apace $K / G^{\circ} \times L, L^{\circ}$ being the Lorentz group). In other words, they are simply the Nambu-Goldatone fields actonponying the apontaneous breakdown of aymetry with respect to the group K.

To make further consideration more clear it is worth recalling some details of the above-mentioned approach. The group G was represented as an abstract constant-parameter group generated by
 with Q^{i} being generators of the global subgroup G^{6}. The commutators between them and with the 4 -translation generator P_{μ} are giver by

$$
\begin{aligned}
& {\left[Q_{\mu}^{t}, \ldots, \mu_{k}, Q_{\mu k+\ldots, \mu_{n}}^{l}\right]=i \mathrm{c}^{\mathrm{tlm}} Q_{\mu_{\mu}, \mu_{n}}^{m}} \\
& {\left[P_{\rho}, Q_{\mu}^{t}\right]=i \eta_{\mu \mu} Q^{t}} \\
& {\left[P_{p}, Q_{\mu_{1}, \ldots \mu_{n}}^{t}\right]=i\left(\eta_{\mu_{\mu}} Q_{\mu_{2}, \ldots \mu_{n}}^{t} \ldots+\eta_{\mu_{n}} a_{\mu_{\mu}, m_{n},}^{t}\right)\left(n_{22}\right) .}
\end{aligned}
$$

Here $C t e m$ are the totally antisymmetric structure constants of

Then, the zonlinesr realization of $K=G(x)$ in the coset space $K / G^{\circ} \times \angle$ has ion en constructed following the standard prescriptione of refs. $/ 116$. The infinite set of the tenor Goldstone

 of coldetanioion ackocinted with P_{P}. Thees fields were identified with coordinates of the coset apace $\mathrm{K} \mathrm{f}^{\circ} \mathrm{K}$ Land the group K was implemented as left multiplications of corsets. It hes been found that in this particular realization the infinite-parameter subgroup G is represented by the standard gauge G^{0}-tranoformatine, the vector Goldstone field $f_{\mu}^{\prime}(\mathbb{X})$ being transformed just as the corresponding Yang-Hille field. We have evaluated the covariant derivatives both of Coldstonions and extraneous, non-Goldstone fielder $\psi_{\alpha}(x)\left(\alpha\right.$ Ie an index of the globs subgroup G°) end have shown that $\mathcal{P}_{\mu}^{(x)}$) is identical by ate couplings with the atardard Yang-kil11s field on the group G^{0}. The remaining Goldstone field e bur. $_{4}^{i} \cdots(x)(h \geqslant 2)$ have been proved to be unessential, in the sense that they are covariantly expressible in terms of $\operatorname{lin}^{i}(x)$ end it derivatives by putting zero those parts of relevant covariant darivatives which ese symmetric in tensor indices (the inverse figs phenomenon ${ }^{177 /}$ works).

Non, I mi sb to show that this construction cen be recast into an elegant and compact form by introducing an extra coordinateLorentz 4 -vector y_{μ} and using the forinoming particular representstimon for generators of tho group $\mathrm{K}^{11,2 /}$

$$
P_{\mu}=i \frac{\partial}{\partial y^{\mu}}, L_{\mu \nu}=i\left(y_{\mu} \partial_{\nu}^{y}-y_{\nu} \partial_{\mu}^{y_{\mu}}\right), Q_{\mu}^{i}=y_{\mu} Q^{i}, \ldots Q_{\mu_{i}}^{i}=z_{\mu}, \psi_{\mu} Q^{i}(2)
$$

This choice is basically dictated by the condition standard for the nonlinear realizations that the generators entering into the group exponents commute with the related coset parameters.

The representation (2) is convenient in that it allows one to convert the infinite set of Goldstone fields $\ell_{\mu}^{i}(x), \ldots \rho_{\mu}^{i} \ldots \mu_{n}(x), \ldots$ into the single object: the bilocel Goldstone field $f(x, y) \equiv f^{i}(x, y) Q$ $=\sum_{n=1} \frac{1}{n!} b_{\mu}^{i}$ (x) $y^{\mu} y_{n} y^{n} Q^{i}$ It is completely specified by the requiremont of its decomposakility in the Taylor series over y_{p} and by the condition

$$
\begin{equation*}
f(x, 0)=0 . \tag{3}
\end{equation*}
$$

An element of corsets $K / G^{0} \times L$ is given now by

$$
\tilde{G}(x, b)=e^{i x P_{\rho}} e^{i \sum_{n=1}^{1} A!b_{\mu_{i}}^{i} \cdot \mu_{n} Q^{i \mu_{i} \cdot v_{n}}}=e^{-x^{\rho} \partial_{\rho}^{y}} \cdot e^{i b(x, y)} \text {. }
$$

