


1. INTRODUCTION

Relativistic string model has rather a long history (see,
e.g., refs. 18/ ). In the elementary particle physics the re-
lativistic string was introduced as the dynamical basis of the
dual resonance models. In recent years the ideas of the string
model are used by the investigation of the mechanism of the
quark confinement in hadrons 45/ and by the representation of
the Yang-Mills field theory in terms of the functionals defi-
ned on contours 789/,

In all papers devoted to the relativistic string model the
flat space-time was considered. We shall investigate this mo-
del in a space-time of a constant curvature (de Sitter univer-
se). If we take the viewpoint that the gravitation may play an
important role in the world of the elementary particles (see,
e.g., ref. /10/), then the aim of this paper will not be perce-
ived as the abstract pure mathematical problenm.

We shall use the differential geometry methods when the
world surface of the string is described by the differential
quadratic forms rather than by the string coordinates /11-16/ |
In this approach the string dynamics is defined by a system of
two nonlinear equations. The differential geometry technique
enables us to construct the Lax representation for this syﬁspm
{more precisely, the so-called "Zero-curvature" ‘equation ).
For the three~dimensional de Sitter space-time the system
under consideration is reduced to one nonlinear sinh-Gordon
or cosh-Gordon equation.

2. MINIMAL WORLD SURFACES IN DE SITTER SPACE-TIME

The Nambu-Goto action of the relativistic string 1-8/ can
be easily generalized to the curved space-time/17
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where x“(u =r,u -a)is the parametric representation of the
string world surface, g (:D is the metric tensor of the curved
space-time, &, =% x”‘ pv is the metric tensor on the string



world surface, x“ =8:“/3u‘ . and k 1is a constant with the
dimension of the inverse squared length. The principle of le-
ast action, as applied to the functional (1), leads to the
problem of determining two-dimensional minimal surface in the
four-dimensional Riemannian space with metric g #V(x) . The
Euler equation has the form 718/
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‘where a=det||all , ox" = —a—i—(\/ a'kxv) is the covariant

Laplace-Beltrami operator with respect to the inner metric on
the string world surface &, ; I/3(8) are the Christoffel
symbols for the metric tensor g, x). If the space-time is
fiat, I (g) =0, and we obtain the well-known result 719/ 4n
the theory of the minimal varieties in Euclidean space mx” =0.
Further we suppose that the space-time has a constant cur-

vature (de Sitter universe). In this case the metric tensor
/187

g w (x) can be taken, for example, in the Riemannian form
Tuy
B = —= (3)
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‘where 7, ~=diag (1'_1'_1'_1),x2=xyxv” , - The constant K
enters fx"l’to the definition of the Riemann~Christoffel curvatu-
re tensor of the de Sitter space-time

A= KE B, ~B B,)) - (4)
In terms of the Weierstrass coordinates z¥, p=1,2,...,5 de
Sitter universe can be represented as the hyperboloid in the
five~dimensional pseudo-Euclidean space /®
(zl)z_(zz)z _(z8)2 —(24 )2 +€(zs)2 =5R2 , (5)
where ¢ = +1 for the de Sitter space-time of the first kind

and € = -1 for the de Sitter space-time of the second kind.
The constant K is connected with B by the formula

K:-E-B—-. (6)



Instead of solving equation (2) for the string coordinates
xf(ul,u®) with a given space-time metric g, (x) (see Eqgs.(3),
(4)) we shall use the differential geometry technique/18/ by
which the string world surface can be described by its funda-
mental quadratic forms ° ',(“ uf), p IJ(“ ,uf), and torsion
vectors uugly (mev, 11) : L,i=1,2; a,B = 3,4, The theorem on
the embedding of the Riemannian manifolds tells that these
quantities will define a two-dimensional surface embedded in
space~time of a constant curvature up to its motion as a whole
if and only if the equations of Gauss
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will be satisfied. In these equations the Latin indices take
values 1,2 and the Greek indices 3,4. The left-hand side of
equation (7), R 0 , is the Riemann-Christoffel curvature
tensor defined by the metric tensor of the world sur-
face of the string a, . In the case under considera-
tion this tensor has only one essential component
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where F!.u are the Christoffel symbols corresponding to the
metric tensor l“

1
D= P ® 2 )

The semicolon in Eqgs. (7)-(9) means the covariant differentia-
tion with respect to the metric tensor a .

The wetric of space-time g“V(x) does not enter into Egs.
(7)-(9) explicitly. The only consequence of the constant cur-
vature of space-time is the second term in the right-~hand side
of the Gauss equation (7).

From the eguation of motion (2) it follows that the world
sheet of the string has to be a minimal surface /1

-a¥ b =0, a=3,4. (10)

alyy
On the string world surface the isometric coordinates ul,u2
can be chosen

Byq=—8p, =8, &y 0. (1

In this coordinate system conditions (10) take the form

bgj11=bgjge » @ =3.4. (12)

Eliminating from the Codazzi equation (8) the torsion vec-
tor vl=‘v1=v4sh'1b=v‘ﬂ2 } and taking into account (12) we
obtain
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with ui-u1 tug. Therefore
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where ¢, are two arbitrary functions. It is convenient to
introduce the following variables :/21/
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a+-a_=0, a-e¢ .

In terms of the new variables the Gauss equation (7) and the
Ricci equation (9) part from the system (7)-~(9)

'7"’.11 -%,20 =2q+(u+)q_(u') e Peosd+ e ™ .

