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At present there exist several approaches to supergravity.
411 of them describe the same physical problem and therefore
are equivalent in essence. However, they differ in their comple-
xity and adequacy.

The first successful one has been the so-called "“component"®
approach (see Ref., "/ and references therein). There super-
gravity group has been realized as a group of complicated trans-
formations of a set of ordinary fields., The transformation laws
and the invariant action have skillfully been guessed without
entering deeply into the corresponding geometry. Recently,
despite of great technical difficulties, certain positive re-
sults have been obtained /2/ even Tor N =2 -~ extended super-
gravity. However, the rapidly increasing complexity of such a
gcheme hardly allows one to proceed further, for Nyo,

An alternative framework seems preferable., It is besed on
the concept of (curved) superspace and its principal advantage
consists in using powerful geometric tools, One such an appro-
ach has been developed by Wess and Zumino /37 (see also Ref,

/4/ *). They generalize directly all the concepts of differen-
tial geometry (such as vierbeins, connections, torsion, curva-
ture, etc,) to,.the superspace {( X”‘, 6‘" . gﬁ)} . The
gauge group includes the supergroup of general coordinate trans-
formations (GUT) in superspace and the basic superfields (po—
tentials) in the theory are the supervierbeins E;:‘(X,Q,é)
and superconnections, Unfortunately, both the group and poten-
tials are much larger than the physical situation requires,
Therefore, the gauge has to be strongly fixed and a set of
(puessed) elgebraic constraints on the components of torsion
have tg be imposed to reduce the superfluous {reedom in the

*
theory » 30, the stiraightforward generalization of differen-

and West

*) Recently some progress nas been achieved in the N =2 -

supergravity case also 5j.

" In their recent papers Siegel and Gates /64 and Stelle
/1/

investigate the classification of constraints and

search for possible recipes for guessing them, Our opinion is
that the main role of these constrainis ie to ensure the expres-
8ibility of the theory in terms of the axial superfield H™ (to
be discussed in this talk).

o ———
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tial geometry to superspace does not provide a minimal descrip-
tion of supergravity.

A minimal geometric superspace approach has been proposed
in 1976 /8/ and now completed for the case of li=1 - supergravi-
ty /91 (see also the papers of Siegel and Gates /10/). Here we
are going to give an outline of this formulation of supergra-
vity. Its main features are:

a) The approach is based on a clear and simple geometric
picture;

b) The gauge supergroup is as small asg possible;

¢) Only a single axial superfield HM(X,B)g) is intro-
duced as an independent dynamical variable, It is the minimal
superfield capable of describing supergravity multiplet., Its
occurrence can be understood in the following way. In Yang-lills
theory the potentials are the connection coefficients qulk)-
In general relativity the connection can be expressed in terms
of a primary potential: the vierbein (or metric). In N=1 - super-
gravity there appears one more step, the prepotential }f”‘ .
and the supervierbeins as well as connections are given in terms
of its derivatives;

d) The coumponents of torsion and curvature are directly
calculated in terms of the derivatives of ff"‘. No constraints
have to be imposed, they follow automatically from the initial
geometric construction;

e) The action principle is straightforward. The equation
of motion is obtained just by simple variation of the action
with respect to H". Its left-hand side is an invariant tensor
(the superanalogue of Rmn~}g,.,,, R in general relativity)
and the right-hand side is the supercurrent (the superanalogue
of energy-momentum tensor),

ow let us explain in brief these points.

1) Supergroup, To start with, we shall replace the ordina-
ry real 4+4-dimensional superspace {(X", gr é-ﬁ)} by an
8+4~dimensional superspace {(X:‘ ' BF s ;(;' . é}“)} where
XZ": C&f?' is & complex space-time fourvector coordinate
and E: = (q{)+. Then our supergroup is defined /11/ just as
the GCT group in the ngt iZX[ié&”)f ag well as in the con-
jugated right {()&r,éaﬁv superspaces:

LSS 220
X "= x4 A"04,4) Xe "= X" A (4R, 65)

1)

K Sk Gk, TA
6, =6,"+4 (%,6,) 9,2 =Ggt A" (%, 6)>

where ; o . 2
/\M(XR)BR): (/\/"(X('et))f) Ah[xﬁ) 9R) :é\ (Xt’/g(}) *

Owing to the fact that the parameters /) depend on 62
(or 6;) only, this group is already much smaller than the GCT
group in the 4+4 -superspace., Moreover, it can be further
restricted by the condition that the supervolume in LSS (as
well as in RSS) should be preserved

{ 6 1 >
Bez | %(c)z:, 93)// -1 *

(here Ber means Berezinian or superdeterminant of transforma-
tions) or, infinitesimally,

%‘MAM—LAR:O. (2v)

h

The general group (1) corresponds to Weyl supergravity and the
subgroup (2) to Einstein supergravity,.

