

объединеиныя институт адерных исследовании дубна

$3132 / 2-80$ $14 / 7-80$ E2-80-280

A.T.Filippov
ON RADIATIVE DECAYS
OF LIGHT MESONS

Submitted to "Письма в ЖЭТФ"
 rule (QLR, or 0zI-rule) breaking effecta in speotra and deoays 01 light masons is widely reoognized. Estimating suoh effeots is 1mportant both for oonstruoting a oorreot phenomenology and for understanding the struoture of QCD at large distanoes. A new phenorenology of the meson speotrum, which is consistent with QCD, has been reoently proposed (see /I/, Where details as well as notation and referenoes on be found). This phenomenology prediots new values for the octet-ginglet mixing angles in η and η^{\prime} meson states

$$
\begin{equation*}
\theta_{p}=\theta_{p}(\eta)=-17.2^{\circ}, \quad \theta_{p}^{\prime}=\theta_{p}\left(\eta^{\prime}\right)=-20.6^{\circ} . \tag{I}
\end{equation*}
$$

The reault of the latest experiment on high energy $7 / \gamma^{\prime}$ produotion/2/

$$
\begin{equation*}
K=\bar{\zeta}\left(\pi^{-} p \rightarrow \eta^{\prime} n\right) / \bar{\sigma}\left(\pi^{-} p \rightarrow \eta n\right)=.55 \pm .06, P_{L}=4 \div 200 \frac{c_{e} V}{c} \tag{2}
\end{equation*}
$$

dramatically disagrees with the genarally aooepted mixing angle $\theta_{p}=\theta_{p}(\eta)=\theta_{p}(y)=-10$, and is in very good agreement with eq. (I). Hegleoting the small nonorthogonality of the quark wave funotions oorrespondiag to the angles (I), and assuming that the only sourse of the QLR-breaking 1s, at high energies, in $7-\eta^{\prime}$ mixing one easily tinds that

$$
K=\cos ^{2}\left(\theta_{0}-\theta_{p}\right) / \sin ^{2}\left(\theta_{0}-\theta_{p}^{\prime}\right), \quad \theta_{0}=\operatorname{arcig} 2^{-\gamma_{2}} \cong 35.3^{\circ}
$$

Por the angles (I) this girea $K=.50$, in exoellent agreenent Whth the experimental result. This value of K also agrees well whth otherg less precise expertments performed at lower energies (sea, e.ge, $/ 3 /$), end darinitely oontradioto $\theta_{p}:=-10^{\circ}$. In faot, asaming $\theta_{p}=\theta_{p}^{\prime}=\partial_{p}$ one obtaines Irom eq. (2) that $/ 2 /$

$$
g_{\text {ginfy }}^{\text {exif }}=2.58 \pm .09, \quad g_{\text {effy }}=.70 \pm .05 .
$$

In ref. /7/a meohanism giving an enhancement of g wird relative to $g \rho \pi r$ has been proposed. Due to the smallness of the p ion mass the prooess $\omega \rightarrow\left(\rho^{ \pm} \pi \mp\right) \rightarrow\left(\rho^{ \pm} \pi \mp\right) \gamma \rightarrow \pi^{\circ} \gamma$, where $\left(\rho^{ \pm} \pi^{*}\right)$ are firtual partioles, oontributes to $g \omega \pi \gamma$, and there is no similar prooess for $p \rightarrow \pi \gamma$. (Suoh a meohanism also oontributes to $K_{V}^{0} \rightarrow K^{0} \gamma$ and $K_{\gamma}^{-} \rightarrow K^{-} \gamma$, but the effect is probably oompensated by some $\mathrm{SU}_{\boldsymbol{z}}^{f}$ violation). Making in the corresponding Fegnam diagram a out-off on the virtual pion momentum, $\left|P_{F}\right| \approx \wedge, \Lambda \sim m_{\rho}$ (the dependence on the out-off parameter Λ is practioally negligible for $.56 \mathrm{v}<\wedge<\mid$ Ger), we obtain the onhanoement factor ($1.15 \pm .05$) . With this correction,

$$
g_{\omega \pi \gamma}=3 g+2 \varepsilon=g_{\omega \pi r} /(1.15 \pm .05)
$$

and this value of $g \omega \pi \gamma$ is used in our fits. The input data for the itts are the items I) - II) in the Tahle; for Γ_{η}, we assume $\Gamma_{\eta^{\prime}}=(290 \pm 70) \mathrm{kev} / 4 /$, the η^{\prime} branohing ratios are taken from PDG $/ I 0 /$. With $\theta_{P}=\theta_{P}^{\prime \prime}=\theta_{F}^{(1)}, \theta_{\varphi}=1^{\circ}$ the best fit is

$$
\begin{equation*}
3 g=2.015, \varepsilon=.074, \quad \delta=.153 . \tag{4}
\end{equation*}
$$

