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1. INTRODUCTION 
When dealing with relativistic wave equations for fields 

with spin greater than one / 1> 8 / inconsistencies and difficul
ties arise connected with problems for including external fi
elds / 3 / , quantization / 4 /, positivity and existence of states 
with nonphysical masses / & / (a comprehensive list of references 
is given in ref. ). In the last years, self-consistent equa
tions have been proposed for fields with spins S = 2 7', 5/2 / 8 / 

and 3 . So, if fields with spin greater than two are consi
dered, it is necessary to include auxiliary fields. However, 
the theory based on these equations is nonrenormalizable. Ano
ther way to avoid the above-mentioned difficulties was propo
sed in paper / i a / . There, the main requirement for the writing 
of first order relativistic equations was the correctness of 
the Cauchy problem, i.e., nonsingularity of the coefficient of 
the time derivative. In the last case, it is necessary to con
sider reducible representations of SL(2, C) group and the mass 
operator is a degenerate matrix. In such a way, it is possible 
to construct a great number of relativistic first order equa
tions. However, the method for explicit writing of these equa
tions given in /1*>/ is connected with great technical difficul
ties. 

In the present paper another method of constructing self-
consistent relativistic equations for the fields with arbitra
ry spin is given. These equations can be transformed, without 
any difficulties, in the form of equations proposed in / 1 0 / . 
Our method is based on the following assumptions: 

(i). There exists a local positive-definite relativistic 
invariant action, from which equations can be derived. 

(ii). In the limiting case of zero mass and dimensional co
upling constants this action must be a conformal invariant. 

(iii). The coefficients of the highest-order time derivati
ves, must be invertible matrices. 

(iv). The spectrum of energy, in the free case, is positi
ve-definite and the masses are physically admissible. 

Assumption (i) is natural. Assumption (ii) guarantees the 
conformal invariance of the massless theory with dimensionless 
coupling constants. This condition is very restrictive. The 
condition (iii) guarantees the correctness of the Cauchy prob
lem''10'' because, if (iii) is satisfied, the equations can be 
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solved for the highest-order time derivative. The free field 
equations with nondefinite sign of energy and nonphysical va
lues of mass of particles are excluded by assumption (iv). 

For the representations of conformal group SU(2,2) under 
consideration, (we restrict ourselves only to such irreducible 
representations of SU(2,2), which are irreducible with res
pect to SL(2,C) subgroup, too), the so found equations are of 
order higher than two. These equations can be reduced to a set 
of equations of first or second order. The mass term is intro
duced in such a way that the states with nonphysical values of 
mass do not arise. As a consequence of the sufficiently high 
order of equations of motion for the initial fields the theory 
is ultraviolet renormalizable. However, there appeared an in
definite metric. A realization of the reducible representati
ons of SL(2, C) , very convenient for writing the equations for 
arbitrary spin in a compact form, is the one, in terms of ho
mogeneous polynomials of two component complex spinor 
• - ( • j . e , ) ' " ' . 

In the second section the free field equations for the fi
elds with arbitrary spin are constructed. As an example the 
equations for fields with spin S = 0,1/2,1,3/2 and 2 are con
sidered. 

In the third section the propagator for the fields with ar
bitrary spin is given in terms of spin projection operators. 

The problems of quantization and switching on of interacti
ons will be considered separately. 

2. FREE EQUATIONS FOR FIELDS WITH AN ARBITRARY SPIN 
Consider first the kinetic part of action S k . The mass 

term will be included later. From assumption (ii), it follows 
that S k must be a conformal invariant. It is known / l s /, that 
the general form of conformal-invariant bilinear form is given 
by 

V ,», w». 4,^d4'd*y*Y (* ;T- ) Fv x (x-y;*,-£-)&, (y;w).(2.1) 

where X ai'>Ji>)el label the irreducible representations 
(IR) of 8U(2,2) ( d is the scale dimension, j г. j e - 0,1/2, 
1,... label the finite dimensional IR of SL(2,C) subgroup), 
X «f4-d, Jj, jgl is the dual representation of x / 1 B /' z i s 

a complex two component epinor71--7'. The fields ф{х;г) trans
forming according to finite-dimensional IR of SL(2,C) are 
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homegeneous polynomials in z(z) of degree 2jj(2jg). The sca
lar product in the spinor space is given by 

(f,g)= f(rr-» -~>g(».«) • (2.2) 
(2j 1)K2j 2)! Bz dz 

In (2.1) F(x;z, w) is a conformal invariant two-point function 
(intertwining operator) satisfying the normalization condition 

— — — - — — /d 4x_F (x -x ;z ,—— )F~ ~ (xfi-x ;г_,вя)= (2j,)l(2 2)1 2 *1'*2 1 8 * dzs Xz'Xl 8 3 8 8 
1 w (2.3) 