The transformation properties of component fields $\rho_{4}(x), \ldots b_{1}, \ldots \mu_{n}(x)$ With respect to the left action of the group K on $G / 13.14 \%$ imply for $f(x, y)$ the following transformation laws:
S: $\quad b^{\prime}(x, y)=b\left(\Lambda^{-1}(x-a), \Lambda^{-1} y\right)$,
$G: \exp \left\{i B^{\prime}(x, y)\right\}=\exp \{i \lambda(x+y)\} \exp \{i b(x, y)\} \exp \{-i \lambda(x)\}$
where $\lambda(y)=\lambda(0)+\sum_{n \geqslant 1} \frac{1}{n!} \lambda_{\mu_{1}} \ldots \mu_{n} y^{\mu_{1}} \cdot y \mu_{n_{i s}}$ the generating fundtin for constant parameters of G. It is seen from (4) that coordinates X_{μ} and Y_{ρ} have essentially different properties in the Poincare group; the former undergoes both the Lorentz rotations and 4-translations while the latter only Lorentz rotations. One could say that X_{μ} behaves as the coordinate of centre of inertia of some extended object and y_{ρ} as the corresponding relative coordinate.

The covariant derivatives of coldatoniona $\nabla_{\mu} b_{p}(x), \ldots \nabla_{\mu} f_{p i}(x)$, combine into the bilocal Carton for:

$$
\begin{equation*}
\omega_{\mu}(x, y)=-\beta_{\mu}(x)+\sum_{n=1} \frac{1}{n!} \nabla_{\mu} \rho_{1} \cdots \rho_{n}(x) y \rho_{\ldots} \ldots y \rho_{n} \tag{6}
\end{equation*}
$$

which is introduced by the relation

$$
\begin{equation*}
i \omega_{\mu}(x, y)=\exp \{-i f(x, y)\}\left(\partial_{\mu}^{x}-\partial_{\mu}^{y}\right) \exp \{i f(x, y)\} \tag{7}
\end{equation*}
$$

and a_{B} a consequence eatiafies the generalized Karer-Cartan aqualion
(which is equivalent to saying that the generalized Yang-Mille connection defined by a vector form $\omega_{A}(x, y)\left(A_{z}, y\right)$ is trivial on the subspace $x=-Y$ of s-dimeneional space x, y). It follows from the definition (7) that under transformations (5) $\omega_{\mu}(x, y)$ behaves like the Yang -Mills field (taken with minus):

$$
\begin{equation*}
\omega_{\mu}^{\prime}(x, y)=\exp \{i \lambda(x)\}\left[\omega_{\mu}(x, y)-i \partial_{\mu}^{x}\right] \exp \{-i \lambda(x)\} . \tag{9}
\end{equation*}
$$

Using the bilocal notation, it becomes possible to render a simple geometrical meaning to the differential constraints by which unessential Goldstone fields $\mu_{1} \cdots \mu_{n}(x)(n \geqslant 2)$ ware eliminated in $/ 13,14 /$ at the expense of $b_{4}(x)$. The infinite sequence of these conditions is now represented by the one manifestly covariant equation:

$$
\begin{equation*}
y^{\mu}\left[\omega_{\mu}(x, y)+b_{\mu}(x)\right]=0 \tag{10}
\end{equation*}
$$

or, with making use of the definition (7):
$y^{\mu}\left(\partial_{\mu}^{x}-\partial_{\mu}^{y}\right) \exp \{-i b(x, y)\}=i y^{\wedge} b_{\lambda}(x) \exp \{-i f(x, y)\}$.
The mont simple way to solve this equation is as follows. One passes to now variables $t^{(}(\mu+y) y_{\mu}, y_{j}$ and makes rescaling $y \rightarrow \beta y$. As a result, (11) is remitter in the form: $\frac{\partial}{\partial \beta} \exp \{-i b(t-\beta y, \beta y)\}=-i y \phi_{2}(t-\beta y) \exp \{i b(t-\beta y, y)\}$
Taking into account the boundary condition (3), the solution of ($11{ }^{\circ}$), with meting $\beta=1$ at the end, is given by the formula (we have returned her to old variables):
$\left.\exp \{-i \bar{\ell}(x, y)\}=T \exp \{-i\}_{0} d r y^{\rho} \varepsilon_{\rho}[x+(1-\gamma) y]\right\}$,
where the symbol T mesne the ordering in matrices Q^{L} within the interval $0 \leq \chi \leq 1$. That expression is 1 unediately recognized as the path integral of the Yang-Mills field along the straight line going from the point $x+y$ to x : $\exp \{-i \bar{b}(x, y)\}=\operatorname{Texp}\left\{i \sum_{\mu+y} \beta_{\mu}(\xi) d \xi^{\mu}\right\}, \quad \xi_{\mu}=x_{\mu}+(1-\gamma) y_{\mu}$. Expanding both odes of (12) in powers of y_{μ}, one can be convince that thin formula exactly reproduces the expressions for tensor Goldetonione mich have been obtained earlier by exploiting the inverse Higge phenomenon at the component level /13,14/. Being expressed in terms of the minimal bilocal ooldatonion $\overline{\mathrm{f}}(x, y)$,
the Cartan form $\omega_{\mu}(x, y)$ roads as
$\bar{\omega}_{\mu}(x, y)=-b_{\mu}(x)+\frac{1}{2} f_{\mu p}(x) y^{p}+\sum_{n \geq 2} \frac{1}{(n+1)!} \nabla_{i} \cdot \nabla_{P_{n}} \mathcal{F}_{\mu}(x) y y_{n}, y P_{n}(13)$ where $\xi_{\mu p}=\partial_{\mu} b_{p}-\sigma_{\rho} b_{\mu}-i\left[\xi_{\mu}, b_{p}\right]_{\text {is }}$ the standard Yang-Mills atrongth., $\nabla_{\rho}=\partial_{\rho}-i\left[\ell_{\rho}\right.$, is the Yang-Mills covariant derivative.