+ -~ .9 (13
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but the Codazzi equations (8) take the form
vy tVgEa_q ¥a_py VmVp =8, 4 “O, 9 ¢ (14)

The arbitrary functions q+(u1') can be eliminated from Eq.
(13) by the following change of variables
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Now Egs. (13) become
¢’11 —¢’22 =e¢coﬁo+xe-¢, (15)
9’11 —6’22 =e¢sin0,

in which the mark ~ is omitted for the notation simplicity.
Thus the equations of motion which completely determine, in
the given approach, the relativistic string dynamics in de
Sitter space-time are Egs. (15). These equations have to be
complemented with the boundary conditions if the relativistic
string is of finite extension. For example, for a closed
string, 05u2_<_ 7 , we have

(ud ,uBa0) = gt uB=n),  O(u!,u=0) = O(ulufen).



When the curvature K tends to zero then the system (15)
transforms into one nonlinear Liouville equation for the comp-
lex valued function w= ¢+10

Wi Wgp=e " . (16)

The change of variables
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enables us to remove the constant K from Egs. (15)
$ 119, 02 —ePoosd +ce”®,
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If we put in (17) € =0 we obtain the equation

2sinh¢, K<O,
117 #,00" !2cosh¢. K >0, (18)

which describes the metric of the minimal surface in the
three-dimensional de Sitter space-time. Equation (18) is a ge-
neralization to the nondefinite metric of the known result in
differential geometry concerning the embedding of the minimal
surfaces into the three~dimensional space of a constant curva-
ture /R2/,

3. LAX REPRESENTATION FOR SYSTEM (17)

In differential geometry’/ 18/ the Gauss-Codazzi-Ricci equa-
tions (7)~(9) are derived as the compatibility conditions of
two systems of partial differential equations of the first or-
der which describe the moving frame on the string world sur-
face. Therefore, these equations can be taken as a pair of the
Lax operators required for solving the nonlinear equations
(17) by the inverse scattering method /23.84/ . In the de Sitter



space-time we introduce the Weierstrass coordinates (5) and as
the moving frame we take two tangent vectors z” ,zl‘ two
unit normals 7) , and vector £# . In the theory of relati-
vistic string /3 3/t vector z"l has to be time-like; and vec-
tors ¥y, 9y, 9k , space-like. With this fact and the choice
of signs in the quadratic form (5), we obtain the following
equations /18/
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(19)
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which describe the motion of the basis
RN L e (20)

on the string world surface. The contraction with all of the
first e?uation in (19), by virtue of (10), gives the known re-
sult’/ in the theory of minimal varieties embedded in a
space of constant curvature, namely, the action of the Lapla-
ce-Beltrami operator on vector z# is

ozt =-ZKz#

Instead of vectors (20) we introduce the orthonormal moving
basis
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Using (19) we obtain the following equations describing the
motion of the basis (21) on the string world surface

de, 5
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1=12, ab=12,..,5, (22)

where
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(24)

We can reduce the dimension of the matrix equations (22) in
the following way. The skewsymmetric matrices (23) and (24)
describe infinitesimal rotations in the five-dimensional pse-
udo-Buclidean space. Soume matrix elements in (23) and (24) are
imaginary because the guadratic form (5) is indefinite. The
matrix representation of the minimal dimension of the 0O(5)-
group can be constructed in terms of the usual (4x4) Dirac y-~-
matrices/28/, In this representation the O(5)-generators are
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In what follows we shall use the representation of the y-mat-
rices in which Y5=YV1Ve¥g¥, is diagonal

0 oy 01

-1 0
) k=123, y,=C o) yg =0 4 ;) (25

= (—iak 0

where g, are the Pauli matrices.
Now we can correlate to Egs. (22) two systems of partial
differential equations each containing only four equations

Hg

=1l ql =
70 Wurvlap ¥p =g Paglp > i=1P

-1 3
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(26)
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where ¢,=¢,(u 1,u2 ) is a four-component function and 4x4 mat-
rices QU are

5
ol by v, j=12.
#>§=1 Oy Y7y (27)

To write out these matrices explicitly we introduce the nota-
tion

k] k]
a a
ol - 11 Big ,
k) J
859 B9

vhere ‘jki are again the (2x2) matrices. Using Egs. (23}, (24),
(25) and (27) we obtain the following expansions of &
bk, ¢ = 1,2 in terms of the Pauli matrices oy
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0l im =101 (@3-G) +05 (1 +Q) — 105 (5 +2ivy),

1 .1 e —b/2
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bip=-i0,@,-0) + 0, @, +Q2) - 4o, 6, —21v)),
6y oty (F 40) 40, (02 -Q ) 0y (6, +21v),

1% %RZeﬁ/g'

(28)
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0y =10, (@, +@%) 40 @, -Q2) - %.o 5 4 ~2ivy),

in which

Q, -{'—exp(-g.tlat), f=a, -a_, €= +1,

and » , 1 = 1,2 is connected with a: by formulae (14).
The compatibility conditions of the linear equations (26)

alp-a? -0, 0' )

result in Eqgs. (17).

The transition to new variables 1!

, 8

0l +3® <aulsu ®), wlcu®ant@l—u?)y

enables us to introduce the spectral parameter A into Eq. (26).
This change of variables retains the form of system (17), whi-
le the matrix elements {lgg(28) obtain factors (At 1/A)
(see, e.g., 7%3.88/ ), we shall not perform here these simple
transformations.
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4, CONCLUSION

The proposed model of the relativistic string in a space~
time of a constant curvature gives us one more example of a
system of two non-linear equations integrable by the inverse
scattering technique. This system was derived in paper 730/ by
investigating the world surfaces with a constant mean curva-
ture in the four-dimensional Minkowski space-time. In the
same paper the Lax representation for this system was obtain-
ed in terms of 2x2 matrices. Therefore, if would be interest-
ing to reduce the dimension of matrices QiB in the linear
spectral problem (26).
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