= S(x1-x8)I(jn1;8g)f 

where I(«,w) is the identity operator in the space of homoge
neous polynomials. The general form of F(x;x,w) for the ar
bitrary IR of SU(2,2) , which is irreducible with respect to 
the SL(8,C) subgroup also, is found i n / 1 8 - 1 4 / . Its Four
ier kernel, in the case when i^ > j g , is given by 

F(p;z,w) - — I — — is. (p«) (zpw) * 
(2j8+o+l)! 

x(rpewpw) 8 P ° * <*-* -_ - )> - ~ 4 8 xpzwpw 

where the normalization factor is determined by (2.3), 
are Jacobi polynomials, d0«d—J j—j e , (a)k«a(a+l) ... (a+k-1) . The 
two-point function (2.4) is nonvanishing only if the following 
conditions dj-dj-d, j}-j|-Ji andj^-jf-jj are satisfied/,8/. 
In the case, when J s >j j , the corresponding two-point functi
on can be obtained from (2.4) with the substitutions i x -ig 

and t •* w . 
In the case when d„ « 2 only the maximal spin e m» x«Ji+J2 

is presented in (2.4). In all other cases (d0 j£ 2) , all spin 
states в "Ui-jg !,»., jj +j 2 are presented. In the last one, 
the decomposition of the intertwining operator (2.4) over spin 
projection operators /1S-1*/ is given in the Appendix. 

From the locality requirement of action (2.1) (assumption 
(i)), we receive that d0-8-c is an integer nonnegative num
ber.Consider first,the case when o«0 ,i.e., do - 2|which is the 
case of canonical dimensions of fields ^(I;B). In this case, 
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as was mentioned above, (2.4) is a projection operator on the 
subspace with spin 8-jj + j 2 , i.e., the maximal spin contain
ed in the representation Ij^.jg } . If jjQg ) ¥ 0, then F(p;z,w) 
has no an inverse operator, and consequently, the assumption 
(iii) is not satisfied. In the last case, the mentioned diffi
culties can be avoided introducing auxiliary fields in lower 
spin-tensor ranks and using the root method proposed i n / 7 / . In 
the case when jj(j 2 ) = О we«deal with the representations 
considered ±n/"/, which are nonconsistent because the corres
ponding equations admit nonphysical masses. 

In the present paper we shall choose another way. If с > 1, 
then all spin states e = |ji-jg | г Ui-j g| + Ь»../ Ji+Jg are 
presented in F(p; z,w) and consequently F(p;z,w) is invertib-
le. Prom the invertibility of the coefficients of the highest-
order time derivatives there follows, consequently, the cor
rectness of the Cauchy problem, too. Because of the fact that 
all s-in states are presented, there are no constraints. More
over, when d 0 >2 (2.4) is positive-definite / 1 8 /, from which 
follow the positivity of energy and the right signs of the 
charges / l 6 / . 

Varying the action (2.1) we derive the following equations 
for free massless fields: 

(iz^V_) 8 < l l~ l 8 ) [(z<?z")(V д V-)] 2 x 

(cj,-jp) (t«V)(icV-) ( 2" 5 ) 

i z (zd z) (Vw д V-) 

where V « -s-~ . These equations, with respect to -г— , are 
" ОЩ OX 

20j+jg+c) order differential equations. As was pointed out, 
in the case when с * o, there are constraints excluding all 
lower spin states. 

For any о equation (2.5) can be transformed to a set of 
eguations of first or second order using the identity 

«»P^ft<I- f )-кП11(1—к)ж-,) Л L k , {2.б) 

where ak(k«l,...,n) are the zeros of the Jacobi polynomials. 
Then introducing the fields 
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^к " Ч ^ к - ! ' ^о'Ф (к = 1>—' n) (2.7) 

the equation (2.5) can be written in the following equvalent 
form 

(L -*)<fr(x) = 0 . (2.8) 

Here the labelling 

L 4 

0 

0 

— w 

i 0 1 0 . 
0 0 1 . 

. 0 0 

. 0 0 

,ф = 

*0 
Ф, 

L 4 

0 

0 

— w 

i 

,ф = 
* 1 

L 4 

0 

0 

— w 

i 

,ф = . 

L 4 

0 

0 

— w 

i 

0 0 0 
J 0 0 

0 1 
0 0 

,ф = 

* a 

(2.9) 

are used,where Lk(k=*l n) are second order differential 
operators defined by (2.6). 

It can be pointed out that from definition (2.7), it follows 
that fields ^к(ж; z,w)(k«0 2j 2) are transformed according 
to the direct product of two IK of SL(2,C) f j1-k. ja-k I ®lk,kl. 
The last representation is reducible if N o or k ^ 2 j g . 
Here the numbers jj —к (je —k) and k(k)_give degree of homoge
neity of ф^(х; t,v) with respect to z{%) and w(w) , respecti
vely. We have equations with the lowest order, for which the 
assumptions (i)-(iv) are satisfied, if с = 1. 