Thus, the string functional of gauge fields which is now under intenaive stuady $/ 3,4,7-10 /_{\text {naturally }}$ arises in our approach as the most economicsi represantation for cosets G / G° (1ts direct anslog in chiral dynamice is $\exp \left\{i J^{i}(x) \frac{1}{2} \tau i \gamma_{5}\right\}$ which is an element of the coset apace $\left.S^{2} U^{(2)} \times S U^{\mathbb{R}}(2) / S U(2)\right)$. While in 13,4,7-10/ these functionals are introduced "by hand", their appearance in our scheme ia the result of the conaiatent application of methode of the general theory of nonlinear realizations $/ 16 /$ We eee that this theory prescribea quite definite rules of handling such functionals: coveriants should be defined according to the formule (7), i.e., through ordinary differentiation of the end points of the path (which cen be conceived as an infinitesimal rotation of the path as whole around the point $x+y$). In the atandard approach to the path integrals, covarisnts are defined in the essentially nonlocal faahion, through infinitesimal deformations of seperate aectiona of the path.

The inverse Higgs phenomenon, in ita etandard minimal formulation $/ 13,14 /$, picks out the atraight path in a lot of patho between $X+Y$ and X. However, without contradiction with the tranaformation lame (4), (5), it is poasible to take as a representative of coseta G / \mathcal{G}^{0} alao the string functional along any other path (this path, of course, should be such that the related $f(x, y)$ admits the power expanaion about $y_{\mu}=0$, i.e., the path should contract into the point X_{μ} when $y_{\mu} \rightarrow 0$). The choice of the curvilinesr path correaponds to a certein modification of differential conditions of the inverge Higge phenomenon. Namely, in this case the "atraight-line" condition (10) is replaced by the more general one

$$
\begin{equation*}
y^{\mu}\left[\omega_{\mu}(x, y)+b_{\mu}(x)\right]=\Delta(x, y) \tag{14}
\end{equation*}
$$

where $\Delta(x, y)$ is a covariant functional of the atrength $\mathcal{f}_{\rho \lambda}(x)$ and degreen of covarient derivatives of $\mathcal{F}_{\rho_{\lambda}}(x)$. Knowing the etructure of $\Delta(x, b)$ completely specifies the path configuration in the correaponding etring functionel. Indeed, the latter can alwayg be
represented by the formula (12) in which $y^{\rho} f_{\rho}(x)$ ie changed to $y^{P} b_{p}(x)-\frac{1}{\gamma} \Delta(x, \gamma y):$
$\exp \{-i \hat{R}(x, y)\}=\operatorname{Texp}\left\{i \int_{0}^{1}\left\{y^{4} f_{\mu}[x+(1-r) y]-\frac{1}{8} \Delta[x+(1-r) y, y y]\right\} d r\right\}$ (12')
the streight path ciearly corresponding to $\Delta(x, y)=0$. lote that any such generalized string functional is reducible, in the sense that it cen be decomposed into the product of the minimal, atraight-line factor and a nonninimal one:
$\exp \{i \tilde{f}(x, y)\}=\exp \{i \bar{f}(x, y)\} \exp \{i h(x, y)\}$,
The meaning of the second factor is that it deacritee a deviation from the straight pati ${ }^{*}$). It is expresaed, in ite y-expansion, through powers of covariant dertvatives of $\mathcal{F}_{\lambda}(x)$. The relation between functionsls $h(x, y)$ and $\Delta(x, y)$ is as follows:
$\Delta(x, y)=\frac{1}{i} \exp \{-i h(x, y)\} y^{\mu}\left(\nabla_{\mu}^{x}-\partial_{\mu}^{y}\right) \exp \{i h(x, y)\}$.
So, there exist many inequivalent, but from the group-theoretical point of view equally acceptable ways to cone down from the generally parametrized coset space $K / G^{0} \times L$ to ite minimai connected inveriant aubspace characterized by the aingle field $f_{M}(x)$. More viaually, we may form a "atring" between the pointa $x+y, x$ in various mannera. Is it pasaible to indicate an extra dynamical principle choosing A definite string functional from all thoge admísable within the pure group-theoretical considerations? Some steps towards an snawer to thia question are outlined in the following Section. To avoid a posaible misunderstanaing, it is appropriate here to any that, in contrast to the approach of refs. $/ 3,4,7-10 /$, there ia no actual path-dependence in our formulation; as $\mathbf{x} 00 \mathrm{n}$ as a definite anaatz for excluding unessential degrees of freedom from $C(x, y)$ is chosen, the path in the reaulting etring functional is fixed once for sil**)