2, Gravitational Axial Superfield

maok, . m FH
Our 8+4 -superspace {(X‘ x 6,"; xg, O )} has four
superfluous bosonic coordinates. When introducing the usual phy-
sical 4+4-superspace [(XM, 9;‘9")} one can put:

X"} sxg), "= 8/, "= 8% (3)

and regard the remaining fourvector (the imaginary part of
)(‘h') as a function of the general form ofX , 8 , & :

XL"‘-X‘b‘: ft‘Hm[fl(X(*)ﬁ); 9{1 g:]:



=9 M (X, 8,8) (4)

rather than as an independent coordinate. The geometric meaning
of this trick is quite clear. Eq. (4) can be interpreted as
equation of a 4+4-dimensional (curved) hypersurface in the 8+4-
superspace and it is the way how the physical superspace is
embedded in the conplex one. The supergroup (1), (2 ) is now
realized nonlinearly with respect to H :

XIM:XM-+1!'/\M(X+L'M’9)+I' ,TM[X—C'H;E),
o'fs gH+ AH (x4 K, 9))
é:ﬁ:g};+§ﬁ(x—c’H, ),

(5)

H "G o0 @)= H™(x,8,8)-f A "(xeck 8)+f T(cH )

The nonpolynomiality of these transformations can be avoided if
a proper gauge is chosen (an analogue of the WZ-gauge in super-
symmetric Yang-kills theory /12’9/). Then the remaining trans-
formations are just the ones discussed in the "component™
approach: GCT, local Lorentz and local supersymmetry transforma-
tions ( all of them in 4-dimensional space-time).

A comparison of different approaches is given in Table 1
to illustrate the degrees of freedom involved,

Table 1
General SS liinimal SS Component

approach approach approach

Field Variables

Sup%rvierbeins Gravitational Graviton e”f(xj,
Ey (x,6,8) or axial superfield gravitino ¥, 4 (x)
1024 fielde - H™(x,8,8) or and auxiliary fields

64 fields Amlx), 3(x) , p(x)
or 38 fields

Ganuge

Paramet er a3

GCT in real SS

{(X, 9, 9)} or

128 gauge parameters
Iorentz supervierbein
group or 96 gauge
parameters,
Altogether 224 gauge
parameters,

GCT in L3S and

GCT, local lorentz

RSS with super- and local supersym-
volume-preserva- metry transformations

tion condition

meters.

in gpace-time or 14
or 40 gauge para-  gauge parameters.

1024 - 224=800(»24)

64~40=24=12+12

3. Lorentz Supervierbein Group

38-14=24=12+12

As can be seen in Table 1, we have no independent Lorentz

supervierbein group. However, it is a

useful concept, espe-

cially when developing differential geometry formalism, How we

are going to introduce superfields with Lorentz indices

transforming according to the law

I Pp = 5~QCd(ACa/)A8qJB '

Here /}l(a,a(,o'i) and Aca/ are the ordinary Lorentz-group

generators, The main peculiarity of Eq. (6) is that the para-

(6)

meters hfzcdﬁgﬁ,é) are not arbitrary superfunctions (as in the

general S3 approach) but they are given by the parameters

of our basic group (1), (2):

_.QCO(:"% A%ca{}e{ﬁ’lf T ?L‘ 84 (&qujé Iﬁ)

A,¢=9/égd+l:?r:£ (d]mq"'am/"y-,’%x" , da=(@)”.

In other words, our local (in superspace) Lorentz transformations

(7)

(8)

are locked to the world-superspace ones. Thus, we can benefit by

the technical advantages of considering Lorentz-like objects

without introducing an additional gauge freedom.



It should be mentioned that the law (6)-(7) was not just
invented; it was extracted from the transformation properties of

the derivative @:2 in a certain basis in superspace (see
Ref, /9/) bl

4, Differential Geometry. Having defined our world-super-
gpace group (1), (2) and the local Lorentz one (6), (7), we can
proceed further in developing the differential geometry forma-
lism, First, we introduce the concept of covariant derivatives.

4.1, Spinor covariant derivatives:

M
Du Ps = £ %M Ps +wys C P, (9)

. y M c
Here Z:(X,G,g)) Rz (ﬂﬁ{ﬁ))M:[n,mﬂ}; g E‘ and U} g are super-
vierbeins and connections with standard transformation laws,
All of them can be expressed in terms of /fh', [Py -]

Edf'z ,coy‘) £.r= 0, E = ( Fdy K

(10)
Wapy = (60{; Exg ‘-Coéb’fad‘)(]ff :

where *)

= 2Tz[a/ef//dSQA—H"/‘/]J/’[,,/?{//[@'A H"‘//]//‘f (1)

4,2, Vector covariant derivatives. The most natural (although

not unique) way to define them is by direct generalization of the
corresponding flat-supersymmetry relation

* 4
) In ref, /37 the normelizing factor 4? in Eq.
(11) was absent. It is needed to have familiar flat-super-
space limit in the theory.

