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1. INTRODUCTION 
The Feynman integrals are subject of constant interest of 

both physicists and mathematicians already for thirty years. 
Especially in the last decade a substantial progress has been 
achieved in mathematical theory of functional integration/1,2/. 
Since the path integrals cannot be treated in terms of the 
measure theory / 3 /, various alternative definitions (reviewed 
in Refs. / 1 , 8 /' ) have been suggested. An important role among 
them plays that of Albeverio and Hoegh-Krohn/1-4/ which em
ploys a Parseval-type equality on the Hilbert space of paths. 
The more general definition of Dewitt-Morette /2,5,6/ reduces 
to the previous one if the path space is not merely a locally 
compact Hausdorff but a Hilbert space / 7 / ; we shall therefore 
abbreviate this definition further as DAH. 

Truman''7,1' has shown that the DAH-definition can be extended 
to a wider class of functions via limiting procedure with 
polygonal approximation of paths. This method is unlike the 
standard sequential-limit expression for path integrals (cf., 
e.g., / 8 i 9 / or'' 1 0 /, sec.X.11) and more close to Feynman's heur
istic considerations''11'' because it deals with the exact clas
sical action on polygonal paths instead of its Riemannian ap
proximation^8'' . It suggests also a way how to connect the 
DAH-type definitions with the other main line in functional 
integration based on analytic continuation of the Wiener in
tegral''13'' . 

For the simplest case of quantum-mechanical particle in one 
dimension Albeverio and Hoegh-Krohn use a path space which we 
shall denote as AC0[J ;/?] . It consists of all absolutely con
tinuous real-valued functions у on J =[ 0, t] such that y(t) = 
= О and the derivative у belongs to L (J ; R ) ; the inner pro
duct is defined as follows 

t 
( y i , y 8 ) = / n ( r ) y 2

( r ) d r - ( 1 ) 

However, Truman objects to this definition that it needs to 
factor out all the singularly continuous paths , r , / . He proposes 
as an alternative to replace у by the weak derivative and de
fines the path space via trigonometric series: yQ K T(J l; R ) iff 
there exist real a0, fanl , fJ8nl, 2(a£+/9£) < », , such that 
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y ( r ) - « 0 < r - t > + 5 ^ » i r t n ( ^ 5 L ) + s | £ < l - « < £ = - > > ( 2 , 

for a l l тe J ' . The inner product ( . , . ) T i s g iven by 

(y,y ') = t « a ' + 4 - 2 (a a' +/3 /3') . (3) 
" ' т 0 0 2 n = i n n ' n ' n 

This definition is intended to give an extension of АС„и';Я]. 
If it would so, serious problems would arise. Firstly, the 
Feynman-Ito formulae derived in Refs. / 1- 7 / would represent 
different assertions connected nontrivially by the Fubini the
orem. Secondly, one would be obliged to give meaning to the 
classical action on singularly continuous paths. 

We shall prove, however, that this is not the case. Both 
the Hilbert spaces coincide, and this assertion generalizes 
easily to n degrees of freedom. Truman's proposal may be thus 
regarded as a useful equivalent expression of the conventional 
Hilbert space of paths. 

2. SOME NOTATIONS 

C 0[J l; R] = \y.3t-*R:y continuous in J', y(t) = о 1 ; 
АС„[;Г1; R]=\y€C0[3t; R]:y absolutely continuous, у 6 L2(J ' ;R) t ; 
y, derivative of y: y(r)=lim h~ (y(r+h)-y(s-)) • 

t h-»0 t yw, weak derivative of y: /yw(r)^(r)dr = -{у{т)ф{т)йт for 
all фЯС0[3 ] , where the last symbol denotes the set of 
all infinitely differentiable functions with a compact sup
port contained in J 1; 

Sjfr)=aQ + n2 ia ncos(_ r-) + n2 i /8 nsin(- r-) ; 

Уга. L -norm l i m i t of I s N I: y m = s - l i m s N ; 

у . p o i n t w i s e l i m i t of I s N f : у (т) = lim s N ( r ) whenever the l i 
mit e x i s t s ; N _ M 0 

К т = Н т ( 1 1 ; 1 г ) з е е ( 2 ) , (3) ,• 
AC 0[ J 1 ; R»]=AC 0 [ J l ;R] • . . . • AC 0 [ J l ; R ] , Hi lber t space o f Re

valued f u n c t i o n s which belong componentwise t o AC 0 [ J ' ; R], 
analogous ly M T (J l ; R °) equals t o d i r e c t sum of n i d e n t i c a l 



copies of K T(J ; R): the coefficients a 0 l ott, /SB are ele
ments of •* in this case and their products are replaced 
by *"-inner products 