[^0]To conclude this part of my Talk I emphasize that the aimple group meaning explained above can be attributed only to the "open atring" functional of gauge fielda. It in as yet unclear how to accomodate within the present acheme the closed paths (contoure) which are of primary interest in papers $/ 3,4 /$. The moat direct way to embrace the case of contoure is to admit pathe which do not contract into point as $y_{\mu} \rightarrow O$ (and so do rot aupply the condition (3)). It is likely that such an extension of the elass of paths may naturelly emerge upon allowing for the nontrivial topological structure of gauge group (i.es, including into play, along with G, also those components of the whole gauge group which are not connected with en identity element by continuous gauge treneformations).
3. The basic ralation (7) has the form typical for decompositions by which the Cartan forme are defined in nonlinear \mathcal{G} modala for principal chimal fielde. Therefore, the Yang-Mills theory can be interpreted as a eector of the nonlinear C-model for the 8 dimensional principal chiral field $f(x, y)$ on the group G^{0}. This aector ia extracted by the condition (10) or, more generally, by (14) w ith $f(x, 0)=0, b_{\mu}(x)=\partial y f_{\mu} f(x, y) l_{y-0} 0^{b y}$ definition.

In G-models of such type the squations of metion (with no sourcea) are written as the condition of vaniahing of the divergence of the correeponding Cartan form (continuity equation). It is intereating to look whether it is possible to repreaent the atandard source-free Yang-Mile equation

$$
\begin{equation*}
\nabla^{\mu} \mathcal{F}_{\mu \rho}(x)=0 \tag{16}
\end{equation*}
$$

as en analogous closed differential condtion on the bilocal Gartan form $\omega_{\mu}(x, y)$ (supplementary with reapect to the "kinematical" conditione (8) and (10) or (14)). Keoping in mind the hypotheas of complete integrability of the Yang-Milla theory it da dosirable that this condition be of the firat order in derivatives.

In the Abellan case, the equation (16) (1.eq, the free Mexwll -quation)cen easily be seen to be equivalent to the manifestly co-
 (13) be divergencoloess rith rempoot to y-differentiationi

$$
\partial_{\mu}^{y} \bar{\omega}^{\mu}(x, y)=0
$$

Unfortunately, in the most interesting non-Abelien oase such an -quivalence (for the etraight path) holdg only up to the third
order in y_{μ}, in the senee thet the coefficierta of higher powara of y_{p} in $\bar{y}^{p} \bar{\omega}^{p}(x, y)$ do not varish in vartue of the Yaxigwhle equation (16) alone. One may check that the equivalence cannot be reatored without edding to the l.h.g. of (17) terma with higher derivatives of $\bar{\omega}_{\mu}(x, y)$.

Thus, so far as the straight-line Cartan form $\bar{\omega}_{\mu}(x, y)$ ia conaidered one does not suocoed in finding a aimple representation for the Yang-Mille aquations. A poopible way out is as follows. Aa has been pointed out at the end of previous Sect., the straishi path, thougt baing the aimplest one, in no: favoured, from the group-theoratical point of viaw, over other paths between the pointe $X+y, X$. Accordingly, the most generic form of the gtring functional ariaing upori covarient exclusion of redundant Goldatone fielde from $f(x, y)$ ia given by the formula (12') with $\Delta(x, y)$ being nonzero in general. Therefore, the problem of recasting the YengMille oquatione into the gigma-model notation can be thought about as asarch for the string functional in terms of which these oquationa have the eimple日t form. One can check that the only posalbls covariant difさerential conatraint which has the firat order in derivatives, incorporates the Yang-wille aquatione (16) and is formulatad aolely in terms of $W_{\mu}(x, y)$ ig just the condition of venishing of the divergence of the latter with respect to ∂^{4}. So, tho quastion to be answarad iat May we find a string functional $\exp \left\{i \mathcal{P}^{\circ}(x, y)\right\}$ auch that the ascociated Cartars form $\widetilde{\omega}_{4}^{0}(x, y)$ satisfies the continuity aquation