The oorresponding widths are given in the second oolum, for them $x^{2 / 8} \cong 1,35$. Omitting the wiaths of $K_{\nu}^{0} \rightarrow K^{\circ} \gamma, \omega \rightarrow \eta \gamma$ we have $x^{2} / 6 \cong, 65$. The agreement is very good indeed but the experimentel widths $\Gamma\left(x_{j}^{0} \rightarrow K^{\prime} \gamma\right), \Gamma(\omega \rightarrow \eta \gamma)$ are to be suspeoted; note that they are based on rather a poor statistics, espeoially $\pi(\omega \rightarrow \eta \gamma)$. With $\theta_{P}=\theta_{P}^{\prime}=\theta_{P}^{(2)}, \theta_{\varphi}=5^{\circ}$ the best fit is

$$
\begin{equation*}
3 g=1.922, \quad \varepsilon=-046, \quad \delta=.061 ; \tag{5}
\end{equation*}
$$

in this oase $x^{2} / 8 \approx 4$, and in poor agreament are the most oredible data $\left(\omega \rightarrow \pi \gamma, \varphi \rightarrow \eta \gamma, \rho \rightarrow \eta \gamma, \eta^{\prime} \rightarrow \omega \gamma, \eta^{\prime} \rightarrow \omega \gamma / \eta^{\prime} \rightarrow \rho \gamma\right)$. Taking into acoount SU_{3}^{5} Fiolation does not improve signifioantly this 11t, and so the angle $\quad \theta_{p}=\theta_{p}^{\prime}=\theta_{p}^{(2)} \cong-10^{\circ}$ is in contradiotion mith the data on P and V rediative deoays as well as with eq. (2).

Using the parameters obteined above, we oan prediot $\Gamma(\mathrm{P} \rightarrow \gamma \gamma)$ in the veotor dominanoe model (WDM) with SU_{3}^{7} (now we know that SU_{3}^{5} violation effeots are of no importance in radiative deogys). The vill for $P \rightarrow Y \gamma$ is in good agreement with the ourrent algebra reaulte. In faot, oomparing $\Gamma(\pi \rightarrow \gamma \gamma)$ and $\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right)$

$$
\sigma_{\phi}=-(18.2 \pm 1.4)^{\circ} .
$$

as has been pointea out in ref. ${ }^{1 / 3 / \text {, the experimental widhs }}$ of radiative deoays of light mesons ($V \rightarrow P \gamma, P \rightarrow V \gamma, P$ - pseudosoan lar and V - Vector partiales) contradiot equation (I). However the more detailed disoussion has not been published, for the laok of data on $\Gamma_{7^{\prime}}$, whiok are extremely important in this context. Now the new data on $\Gamma_{\eta^{\prime}}{ }^{/ 4 /}$ as well as on $\Gamma\left(\rho^{-} \rightarrow \pi^{-} \gamma\right)$ and $\Gamma\left(K_{V}^{-} \rightarrow K^{-} \gamma\right)^{15 /}$ are available (see the Table), thus allowing an unambiguous cietermination of the mixing angles from the data on radiative decays. In addition, the SU_{3}^{5} and OLR breaking in the matrix elements of these deoays can be detected. Here we present only highlights of the analysis; a more complete version will be published elsewhere.