3. AUXILIARY STATEMENTS 

Proposition 1: M T is real separable Hiltoert space, 
МТСС0[1*:*Ь 

Proof: bet us take an arbitrary у from Я T ; it is clearly re
al-valued and y(1) - O. Further ciie inequality 

- o_t я •" l«.|t - „ 1/2 » .* 1/2 v £l B i n(.E31)< X 1"L<( J «J ) < X - i — ) 
•~12m t » = 1 2m B=I • » = 1 4 A 2 

holds together witb an analogous estimate for the other series 
in (2), thus both the series are majorized by convergent г -
independent series and converge therefore uniformly in J'. 
Continuity of the partial sums implies now continuity of у . 

X T is a real vector space with respect to addition and 
scalar multiplication defined in the standard way. If у = О, 
then y(t) • О gives a 0 = о and 

y{r) «A- + I A . o o » ( ^ - ) + Г B m e ln ( -^- ) = 0 
»«1 t n=l * 

t " Pnl anl 

holds for a l l rCJ , where - * « * 2 \ , A m = — , B,= — . •=1 zan Z«n 
The interval J is closed so that continuity of у implies 
its integrability. The Fourier coefficients of у are thus 
uniquently given; it means that the mapping lo Q, J a n \ , \Pu\\-*y 
is bijective. Then the mapping (.,.) T : K TxH^-* R is an inner 
product and the exictence of an isomorphism between K. and 
f (ft) , the Hilbert space of real square-summable sequences, 
is easily established. a 

Proposition 2 (Dirichlet-Jordan theorem) : Let f G L(J ; R) have 
a bounded variation in an interval [u.v]c 3 * , then 
(a) for any rC[u,vl the Fourier series of f converges to 
H(f(r+0)+f(r-0)), 
(b) moreover, if f is continuous, then the convergence is 
uniform in each closed subinterval С (i, v) . 
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Proof is standard and may be found in textbooks (cf. e.g., 
Ref. / 1 4 / , theorem 185). 
This statement has the following easy consequence: 
Proposition 3: Let f CL(Jl;<?) have a Fourier series 

a0+ 2 ancos(-j—)+ 2 вавт(-^—) (4) 

(which is not assumed to converge in any sense), then the 
function 

F:F(r)= / f(f)df-a0r 
0 

fulfils F(0) = F(t) =0 = 0 and its Fourier series 

~ V . ,8япг . ~ / V ,, „ . 2imr 
2 —-—sm( )+ 2 — (l-cos(—-—)) (5) 

n=l 2rm t n = l 2)711 t 

converges to FU) uniformly in J . 
Proof: Since fcL(J ; R ) , F is absolutely continuous, thus it 
has a bounded variation in any bounded interval. Clearly 
F(0) = O, further a„ =-£-/f(£)df implies F(t) = o. Accord-

1 0 
ing to Proposition 2 continuity of F implies that its Fourier 
series converges to F(r) for any rGJ 1, moreover uniformly in 
J 1 , because F(0) = F(t) and Proposition 2 may be by the 
same right applied to the periodic extension of t , say to the 
interval [-t, 2t]. The Fourier coefficients of F are obtained 
through integration by parts 

Ы 
2m 

at 

A„= i. ̂ F ( r ) e o s ( j 2 5 L _ ) d f _ J , J_/f(r)Sj„(j£n!)dr. 

and analogously Б. =-^—. Finally F(0) = О implies Ao=-2An. 
ляп n=l 

Proposition 4; AC 0[J l; R ]cK T > 

Proof: If yeAC0[j';R), then y(r) exists a.e. in j ' and 
у eL8(j'; R)cL(J*;R). Consequently, £ is L8-norm limit of 
some sequence fs Ml with 2(a2 +fl2) < ( J O a n d i t s Fourier series 

n П П D 
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is of the form (4). Proposition 3 applied to f = у states 
that F(r) = y(r)-y(0)-a0r equals (5). Finally F(t) = y(t) = 
= О gives y(0) = -a 0t so that у€Й т. • 
Proposition 5: The function y_ is defined a.e. in J and 

Vp(r) = ут(т) for almost all r € J 1 , if 2 Uj|+/3Jj) < ~. 