$$
\begin{equation*}
\partial_{\mu}^{y} \widetilde{\omega}^{\circ \mu}(x, y)=0, \tag{18}
\end{equation*}
$$

when the Yang-Milla field $b_{\mu}(x)$ obeys the standard equation (16)? The answer turns out to be affirmative. The corresponding functional $h^{0}(x, y)$ (by which $\mathcal{P}^{0}(x, y)^{1 s}$ completely epecified in virtue of (15)) i. determined from the equation:
$\partial_{y}^{\mu}\left\{\exp \left\{-i h^{0}(x, y)\right\}\left[\partial_{\mu}^{x}-\partial_{\mu}^{y}+i \bar{\omega}_{\mu}(x, y)\right] \exp \left\{i h^{0}(x, y)\right\}\right\} \mid=0 \quad$ (19) uniqualy, up to possible terine vanishing on solutions of eq. (16). The equation (19) in obtained hy substituting the decomposition (15) into the dofinition (7) and by 1mposing (18). Although the colution to eq. (19) in the closed form is still not found, the functional $h^{\circ}(x, y)$ can be evaluated to any desirable order in y_{μ}
by iteration. . The aifference betmeen $\widetilde{\omega_{\mu}^{0}}$ and $\overline{\mathcal{Q}_{\mu}}$ begins
from the iurthorier ir y_{μ} : from the ivurth order in J_{μ} :
$\widetilde{\omega}_{\rho}^{0}-\bar{\omega}_{\rho}=\frac{i}{5!} \frac{1}{20} \partial_{\rho}^{y}\left(y^{2} y^{\lambda} y^{d} y^{\alpha}\right)\left\{\left[\mathcal{F}_{\beta \lambda}, \nabla_{\sigma} \mathcal{F}_{\beta \alpha}\right]-\right.$ $\left.-\frac{3}{32} \eta_{\lambda \alpha}\left[F_{\beta \mu}, \nabla_{G} F_{\beta \mu}\right]\right\}+O\left(y^{5}\right)$.
It should be stressed thist $\widetilde{\omega}_{\rho}^{0}(x, y)$ has the cumplicated rortriFal structure but this etructure is such that all highest terme in the y-expansion of $\partial_{\mu}^{H} \mathcal{N}^{\circ \mu}$ become zero as soon as the lowest term (which ${ }^{2} E$ just $1 / 3!\nabla^{\mu} \mathcal{F}_{\mu} y^{\prime} y^{\prime}$) vanishes. It is clear that the necescary condition for (18) to be fulfilled is that bu (X) obey the equation (16).

How we lisj forget about all reasonings which led us to the string representation for $\exp \{i \mathcal{R}(x, y)\}$ and formulate the above result as the following Theorem.

Let the Yang-Mille field $/(x)$ on the group G^{0} be given. Then there exists the bilocal functional $\exp \left\{i \mathcal{P}^{0}(x, y)\right\}$ of the form (12') with the following remarkable property. The vector form $\widetilde{W}_{\mu}^{0}(x, y)$ defined through $\vec{C}^{0}(x, y)$ according to the formula (7) is divergencelesa with reapect to y-differentiation iff $b_{\mu}(x)$ satis$\|_{f=e}$ the source-free Yang-Mills equation.

If it is true that ang functional of the type (12') can le represented as the contour integral of $b_{\mu}(x)$ along a certain path, then the path in $\exp \{i \bar{b}(x, y)\}$ should be eagentially curvilinear (it becomes atraight for sn arbitrary y_{p} only in the Abelian case). This curve is likely formed by the Yang-Mills field itgelf (i.e., it is defined by a function explicitiy depending on $\mathrm{B}_{\mu}(\mathrm{x})$). So, one may expect the one-to-one correspondence between different classes of solutions of the Yang-Mills equation and permiasible configuretions of pathe in $\exp \left\{i \mathcal{P}^{2}(x, y)\right\}$. Moreover, one may epeculate on the possibility of the complete exclusion of $P_{M}(x)$ in favour of pathe. To confim these conjectures, it aeeme of primary importance to regain the equations (8), (14), (18) proceeding from a certain action principle. It is as yet unaolved tagk.