4

Zq_:é éidufﬁdjﬁ,z} (12)

This choice causes certain formal differences with the resultis
of Ref. /13/ which we shall discuss below,

4.3, Torsion and curvature. They are defined by the (anti)
conmutator (T“c and RABQE are the tensors of torsion and
>

curvature, respectively)
c E
[24,253 q% =T4g Dc B+ RAa,z CPE (13)

and thus can be simply calculated in terms of }{'n . ilere are
sone examples,

The components of torsion tensor with all indices being
spinorial vanish, The components 1?5: remain the same as in

flat supersymmetry

T‘,‘; :—,Qt:()"ofj . (14)

¥
The components 7&@ have a simple form

-2

Tag :?L(G"e)a XR*) R*=4%. (FY- (15)

The rest components are either zero or are expressed in
terms of the basic superfields G,(,z (X,E) 8) ana w.g,,(x,a,i),
HZQ'i (x19)6) (the latter are totally symmetric in théir
indices and chiral). They are connected by means of Bianchi
identities 13/ which occur in our case just as Jacobi iden-
tities for double (anti) commutators (see ¥gs. (13), (12)).
Hlere we give some of these comporents, e.ge.s

sz:‘%69)°? @r) (16)

. e 8 ==, —p
Gaz.'(=‘F[4"wo? + Wy, {,(("F)fuwf,‘zﬁ-w’#- o

@



= B[ Fdan (FFr ]+ 2Fdu rfdynt f + Heon Gy

The results obtained turn out to agree with the constraints
of Wess and Zumino except for a nonprincipal difference. The point
is that our definition (12) of vector covariant derivative fixes
the values of the vector connection lAJQ f} and (as follows
from Eq. (13)) of the curvature component Rq’a'l f3= O . Howe-
ver, one can redefine Lua_fg by adding a certain tensor (thus
not changing the transformation properties of U41i3 ):

CUG'L;;: W, Pg’-{- AEag 7036.‘:?) o'(o(cd& " (18)

where )4 is a constant. So, one can change the value of U)a;’
in order to reproduce exactly the WZ-results (if necessary).

5, Action Principle. As we have seen above, in our approach

all the quantities such as supervierbeins, etc.,have been expres-

m .
sed manifestly in terms of a single superfield ff . This circum—

stance. appears to be especially important when discussing an

action for supergravity which has the form 714/

g :a—g‘fc{"xo/”e Bez//E,.,A//-f
+f0{‘rx,>/"8 Eez//E,f//f(@,'Z’qu]°

Here of is the gravitational coupling constant and QZi is
some matter Lagrangian with its derivatives replaced by cova-

(19)

riant ones, Now, the difficulties arise in the general super-

space approach 714/

equations of motion, These difficulties are due to the fact

when one has to vary this action to obtain

that the supervierbeins E;f are not independent variables.

/14/

In the general SS approach they are subject to the const-

raints on torsion. So, the variational procedure can not be
straightforward; the constraints must be taken into account /14/.
This is a rather nontrivial task, especially when matter is
resent.

’ In our case Eséq are the functions of f{ln and the direct
variation of f(”i produces the desired equations,

Note that the explicit calculation is significantly simp-

y

o

lified in a spacial gauge. We call it "normal"™ due to its ana-
logy with the so-called "normal coordinates" in general rela-
tivity. The coordinate frame can be chosen so that at a certain
poirt Z, = (Xa) ea) 60) in superspace

My m m
H /,—0)9”/{ /0=0) 9,4/9;<// /=0 (20)
except for
Y m m
9,9 H™| w0 (21)
also the connections vanish at this point

This gauge is very convenient in a number of applications, not
only here.,
The equation of motion for supergravity is thus obtained
in the form
6? R 2 L/ . (23)
ol — € Vo
torsion component (17);
analogue of R,h~£7~.k

supercurrent ;
analogue of energy -

in general relativity momentum tensor 7;nn

This simple form (23) was suggested in 1976 when the reali-
zation of the idea that supergravity was the theory of an axial
superfield generated by the supercurrent started. The correct-
ness and fruitfulness of this idea is now completely confirmed.

We would like to stress that Eq. (23) is the only equa-
tion of motion. The second one, R=0 , mentioned in the case
of pure supergravity by Wess and Zumino
duced. In this case we have only

R: COAQ{' (24)

as a corollary of Eq. (23) with Vyy =0 . Note, that a non-
vanishing constant in Eq. (24) corresponds to a theory with the
cosmological term. This peculiarity is connected with the fact
that in our case the auxiliary field 4(x) is in fact the di-
vergence 9,, f"of a vector field S‘"(x} in the decomposition of

HM(XIB,g) /9/. The presence or absence of the cosmological
term is thus related to the behaviour of }(h at large X

cannot be repro-



In conclusion we shall point out that one can introduce
chiral superspaces and axial superfield HM in the extended=-
supergravity case too » However, there H™ is not more the
minimal superfield describing the corresponding supergravity
multiplet. It should be, perhaps, constrained in a certain way,
Anyhow, even in extended supergravity Hm is much more simple

object than the supervierbeins and connections.
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