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At pre s ent t here exis t s everal a pproaches to s uper gravi t .y. 
All of t hem describe the same phys i cal probl em a nd t herefor e 
a re equ i va l ent in es s enc e. However , t hey di ffer in t he i r compl e­
xi t y and adequacy . 

The f irst s ucc es sfu l one has been t he so-ca lle d "component " 
approach (see Ref. /1 / and refe r ences therei n). Ther e supe r ­

gr avi t y group ha s be en r ea l ized as a gr oup of complicate d t rans­
f orma ti ons of a se t of ordinary f ie l ds. The transforma tion laIVs 
and t he invari ant ac t i on have s ki llf ul l y been guess ed wi t hout 
en t er ing deeply i nto t he cor r esponding geomet ry . Rec ently , 
despi te of gr eat t ec hni ca l dif f i culties , cert a in posit i ve r e ­
suI t s have been obtai.ned / 2/ ever; f or J{ =2 - ext ended s uper­
gravi t y. Howeve r, t he r a pi dl y i nc reasing complex1ty of such a 
s cheme ha r dly a llows one to proceed f ur t he r, f o r 11'> 2. 

An al ternat i ve f r amewo r k seems preferable . I t is bas ed on 
the concept of (curved) superspac e and i t s principal advantage 
c onsists i n using powe r f ul geome t r ic tools . One s uc h an app r o­
ach has been developed by Wess and Zumino / 31 (see also Re f . 
/4/ * ). They general i ze di rec tly all t he conc ep t s of differen­

t i al geome try ( s uch as vierbe i ns , c onnec t i ons, to r s i on , cur va­

ture, etc.) t o,.. the superspace {(X"', Sf<, e~)} . The 
gauge group includes t he s upergr oup of gene r a l coordi nat e t rans ­
f ormat i ons ( GCT) in supers pace and the bas i c super'f ields (po­
t en t i a l s ) i n t he th eory are t he s upervie r lJeins fA~ ( xlI) ffJ 
and s uperc onnections. Unfortuna tely, bot h t he group a nd pot en­
t ia l s are much l arger than the physica l si t uat ion r equires. 
'l'he r efore, th e bauGe has to be s trongl y f i xe d and a s e t of 
({,'Uessed ) a l gebraic cons t r a int s on t ll e components of tOl's i on 
have to be impos ed t o red uce t h e superflu ous f r eedom in t he 

** )theory • So, t he st r aigh t f or ward gene r a l i za tion of differ en­

- ) Hecent l y s ome pr~ ,ress nas been ach i eved in the .}J =2 ­
supergrovity cas e al s o I? • 


. .. ) In t lJe i r r ec ent papers c> iege l and Gates / 6/ and Ste ll e 

a nd West /7/ invest i gate the c lus s if i cat i on of constraints a nd 

searcll for possibl e r eCi pes for guess i ng t hem. Our opinion is 
that the main r ole of these cons t r aints i s t o ensure t he expres­
slbility of the t heory in t errna of the axial supe r field HIOt ( t o 
be discussed in t his talk ). 



tial geometry to supers pace does not provid e a ~inimal descrip­
t ion of supergravity. 

A minimal geometric s uperspac e approac h has been propose 
in 1976 /8/ a nd now completed for the case of U=1 - supergravi ­
ty / 9/ (see a lso t he papers of Siege l a nd Gates 11 0 /). He r e we 

are going to give an outline of this formula t ion of supergr a ­
vi ty. Its main features are: 

a) The approach is based on a clear a nd s imple geomet ric 
picture; 

b) The ga uge supergroup is as s mall as poss ible; 
c) Only a s ingl e axial superfield H'" (x,9,/J-) is intro­

duc ed as a n i ndependent dynamical variable. It is the minimal 
superfield capable of describing s upergravity multiplet, Its 
occurrence can be understood in the following way, In Yang-h.i lls 
theory the potentials are the connection coeff icient s .A,.,(x) • 
In general r elat .ivity the connection can be expressed in terms 
of a primal'y potential: the vierbein (or metric). In N=1 - super­
gravi ty there appears one more step, the prepotential HIM 
and the s upervierbeins as well as connections are given in te rms 
of its de rivatives; 

d) The coulponents of torsion and curvature are directly 

calculated in terms of the de rivatives of Htn. No constraints 
have to be imposed, they follow automatically from the initial 

ge ometric construction; 
e) The action principle is straightforward. The equation 

of motion is obtained just by simple variation of the action 
wi th respect to H"". Its left-hand side is an invariant tensor 

(the superanalogue of Rmfl-tglfOlI R in gene ra l relativity) 
and t he right-hand side is the supercurrent ( t he superanalogue 

of energy-morr:en tum tensor ). 
Now let us explain in brief these points. 