For the time being, I do not know to which extent the above consideratione may be useful in proving the hypothetical complete integrability of the Yang-Mdls theory. But the fact that the Yang-Milla equatione can be represented as ordinary first-order differential conatrainta on a certain vector form in the extenced
space (the conditior of terivial comection (8) and the continutity equatior (18)) secas unexpectell and fesperves turther examination. at remains to find the corresponding spectral problem (if existe). Closely related is the question as to whether the equation (18) implies the existence of infinite series of currents conserved in the standard sense, with respect to X-differentiation.
4. The underatanding of the fact that the Yang-Mills theory in the atandard, perturbative phase is the nonlinear reslization of the group $K=G G S_{w i t h ~}^{G} \times S$ being the residual bymanetry of vecuum led in ref. ${ }^{14 /}$ to the problem of constructing linear, algebraic realizations of K which would naturally correspond to the completely K-invarisnt ground state. It has been pointed out in $/ 14 /$ the the relationship between theories associated with these two different kinde of the gauge group realization should resemble the well-known relation between nonlinear and linear \mathcal{C}^{\prime} models of usual finite-parameter aymetries. It has also been conjectured that the linear σ-models of gauga groups might bear direct relation to dual theoriee of strong intersctions*). One bore important agpect is as followa. As auggested by the analogy with C-models, just the linear realization of K should describe the symetric, nonperturbative phase of the Yang-Mills theory. This phase is associated with fully gauge-invariant vacuum and is reaponsible, by the hypothesis of refs. $911,12 /$, for the colour confinement. The knowledge of tranaformation laws of linear multiplets of K would allow one to construct the invariant Lagrangians relevant to the symanetric phase and to study the structure of this phase in the purely algebraic way, without any reference
 helpful, for instance, in clarifying the question as to whather the confinement is a direct consequence of gauge invariance of vacuum or extra dynamical asaumptions are required for confinement to be valid.

The formulation I have described in previous Sections indicates a posbible way in which the linear multiplets of the group K can be constructed. Indeed, once the Yang-Mills theory in the nonsymmetric phase admits embedding into the bllocal nonlinear σ -

[^1]model on the group G^{0} it is natural to assume that the eymmetric phase of this theory can be interpreted within the correaponding bilocal linesr \mathcal{O}°-model. In other words, linear representations of K shoulà operate on bilocal linear multipleta of G^{0}. I shall consider here the simplest multiplet of this kind. It $w 111$ be shown how the gauge fields may appear within the linear realization of K. Por simplicity, I teke $G^{0}=S U(2)$.

The aimplest multiplet can be constructed by completing the coset space $K / G \times \angle$ to a linear space just as, for instance, the vector multiplet of the group $O(4)$ cen be arrived at by completing a 3-dimenaional ephere $\sim O(4) / O(3)$ to the 4-dimensional Euclidean space (G -particle is added to three "pions").

Let us considar an arbitrary bilocal matrix $U(x, y)$ with the traneformation properties (5):
traneformation properties (5):
$u^{\prime}(x, y)=U_{0}^{\prime}(x, y)+\frac{1}{2} i \tau_{k}^{\prime} u_{k}^{\prime}(x, y)=e^{i\left(u^{(u y)}\right)} u e^{-i \lambda(x)}$
$\left(u u^{\dagger}=u^{+} u \neq I\right)$ ($\left.U u^{+}=U^{+} U \neq I\right)$
It ie not hard to see that all componente in the decomposition of $U(x, y)$ in y_{μ} transform linearly and homogeneously (in contrast to components of bilocal coldetonion $f(x, y)$):

$$
\begin{align*}
& \delta_{G} U_{0}(x)=0, \delta_{G} U_{k}(x)=\varepsilon_{k} e m \lambda_{e}(x) U_{m}(x) \tag{21}\\
& \delta_{G} U_{\mu k}(x)=U_{0}(x) \partial_{\mu} \lambda_{k}(x)-\varepsilon_{k} e_{m}\left[\lambda_{\rho}(x) u_{m}^{\mu}(x)+\partial_{\mu} \lambda_{e}(x) U_{m}(x)\right] \\
& \delta_{G} U_{\mu \nu k}(x)=U_{0}(x) \partial_{\mu} \partial_{\nu} \lambda_{k}(x)+\ldots .
\end{align*}
$$