Negleoting SU_{3}^{4} Niolation in the matryx elements, we oan express the radiative widths in terms of the octet ourrents J_{i}^{λ}, $i=1, \ldots, 8$:
$\left\langle v_{i}\right| j_{j}\left|P_{k}\right\rangle=g d_{i j k},\left\langle v_{0}\right| \partial_{j}\left|P_{i}\right\rangle=(g+\varepsilon) d_{0 i j},\left\langle V_{i}\right| \partial_{j}\left|P_{0}\right\rangle=(g+\delta) d_{0 i j}(3)$ Here $d_{i i j}=\sqrt{2 / 3} \delta_{i j}$; the obvious dependence on polarizations and momenta as well as normalization factors are suppresed. The exaot alR requires $\varepsilon=\delta=0$. Vaing the data in the Table one oan determine both the mixing angles and the parameters g ε and δ. For simplicity here we present only the fits for the parameters with fixed mixing angles $\theta_{p}=\theta_{p}^{\prime}=\theta_{p}^{(1)}=-2\left(45-\theta_{0}\right)^{\circ}$ and $\theta_{\mathrm{p}}^{(2)}=-\left(45-\theta_{0}\right)^{\circ}$, whioh are approximately squal to (I) and to -10° respectively. In stendard nutation (see, e.g. ${ }^{\prime 6}$,):
$g=g_{\mu \pi \gamma}=-\frac{1}{2} g_{k_{\gamma} k^{0} \gamma}=g_{\kappa_{j}} k^{-} \gamma, g_{\omega \pi \gamma} \cong 3 g+2 \varepsilon, g_{\mu_{\gamma}} \cong 3 g t_{\varphi}+\sqrt{2} \varepsilon$, where $t_{\varphi}=t_{q} \theta_{\varphi}$, and $\theta_{\varphi}=\left(\theta_{V}-\theta_{0}\right)$ is the strange/nonstrange quark mixing angle in the ω and φ mesons. In standard phenomenology (related to the so-called "quadratio mass formulae") $\theta_{\varphi}=(5 \pm 1)^{\circ} / 3 /$, in our phenomenology $\theta_{Y} \cong 1^{\circ} / 1 /$ (in the above expressions for $g_{\text {arry }}$ and $g_{\varphi / i y}$ the smallness of θ_{φ} and ε is used). The smallness of $\Gamma(\varphi \rightarrow \pi \gamma)(g \psi \pi \gamma=(.138$ 土 $\pm .025) \mathrm{Gev} / \mathrm{c}$) restriote the value of ε to $\varepsilon<0$ for $\theta_{\varphi}=5^{\circ}$ and to $\varepsilon<, 1$ for $\theta_{\varphi}=1^{\circ}$. This gives rise to a well known disorepansy between g arrr and $g \mathrm{frr}$, which oannot be attributed to SU_{3}^{f} and QLR riolations:

Quantity Experim.
Fit (4)
Fit (5)
I) $\Gamma(\rho \rightarrow \pi \gamma) \quad 63 \pm 7 / 5 /$

58
53
2) $\Gamma(\omega \rightarrow \pi \gamma) \quad 889 \pm 62 / \mathrm{YO} / 825$

629
3) $\Gamma(\varphi \rightarrow \pi \gamma) \quad 5.8 \pm 2 . I / I 0 / 6.0 \quad 6.5$
4) $\Gamma\left(K_{V}^{-} \rightarrow K^{-} \gamma\right) \quad 40 \pm I 5^{/ 5 /}$
$33 \quad 30$
5) $\Gamma\left(K_{v}^{a} \rightarrow K^{a} \gamma\right) \quad 75 \pm 35 / I 0 /$

130
120
6) $\Gamma(\rho \rightarrow \eta \gamma)$

56士 I4/ $\mathrm{IO} /$
54
33
7) $[(\omega \rightarrow \eta r) \quad 3 \pm 2.5 / I O /$
8.3
2.5
8) $\Gamma(\varphi \rightarrow \eta \gamma) \quad 66 \pm 9 / I 0 /$
$7 I$
98
9) $\Gamma\left(\eta^{\prime} \rightarrow \rho \gamma\right) \quad 86 \pm 22 / I 0,4 / \quad 78$

I0) $\Gamma(\omega \rightarrow \omega \gamma) 6 . I \pm I .9 / I 0,4 / \quad 7.2 \quad$ Io
$\begin{array}{llll}\text { II) } \frac{\Gamma\left(\eta^{\prime} \rightarrow \rho \gamma\right)}{\Gamma\left(\eta^{\prime} \rightarrow \omega \gamma\right)} & \text { I4.2士 } 2.8 / I 0 / & \text { II } & 7.7 \\ \text { I2) } \Gamma\left(\varphi \rightarrow \eta^{\prime} \gamma\right) & - & .86 & .47\end{array}$

I4) $\Gamma(\eta \rightarrow \gamma \gamma) \quad .323 \pm .046 / I 0 / \quad .72 \pm .08 \quad .34 \pm .04$
15) $\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right) \quad 5.8 \pm 1.8 / 10,4 / 7.5 \pm .9 \quad 6.5 \pm .8$
16) $\frac{\Gamma(\eta \rightarrow \gamma \gamma)}{\Gamma\left(\eta \rightarrow r^{+} \pi \gamma\right)}$