1) Supe r group. To start with, we shall repla ce the ordina­
ry real 4-14-dimensional superspace {( X"' , 9~ • (fA) ) by an 

8+4-dimensional superspace {(X:' ,61 ; x,t . af)} wh ere 
X,.'"' =(X~"')' is a complex space-time f ourvector coordinate 

and ~~ = (9/)+. Then our supergroup i s defi ned 1111 just as 
the GCT group in t he left {(X~'" elM)} as we ll as in the con­

j u gated right { (X,t',Gj)} supe~spac es : 
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LSS ~ 
I hi ,., - ,.,xt''1= XL 11'1-+), "'(~l~) X~ :: X -t ~ (X/l,B",) 

(n 
fj I If It, If/ - I ~ - ,.; - ,.;( )
OL=eL;'''lXLJ~) ell.=e~-t,..j xl{} B)l' 

where _. t 
01t

::\1II(XR,8 )-=- (.>.1'I(x{) e~)yj ),/f(X~J}~) =- ( XL, 8£)) . 
1t 

Owing to t he f a ct that the parameters;1 depend on 8.: 
(or this group is already much smaller than the GCTe.) only , 
group in the 4+4 -superspace. Moreover, it can be further 
restricted by the condition that the supervolume in LSS (as 

well as in RSS) should be preserved 

(2 )Be211 ?J(x/) 8,-1)//:: 1 
'(} (X~) e) 

(here Bel' means Berezinian or superdeterminant of transfo rma­

tions) or, infinitesimally, 

tJ \h'I 'd ~ 
~"'f"I - W Ii ::: a (2' ) 

The general group (1) corresponds to Weyl supergravity and the 
subgroup (2) to Einstein supergravity~ 

2. Gravitational Axial Superfield 

,., Ie ""O-';I{
Our 8-14 -superspace {(~ j 8.! ; XR J ~)J has four 

superfluous bosonic coordinates. When introducing the usual phy­

{ ( X /OIl (),"-'J one can put:sical 4+4-superspace 9"') 

X'\j ('x/\XA~) ejf~ e!) e"'= (j~ (3) 

and regard the remaininG fourvector (the imaginary part of 

~,..) as a function of the general form of X , ~ , (j 


X/'- X/,: .i t' H;" [i (X~ +Xtt) I 13<, J B;,) ::: 
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(4)=. .it'j-(Il. (x) 8; e) 

rather than as an independ ent coordinate. The geometric meaning 

of this trick i s quite 	c lear. Eq. (4) can be i n terpreted as 

equation of a 4+4-dimensional (curved ) hypersurface in t he 8+4­

superspace an d it i s t he way how the physical supers pace is 

embedded in the complex one. The supergroup (1), (2 ) is now 

real i zed no nlinearly with respect to 1-/'" 

X/~ =X,., -+ J ). ,., (Xi-,' H) e) + -j In., (x-" Hi 9) I 

eI}I ~ e11 -+ t1 /1 ( X'f( ,H) e)) 

81';= e'; -f X~(X-L'H) e)} 	
(5 ) 

H' 'Y< e; el)::= H fI1 (K ()J (fj-i).I'I1()(t l 'j{) 8)-+/X»C(K-{'H}B) . 
J 

The nonpolynomiality of these transformations can be avoided if 

a proper gauf,e is chosen (an analo!,rue of the WZ-r;auge in super­
s ymmetric Yang-Mills theory /12,9/). Then the remaining trans­

formations are just the ones discussed in the "component" 

approach: GCT, local Lore ntz and local supersymrnetry transforma­

tions ( all of them in 4-dimensional space-time). 

A comparison of different approaches is given in Table 1 

to illustrate the degrees of freedom involved. 

Table 

General SS I,iinimal SS 	 Component 
approac h approach 	 approach 

Fie 1 d V a ria b 1 e s 

Supervierbe ins Gravitational Gravi ton elt!Q.(x) I 
flo/A (XJJ, if) or 

1024 fie Ide 
a xial superfield 

H1>J(x, g, eJ or 
gravi tino </.1,.,,0( (.:j 
and auxiliary fields 

64 fields A",(x), ~(X) , P(X) 

or 2Q fields 

4 

G au g e P a I' a ill e t e r s: 

GeT in re a l S S 	 GeT i n LSS a nd GC T, local Lorentz 
RSS with super­ and local supersym­{(X) 9, 9)} or volume-preserva­ metry transformations 