realizing thereby the linear representation of the group K. If $\left.\left\langle U_{0}\right\rangle \not\right\rangle_{\text {ac }} O$ the infinitesimal tranaformations of f1elds $U_{\mu}^{k}(x)$, $\ldots U_{\mu v}^{*}(x), \ldots s t a r t$ with inhomogeneous terms just typical for trana-
formation lams of components of $f(x, y)$:
$\delta u_{\mu}^{k}(x)=\left\langle u_{0}\right\rangle_{\operatorname{rac}} \partial_{\mu} \lambda^{k}(x)+\cdots \cdot$
$\delta u_{\mu \nu}^{k}(x)=\left\langle u_{0}\right\rangle_{\mathrm{rac}} \partial_{\mu} \partial_{\nu} \lambda^{k}(x)+\ldots$.
Actually, in thia cese $U_{\mu}^{k}(x), U_{\text {uv,. }}^{k}$ can be equivelently related to Goldatonions $b_{\mu}^{k}, b_{\mu \nu}^{k}, \ldots$ by means of the polar decomposition of matrix $U(x, y)$
$U(x, y)=\exp \{i f(x, y)\}\left\{\left\langle u_{0} \tau_{a c}+\tilde{u}(x, y)+\frac{i}{2} \tau_{k} u_{k}(x)\right\}\right.$
where $\widetilde{U}(x, y)$ is pure acelar with respect to the action of K. The matrix $U(X, y)$ exclusively belonge to the coset epece $K / G^{\circ} \times L$ provided the following covariant conditione are fulfilled:

$$
U U^{+}=U^{+} U=\left\langle u_{0}\right\rangle_{V a c}^{2}, U(x, 0)=\left\langle u_{0}\right\rangle v a c
$$

or, in terms of polar components:

$$
\widetilde{u}(x, y)=0, u^{i}(x)=0
$$

Thus, the bilocal linear G-rodel constructed on the basis of representation (20) is expected to emlody, sfter spontaneous breakdown of K ermmetry, the conventional massless Yang-uills theory.

The main problen is the conatruction or the relevant Lagrangians with which the nonzero vacuum expectation values for different component fielda woula naturally emerge from the standard extremum conditions. It is not difficult to indicate the general form of the potential part of such an invariant Lagrangian

$$
\begin{equation*}
\mathscr{L}^{V} \sim \operatorname{Tr} V\left(U(x, y) U^{\dagger}(x, y)\right) \tag{24}
\end{equation*}
$$

As to invarisnts including derlvatives of component fields, it is Iikely that in the case of exact K-symmetry it is not possible at all to construct bilinear invariants for components with internal indices (confinement?). At the same thme, the invariant kinetic term for the G-scalar, "colouriess" component $U_{0}(\mathbb{X})$ exiats and has the standard form $\sim \partial_{\mu} U_{0} \partial_{\mu} U_{0}$. The simplest invariant with derivatives of "colour" fields is of the fourth order and is given by the lattice ansatz/11/:

$$
\begin{equation*}
\mathscr{L}^{k i n} \sim \operatorname{Tr}\left\{U(x, y) U(x+z,-z) U^{+}(x+z, y) U^{\dagger}(x+z+y,-z)\right\} \tag{5}
\end{equation*}
$$

where the coordinate Z_{μ} transforms under the Poincaré group juet as y_{μ}. The main difficulty encountered when trying to expose the particie cortent of Lagrangiana of the type (24),(25) is the presence of numerous mixings between component fielda and their derivatives. So some diagonalization procedure is required.

Thus, the careful treatment of dynamics asaociated with Lagrangiane of the type (24),(25) is the complicated buainese and it will be performed separately. Here we mould like to focus on gome things clear already at the pura group-theoretical level. In linear σ-modele of gauge groups there are no Yang-mille fielde ao far as the aymetry with reapect to $K=G\left(\kappa S_{18}\right.$ unbroken. The invariance is achisved without these fielda, due to the apecific form of trangformation rules (20),(2才) of linear K-multiplete.

Some vector camponente of the initial multiplet acquire the atatue of gauge fields only upon breaking of G-aymetry due to the appearance of nonzero vacu:lil expectation values of certain other componenta, in close parallel with the esergence of the coldstone fielde in the ordinary linear G-rodels. It is instructive to see how the standard kinetic term of gauge fields arises in this picture. Suppose $\left\langle U_{0}\right\rangle$ wace $=0$ by virtue of some dynamicel reason (which we are not interested in for the moment). Then the Yang-mills component of $U(x, y)$ ia unambiguously defined by the polar decomposition (22). By subatituting the latter into (25) and expending (25) 1.1 powers of $y_{y, Z_{j} t}$ can be shown that the first nonvanishing term of the Yang-Mills field $b_{4}(x)$ is given by the expression $\sim\left\langle u_{0}\right\rangle^{2}\left[\tilde{u}(x, 0)+\left\langle u_{0}\right\rangle\right]^{2} \mathcal{F}_{\mu \nu}^{i}(x) \mathcal{F}_{\rho \lambda}^{i}(x)\left(y^{\mu} z^{\nu}-y^{\nu} z^{\mu}\right)\left(y^{\rho} z^{\lambda}-y_{z^{\lambda}}^{\rho}\right)$ wioch, upon appropriate integration over $y, z, y i e l d s$ the conyentional Yang-Mills Lagrangian.