First we consider the case of tensor fields, i.e., 2j j«2jg-=n. 
Then matrices (2.9) have the form 

L g 0 
0 1 0 
0 0 1 

о о 
о о 

0 1 
0-m 8 (2.10) 
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where the nonvanishing mass term is introduced in к, and L k 

are second-order differential operators defined by (2.6). 
Introducing matrix 

/3 = 

0 0 
о о 

0 1 
1 0 

0 1 
1 0 

о о 
о о 

(2.11) 

and denoting that 

Ф = Ф + (x;x) /3, (2.12) 

where Ф + is a Hermitean conjugate and, consequently, Ф is 
an analog of the Dirac conjugation, then action (2.1) can be 
written in terms of the fields (2.7) 

»k -
1 /<14х(Ф(х).(1-к,Ф(х))). 

(n!) 8 
(2.13) 

As an example we consider some particular cases of the ten
sor fields with the lowest tensor ranks. 

a) For the scalar fields, i.e., ] t = j g = o, we get the 
Klein-Gordon equation from eq.(2.8). 

(n+m 8) ф(х) -0. (2.14) 

b) For the four-vector f i e l d , i . e . , 2j j= 2j 8 * n « 1 we 
have 

(4d„a„ - 3g ̂  a )A" (X) - (|8 X r )„„ dkdr A v - B„ (x). 

(2.15) 
(a +m*)B^(x) - 0 . 

c) tor the second rank tensor fields, i.e., 8 j t « 2 j B • n 
2, we have 

• 



Li$(x.4)=-it(l-a,)(fd)(V,<>)-D(£V,?)^(x;»,) = • 

Ь 2Ф 1(х;£ Ч)=[(1-а в)(^)-п(^У, ?)]Ф 1(х :^,) = ( 2 Л 6 ) 

< a + m 2 )Ф„(х;-;)«0, 

where ift^za^z , i?^=wa^w and aj | 8=-l±V81/4 are the zeros 
of Jacob! polynomial P^ , 0*(x). It can be checked that j8*-* 
are nondegenerate matrices, therefore the Cauchy problem for 
equations (2.16) is correct. It can be proved that whenever 
o k ф о, L k are nonsingular matrices. As can be seen from 
(2.16), Ф г (х;^,1?)«Ф^ GO ia 1y i s the general second rank 
tensor, i.e., Ф ^ *Ф and g ^ i ^ * o, and Ф8(х;^)=Ф^/(« ̂ ,£„ 
where Ф ^ is a symmetric traceless tensor. 

For fields with half-integer spin, the invariance under the 
space-reflection requires the fields <f>(x;z) to be transformed 
with respect to the SL(2,C) group by the representations 
iJl>Jgi*Ue'Jli • H e r e v e restrict our considerations to the 
i1 "le +И *i case only. Then using the ordinary representation 
of bispinor field 

ф(х; s) 
t(x;z) - ( x i x ; t ) ), (2.17) 

where the fields <f>(x;z) and x(x',z) axe transformed according 
to the IR U f i - И ! and Ij-H, j! respectively. Then the 
equality 

where <7-(l, o) and o"-(l,-(r) allow us to introduce new fi
elds in (2.1)" 
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ф'ш 

zdeV ф 
(2j)l - « 

«*<?V~ X <2j-l)! ~ « 

(2.18) 

With respect to the field Ф', we have the following equations 
of motion 

($. -к)ф(х) =0, (2.19) 

where 

4 

L2j 2-1 

i(E<?V-+ V <?z) - w w 

0 1 ... 0 0 
о о ... о о 

о о 
о о 

0 1 
0-mfe) 

* • 

*l 

Ф 2j-l 

(2.20) 

where m{t, w) -m(etVw+at V-) and operators L (k-1,...) are 
given by the formula (2.6). 

For the Dirac fields, i.e., } * 1/2 from (2.19) we have 
the Dirac equation 

0#-ю)*СО -0. (2.21) 

• 



For the f i e ld s with spin 3/2, i . e . , j = 1 , we have 

L j i f t ' f e w M S d g i X V , , * V 5 ) -3{z ( VW)U« ? ? ) D](i(x;w) =^(x;2,w), 

[i(zd V ; + V w | J i ) -m(zty w+2£¥^)]V>i(x.z,w) =o. (2.22) 

Similar to the case of tensor fields, action (2.1) can be 
written in terms of the fields Фк (2.7) or (2.20). Introduc
ing the "Dirac" conjugated spinor 

(2.23) 

where 

/3 = 

0 0 . . . 0 1 
0 0 . . . 1 0 

0 oo о о 

.0 1, and /8 0 i s 2x2 matrix /30»=(i o) , (2.1) has the form 

S = / d * x ( ^ , ( L - K , ^ ) ) ( x ) . (2.24) 

Equations (2.8) and (2.19) can formally be derived from 
(2.13) and (2.24). However, in this case, because of (2.7) the 
components of Ф are not independent. 