128 gauge parameters tion condition in space-time or 14 
rDrentz supervierbein or 40 gauge para­ gauge parameters.- ­
group or 22 gauge meters. 
parameters. 
Altogether 224 gauge 
parameters. ­

1024 - 224=800(»24) 	 64-40=24=12+12 38-14=24=12+12 

3. Lorentz Supervierbein Group 

As can be seen in Table 1. we have no independent Lorentz 

supervierbein group. However, it is a useful concept, espe­

cially when developing differential geometry formalism. Now we 

are going to introduce superfields with Lorentz indices 

transfornling according to the law 

eft CPA -= i J2 cd (licc/)A BCPa . 	 (6 ) 

Here ,4~ (Q}oI}~) and l1 ed are the ordinary Lorentz-group 

generatore. The main peculiarity of Eq. (6) is that the para­

meters ..n. Cq('X/J,O} are not arbitrary superfunctions (as in the 

general SS approach ) but they are given by the parameters 

of our basic group (1), (2): 

()c d=i. ~~ca'J JI~ i.. A.lircJI<l. ;ri (7) 

......1"'- If ~ / 01. :! 'i" 't {J C(, \l -';..1 ) 

( 8 ) 
A ~ ''D k'" f JI 'I 	 d) uY-la - IA ) f 

/..lol= ~e« + L'diOi LO"" -wh\ n ~Xll) £l cit =L<1"" • 

In other words, our local (in supers pace ) Lorentz transformations 

are locked to the world-euperspace ones. Thus , we can benefit by 

the technical advantages of considering Lorentz-like objects 

without introducing an additiona l gauge freedom. 
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It should be mentioned that the law (6 )-(7) was not just 

invented; it \'las extracted from the transformation properties of 

the derivative 'a t:p' in a certain basis in superspace (see 
Ref. 1')1). 7r901. 

4. Differential Geometry. Having defined our world-super­


space group (1), (2) and the local Lorentz one (6), (7), we can 


proceed further in developing the differential geometry forma­


lism. First, we introduce the concept of covariant derivatives. 


4.1. Spinor covariant derivatives: 

E Mr;; m C (9 )7>/:\ CPs = Cl(. 'DZM T8 + We( B <:PC 

Here z::'(X,e,e) B= (~,}J)JM~(""/f)';}; ~"'and WtlS C 
are super­

vierbeins and connections with standard transformation laws. 

All of them can be expressed in terms of )( ... , e.g., 

f/'= ft.~ E/=Q Eo<. 
In 

:: L 
. 
F£10( )( "" 

) )'" ol ) (10) 

Lval..}~:: (fo(J E"/rr!'+ Eol¥~rI')t:/1.F , 

where *) 

-F::: 2 j [ de f116 oQ Kft"'/!J ~ ~[de f III~~ H~!} ~ (11 ) 

1f.2. Vector covariant derivatives. The most natural (although 

not unique) way to define them is by direct generalization of the 

corresponding flat-supersymmetry relation 

*) .if.;In ref. I!J 1 the normalizing factor in Eq. 

(11) was absent. It is needed to have familiar flat-super­


space limit in the theory. 
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" "-«ol [ --;: 2.:2) Q. :: Cj (Ja. Qlc(.) 0;u- (12 ) 

Tbis cboice causes cer t a in formal diff e rences witb the r esults 

of Ref. /131 wbich we sball d iscuss below. 

1 4.3. Torsion and curvature. Tbey are defined by t he (anti ) , commutator (TINe and Rill" E. are t he tensors of t o rsion a n d 

curvature, respectively) 

['bA)'blJ] ~=~8CZ,C ~ -t RA/,:/J E <PE (13 ) 

III 
and tbus can be simply calculated in te:rn.s of H • iiere are 

SOLle examples. 

The c omponents of torsion tensor with all indices being 

spinorial vanish. The components lr~ remain t he same as in 

flat supersymmetry 

_C Q' C
Ie<} :::'-.<. l. frcJ..j 

1f 
The components ~t have a 

1f i If. ) If 11rTete =t( \.061 «. R ) 
The rest components are 

(14) 

s imp l e fo rm 

R ":::.tJ"'tJD( (Flj. (15) 

either zero or are expressed in 

te~ of" t ~l C ~siC super:fields G",ol (x" OJ iiJ and W-!JI1r(1(,,~ 07. 
Wt!iji (X,9)9J (the latter are totally s ymme t r iC in their 

indices and chiral). They are connected by means of Etianch i 

identities /131 whicb occur in our case just as Jaco bi iden­

tities for double (anti) c OllllllUtators (see Eqs. (13). (12». 