Finally, let me point aut once more that the linear C-models of gauge groupa are expectec to manifestly realize the idea of gauge-invariant vacuum. They may be a useful tool for atudying the etructure of gauge theoriea an the region of phase tranaitions (which ahould manifest themeelves in thia language es the appeerance or vanishing of vacuum expectation valuea of cortain fields).
5. I have shown that the interpretation or gauge theoriea as theories of spontaneous breakdown $/ 13,14 /$ naturally leads to their new description in terma of the B-dimensional nonlinear aigme-model. Thereby, the intimate relevance of the latter to the gaugefield dynamice is establiehed, Note the difference at this point from the consideration of refs. $13,4 /$, the main ides of which is the reduction of the Yang-Mills theory to bigme-models in lower dimenaions. On the other hand, the path integrale of gage fielda play the central role in both formulations. It otill remaing to understand at which more pointa these approachea are overlapped and what is the actual ugefulness of each of them.

In conclusion, I list some open questions (apert from those already mentioned in the text). How to take into account, within the present scheme, the conformal invariance of the Yang-Mille theory? Is it possible to reformulate gravity and supergravity in the snalogous fashion and what new consequences could follow from this? May the signo-rodel formulation help in exposing
hypothetical hidden symetries of gauge theories? We hope to answar these questions in due time.

I thenk Professor Ogievetsky for his permenent interest in the work and numerous valuable digcussions.

References

1. Ivenov E.A. "Bilocal $\mathcal{\sigma}$-model repreaentation of the Yang-Mills theory and the gadge-invariant vacuum". Talk given at the Y Int. Sominar on Nonlocal and Nonlinear Field Theory, Alushte, April 1979. In: "Problems of Quentum Field Theory", JINR p2-12462, Dubna 1979, p.233*)
2. Ivanov E.A. Pis'me ZheTr, 1979, 30, p.452; "Yeng-Mille Theory in Sigma-Model Representation". Preprint JINR E2-12808, Dubne 1979.
3. Arefteva I.Ya. Lett. in Math. Phya., 1979, 4, p.555; In: "Probleme of Quentum Field Theory", JINR P2-12462, Dubne 1979, p. 200.
4. Polyskov A.M. Phye.Latt., 1979, B2B, p. 247^{7}
5. Witter E. Phya.Lett.. 1978, 77B, P. 394.
6. Isenberg J., Yesakin P.B., Green P.S. Phys.Lett., 1978, 78B, p. 462 .
7. Gerveis I.L., Neveu A. Phyg.Lett^, 1979, 80B, p. 255 ; Nucl. Phye., 1979, B153, p.445.
8. Nambu Y. Fhye.Lett., 1979, 80B, p. 372.
9. Corrigan E., Heध日lacher B. Phys.Lett., 1979, 81B, p. 181.
10. Borisov N. Y., Eides M.I., Ioffe M.V. Pis'me ZhETP, 1979, 29, 506; Phye.Lett., 1979, 87B, p.101.
11. Wilson K.G. Phye.Rev., 1974, D10, p. 2445.
12. Polyakov A.M. Nucl, Phya,, 1977, B120, p.429.
13. Ivanov B.A., Ogievetaky V.I. Fle'ma ZhETP, 1976, 23, p. 661.
14. Ivenov E.A., Ogieveteky V.I. Lett.in Meth. Fhye., 1976, 1,p. 309.
15. Koginaki P., Rembielinski J., Tyuor W. Journ. of Phye. Az Math, and Gon., 1976, 9, p.1187.

[^2]16. Coleman S., Wees J., Zumino B. Phys.Rev., 1969, 177, p. 2239 ;Cellan C.L. et al. Phys.Rev., 1969, 177, p.2247; Volkov D.V. Preprint I.Th. Ph. 69-79, Kiev 1969; Volkov D.V. E.Ch.A.Ya (Particles and Nuclej), 1973, 4, p.3.
17. Ivanov E.A., Ogievetbky V.I. Teor. Mat.Fiz., 1975, 25, p. 164.
18. Virssoro K.A. Phys.Lett., 1979, 82D, p. 436.
19. Gliozzi J., Regge J., Virgsoro M.A., Phys.Lett., 1979, 81B, p. 178.

[^0]: *) Such a"polar" decompoaition exiats, of course, for any generel coset representative $\exp \{i f(x, j)\}$ all the superfluous Goldatone

 **) In fact, it is not proved that any functional of the form (12*) any be rewritten aa the integral or madong a ostain path beteen $x+y, x$. It may happen that (12') describes more genersi situation and reduces to a path integral only under certain reatrictions on $\Delta(x, y)$.

[^1]: *) This conjecture seems to be confirmed in the recent papers $/ 18,19 /$

[^2]: *) The preliminary version of this paper has been presented et the XIX Int. Conf. on High Energy Physics, Tokyo 1978.