With those in ourrent algebra/8/ or in chiral models /9/, one easdiy finds the relations

$$
\begin{equation*}
g / \gamma_{p}=\left(4 \pi^{2} F_{\pi}\right)^{-1}, F_{Q} / F_{1}=1+\delta / g ; F_{\pi} \cong .095 \text { Gev. } \tag{6}
\end{equation*}
$$

Equations (4) and (6) give $\gamma_{p}^{2} / 4 \pi \cong .505$, which is in good agreement with $\gamma_{f}^{2} / 4 \pi=.51 \pm .06$ obtained from $\Gamma\left(\rho \rightarrow e^{+} e^{-}\right)($see, e.ge, $/ I 0 /$). The Iast value for $\gamma_{f}^{2} / 4 \pi$ is used for predioting
the items I3) $=$ I6) in the Table, A dispersion in these prodiotions is ralated to the disperaion in γ_{ρ}. In oaloulating the ratio 16) the relation $g_{p \pi r}=2 \gamma_{p}$ is used.

The width $\Gamma_{\text {exp }}(\eta \rightarrow \gamma \gamma)$ agrees well with $\theta_{p}=\theta_{p}^{\prime}=\theta_{p}^{(1)}$, and disagrees with $\theta_{P}=\theta_{p}^{\prime}=\theta_{P}^{(1)}$. However, all the other deta require $\theta_{p} \cong \theta_{p}^{\prime} \cong \theta_{P}^{(1)}$, and a new measurement of this important quantity would be extremely desirable, Note that our prediction $\Gamma(\eta \rightarrow \gamma \gamma)=, 65 \div .75 \mathrm{keV}$ is olose to the average of tro existing measurements (see, e.g., $/$ I0/). Some $\mathrm{SU}_{3}^{\text {I }}$ violation oan meke $\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right)$ somewhat lower, but the prediotion for $\Gamma(\eta \rightarrow \gamma \gamma)$ oannot be ohanged significantly. The disorepanoy between eq. (I) and the $S U_{3}^{f}$ relation for the deogys $P \rightarrow \gamma \gamma$ was first mentioned in ref. /II/; however, only the oomplete analysis of all the data on radiative deogys of light mesons makes it possible to find the most protable sourse of this disorepancy, too 20 w experimental value of $\Gamma_{\gamma^{\prime}}$, as given in ref. $/ 10 /$.

Our conolusions are as follows, In the matrix elements of P and V radiative deoajs the OLR is violated (), and there is no signifioant $S U_{3}^{f}$ breaking. The VDM and the current algobra relations are fulfilled. The widths of the decays are in good agreament fith the mixing angles (I) and definitely disagree with the standard angle $\theta_{p} \approx-10^{\circ}$. New measurements of $\Gamma(\eta \rightarrow \gamma \gamma)$ as well as of $\Gamma\left(K_{\nu}^{0} \rightarrow K^{\circ} \gamma\right)$ and $\Gamma(\omega \rightarrow \eta \gamma)$ are neoessary, and detecting of $\varphi \rightarrow \eta^{\prime} \gamma$ deoay is highly desirable.

For disoussions and remarks the author is thankful to $A_{.} B \ddot{\mathrm{Bm}}$, S. BoGerasimov, V.M.Budnev, M.K.Volkov, Ao BoGovorkov, and V.N.Gribot.

Refergnaes.

/I/ A.T.Filippov. Yad.Fiz., O9, I035, I979.
/2/ V.D.Apel e.a. Yad.F1z., 30, 366, I979.
/3/ S.0kubo. Phys.Rev., DI6, 2336, I977.
/4/ G.S.Abrams e.a. Phys.Rev.Lett., 43, 477, 1979;
D.M. Binnie e.a. Plys.Lett., 837, I4I, 1979.
/5/ D.Berg e.a. Univ. of Roohester preprin $ن 00-3065-250$, UR727, Roohester, 1979.
/6/ Physios Data. Nu.ul.Phys., RTO9, I, 1976.
/7/ A. T. Filippov. Proo. of the I8-th Intern. Conf. on High Energy Physios, Tbilisi, I976, vol.I, p.CI29-I59; IINR publ. D1-1040, Dubna, 1977.
/8/ M, S.Chanowitz. Phys.Rev,Lettc. 32, 977, I975.
/9/ K.K. Volkov, D.Ebert. JINR preprint, P2-I2959, Dubna, I980. /IO/ Partiole Data Group. Phys.Lett. : TRB, I, I978. /II/ V.M.Budnev, A.E.Kaloshin. Phys.Lett., 86I, 35I, I979.