Here we give SODie o:f t hes e compor..ents. e.g•• 

Y' "¥'i 
TolD = - ~ ~(J)"'i r; J~ (16) 

..r. .I - - jJ ~I-" --" ~ - -' _
Gal.(. =F{11 WOl«.J +WGtei ~ QI{ r /1-W r?t.fW "'" (11) 

7 



-1J oI. rf~~ & (f'l,-tJ-tlFdoi e,FIJ~&.~)+Htr",. ('~i 
The results obtaine d turn out to agree wi th the constraints 

of Vless and Zumino except for a nonprincipal difference. The point 
is that our definition (12) of vector covariant derivative fixes 
the values of the vectur connection w ;3 and (as followset 
from Eq. (13» of the curvature component Ro(OI. fa:: 0 . Howe­
ver, one can redefine Wit fS- by adding a certain tensor (thus 
not changing the transformation properties of LUa. f3 ); 

W~!1 ~ Wa. P3- + A Ed F~(?~ d/.O<CO<O( (18 ) 

where A is a constant. So, one can change the value of WQ. fa 
in order to reproduce exactly the WZ-resul ts (if necessary) . 

5. Action Principle. As we have seen above, in our approach 
all the quantities such as supervierbeins, etc.,have been expres­

sed manifestly in terms of a single superfield H"'. This c irc uro- · 
stance . appears to be especially important when di.scussing an 
action for supergravity which has the form /14/ 

g = ~tJcI/(xore BezIIEMAI/-+ 
( 19 ) 

-+JoI~x ,tie Be, II EMA// ;;t (cp)7Je<:p) 

Here de is the gravitational coupling constant and ~ is 
some matter Lagrangian with its derivatives replaced by cova­

riant ones. Now, the difficulties arise in the general super­
space approach /14/ when one has to vary this action to obtain 

equations of motion. These difficulties are due to the fact 

that the supervierbeins t:ft(A are not independent variables. 
In the general SS approach /14/ they are subject to the const­

raints on torsion. So, the variational procedure can not be 
straightforward; the constraints must be taken into account /14/. 
This is a rather nontrivial task , espeCially when matter is 

pres ent • A In 
In our case E/I{ are the functions of H and the direct 

variation of H~ produces the desired equations. 

Note that the explicit calculation is significantly simp­

8 

lified in a spec ial gauge. \·/ e call it "normal" due to its ana ­

logy with the so-called "normal coordinates " i n general rela­

tivity . The coordina te f rame can be chosen s o that at a certain 

poi nt 20 = (Xo) 80) ~) in s upeI'space 

H"'/o =0) i)/yH"'!o=O) 9)1rcJK /lPZ:: 0 (20) 

except for 

In'dy~) ff'" 10 IfVA' ( 2 1) 

also the connections vanish at this point 

WAa C=O. (22 ) 

This gauge is very convenient in a nWTlber of applications, no t 
only here. 

The equation of motion for supergravity is thus obtained 

in the form 


(23 )
Co(~ ae 2 VcX~ 

torsion component (17); supercurrent; 
analogue of R,.", - t,..... R analogue of energy ­
in general relativity momentum tensor Tit/II. 

This simple form (23) was suggested in 1'976 when the reali ­
zation of the idea that supergravity was the theory of an axial 

superfield generated by the supercurrent s tarted . The correct ­

ness and fruitfulness of this idea is now completely confirmed. 

We would like to stress that Eq . (23 ) is the only equa­

tion uf motion. The second one, R= 0 , mentioned in the case 
of pure supergravity by Wees and Zumino /14/ cannot be repro­
duced. In this case we have only 

R.:: ~/uf (24 ) 

as a corollary of Eq. ( 23 ) \"lith Vo{~ =0 • ilote, that a non­

vanishing constant in Eq. (24) corresponds to a t heory with t he 

cosmological term. This peculiarity is c onnected wit h the fact 
that in our case the auxiliary field ., (>() j s in fact the di ­

vergence 'd~ f~of a vec tor fi e ld S "'(A) in the decolllposi t i on of 

k ltt (x/9,9) /9/. 11he presence or a bsence of t he cosmological 

term is thus related to the behaviour of HM at la rp,e X 

9 



In conc lus ion we ahal l point out tha t one can introduce 
chi ral supe rspaces and axia l s uperf i e l d H"" in th e extended­
supergravi ty case t oo / 11/, However , t here kl>l is not more t he 
mi ni mal supe r f i e l d descri bing the correspond i ng s upergravi ty 
mult iple t . It shoul d be , perbaps, const ra ine d in a c ertain way, 
AnyhDw, even i n extended supergravi t y H~ is much mDr e simple 
objec t t han the s upervierbeins and connec t ions . 
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