Proof: The first assertion was proved by Carleson / 1 6 /; it is 
worth mentioning that it represents the solution to the highly 
nontrivial problem formulated by Luzin in 1915 (cf.Refs.16,17 
for more details). It holds therefore уЛт) = limsN(r) for 

t N-*°° 
all r€ J - M p f m(Mp) = O, being the Lebesgue measure on R . 
On the other hand, ym= s-lim s N implies that there exists a N* fo r a l l r€ J l -M subsequence l s N 1 such t h a t у ш (г) = lim SJJ (r) J.UI a n /^a ~"'m 

m(M ) = О ( c f . , e . g . , R e f . / 1 7 / , s e c . V I I . 2 ) . Consequen t ly , 
(rT = y m(r) for all fCj'-CMpUM,,,). P 

4. THE MAIN RESULT 

We have verified up to now that the elements of K T are 
continuous (and therefore interpretable as paths) and that 
each у 6 A C Q [ J ;R]is contained in л т so that И т might repre
sent an extension of the conventional path space. Now we shall 
prove the statement indicated in the introduction. 
Theorem: (a) The Hilbert spaces M T(J l;R] and AC 0[J l;R]are 

identical. 
(b) The functions у , y w, Ym г У* exist and equal 

mutually a.e. in J for any y c H T . 
Proof: Let у be an arbitrary element of К т corresponding to 
\a о , \aa], i/3n H , S(a2+/32

n) < <» , then there exists 
y m e L2(J*;/?)GL(J';W? Proposition 3 applied to the function 

P:F(r)= /y m(£)df-a 0r 
0 

asserts that F(0) = F(t) = 0 and F(r) is expressed by (5), 
•together with (2) it implies 

y(r)-a0(r-t)+F(r)=-a0t+/ym(£)<U 
0 
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so that у is absolutely continuous because у 6L(j';R). 
Then у is differentiable a.e. in J* and 

y(r) - ym(r) for almost all rbJ1 . (*) 

Further y mGL 8(J»;R), y(t) = О gives K T C AC0[J*; R] and both 
the sets are qual due to Proposition 4. Truman / 1 8 / proved 
that y« exists and equals y m a.e. in J* . Combining this 
result with (*) and Proposition 5, we obtain the equality 

y(r)-y w{r)-y m(r) =y p(f) a.e. in J* (6) 

for each у б К ^ which proves (b). It remains to verify that И т 

and AC 0[i (; R] are equal as Hilbert spaces. The relations (1), 
(3), (6) together with the Parseval equality imply 

||y||8 = /y 8(r)dr=||y ml| 8=ta 8
0 +|- 1(«* +/3*> = 1Ы1* т; 

proof is completed by the polarization identity. • 
In view of the definitions of the path spaces for n > 1 

the proved theorem implies immediately: 
Corollary: The Hilbert spaces KT(J ; Rn) and AC 0[J ; R ] are 

identical. 

REFERENCES 
1. Albeverio S.A., Hoegh-Krohn R.J. Mathematical Theory of 

Feynman Path Integrals, Lecture Notes in Mathematics. 
Springer-Verlag, Berlin, 1976, vol.523. 

2. Dewitt-Morette C., Maheswari A., Nelson B. Phys.Rep., 
1979, 50, p.255-372. 

3. Cameron R.H. J.d'Anal.Math., 1962/63, 10, p.287-361. 
4. Albeverio S.A., Hpegh-Krohn R.J. Feynman Path Integrals 

and the Corresponding Method of Stationary Phase. Preprint 
CNRS 78/P.1066, Marseille, 1978. 

5. Dewitt-Morette C. Commun.Math.Phys., 1972, 28, p.47-67. 
6. Dewitt-Morette С Commun.Math.Phys., 1974, 37, p.68-81. 
7. Truman A. J.Math.Phys., 1976, 17, p.1852-1862. 
8. Nelson E. J.Math.Phys., 1964, 5, p.332-343. 
9. Combe P., et al. Rfep.Math.Phys., 1978, 13, p.279-294. 
Ю . Reed M., Simon B. Methods of Modern Mathematical Physics 

II: Fourier Analysis. Self-Adjointness, Academic Press, 
New York, 1975. 

С 



11. Feynman R.P. Rev.Mod.Phys., 1948, 20, p.367-387. 
12. Truman A. J.Math.Phys., 1977, 18, p.1499-1509. 
13. Truman A. J.Math.Phys., 1978, 19, p.l742-1750j 1979, 20, 

p.1832-1833. 
14. Jarnfk V. Integral Calculus II (Czech). Czech.Acad.Sci. 

Publ., Prague, 1955. 
15. Carleson L. Acta Math., 1966, 116, p.135-157. 
16. Mozzochi C.J. On the Pointwise Convergence of Fourier 

Series, Lecture Notes in Mathematics. Springer-Verlag, 
Berlin, 1971, vol.199. 

17. Kolmogorov A.N., Fomin S.V. Elements of the Theory of 
Functions and Functional Analysis (Russian). Nauka, 
Moscow, 1972. 

Received by Publishing Department 
on March 31 1980. 

7 