Equations (2.8), (2.15), (2.16), (2.19) and (2.22) describe 
only massless particles in the case when m «= о and massive 
and massless particles, when m ̂  o. 

3. GREEN FUNCTIONS FOR FIELDS WITH ARBITRARY SPIN 

for 
ven by 

From eq.(2.3) it follows that F^ x 

• eq. (2.5). In tensor case, the causal 
is the Green function 
Green function is gi-
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( P2_ i e)n p8 » p£p, 

(p 8-i f) n (n+B + 2 ) n _ 8 

where П e are the projection operators on the subspace with 
spin s. The transition to the ordinary used tensor indices 
can be done by means of n-fold differentiation of eq.(3.1) 
with respect to f and ij with the subsequent symmetrization 
and subtraction of the traces. The other Green functions can 
be found from eq.(3.1) with the corresponding going round of 
the poles. 

In the case of scalar field, i.e., n = О we receive from 
eq.(3.1) the ordinary propagator for the scalar fields. For 
the four-vector ( (n = 1) field we get from eq.(3.1) 

D(1W„)=D<}? (p*V= < f y рНМ»(1_^) . 

CT p 8 p 8 - i f (3.2) 

П?)-8П?> (у-Р мР,/Р 8>-гу„/Р 8 „ 
(p2_lf)(p8_m B_j ( ) (p 8_m Я-1«)(р *-i<) 

where П 0 and П 1 are the projection operators on the sta
tes with spin О and 1, respectively. 

For the symmetric tracelles tensor fields of second rank, 
i.e., n * 2, we get from eq.(3.1) 

Jp*-m*-ic)-' .PfP^pHM» a . 2 ! ^ -
(p B-W) 8 P 8 . Pft»? 

<p8-if)8 

10 

(3.3) 



Here П о i П i and П g are spin pro jec t ion opera tors on 
the subspaces with spin 8 = 0,1 and 2, r e spec t ive ly . 

For the case of spinor f i e l d s the Green function of eq. 
(2.19) i s given by 

zpw + wp z + m(zew + It w) 
S(p;z,w) = —= = x 

- ~ 1 
((ggg)(wBwyif p (_ 8 j , i) ( 1 _ , p 8zewzew ч ( 3 > 4 ) 

XV ~ - ~ * " r 2 i l i ^ " и = = ) 

p« BJ T zpzwpw 

zpw+wpz~+m(z,w) 8j-i ( s -2 j +1)84_в—l m 
2 CI n^foz.w), 

(p 8-i£) s !J- 1(p 8-m«-k) e- w (s+2j+3) 2 j_ 8_ 1 

where П щ are the spin projection operators. The transition to 
the spinor indices can be done by differentiation with respect 
to z, z and w, w with subsequent symme f"ization over any 
group of indices. 

The explicit form of propagators (3,1)-(3,4) shows that the 
here considered theory is ultraviolet renormalizabie, in cont
rast with the ordinary massive theories for the higher spin 
fields based on the first or second order equations. However, 
here the metric in space states is indefinite. 

Acknowledgements are due to Prof. I.T.Todorov, Dr. D.Tz.Sto-
yanov and Dr. L.B.Nikolova for valuable discussions and re
marks. 

APPENDIX 
To make reading of the paper easier, some results of 

refs. / 1 8" 1* / about decomposition of interwining operator 
(2.4) and Green function (3.1) in terms of spin projection 
operators are given. In the tensor case / 1 8 « l 8 / we have 

F(p;f,„MpV(^-) n P<c'°><l-p8-£_) = 

/ чч < А Л > 
.-с,2чс » (•- c- a + 1> n-t„(n), •2"(Р'П -^n7(p;f, 4), 

t-0 (0 + В+П+1) п_, 
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where 
Г(а+к) (a)k =a(a + l) ... (a + k-1) Г(а) 

and П ̂  (p;f,aj) are the projection operators on the subspace 
with spin s(s -0,l,...,n). . Thece operators satisfy the follow
ing conditions 

(A.2) 
Л О П ^ 1 = (Й) Й . 

when (fi?) is the identity operator in the space of homogene
ous polynomials with degree n, i.e., symmetric traceless ten
sor of rank n. Then it can be checked out that 

П(„) = ( _ 1 ) 8 <^1).1(д-1). < » * » , • _ p ^ _ ) ( д з ) 

8 (n-s)!(n + s)! p 8 P̂ P»? 

are eigenfunctions of the spin operator squared with eigen
value s / 1 1 / , and satisfy the normalization conditions (A.2). 
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