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and High-Energy Lepton-Hadron Interactions

INTRODUCTION-

Due to an intensive development of Quantum Chromodyna-
mics (QCD) a notable progress has been achieved recently in
understanding the structure of elementary particles and the
nature of approximate scaling and its violation. Now we can
formulate rigorous QCD predictions for the short-distance
phenomena. Unfortunately, these predictions are expressed
only either in terms of the moments of deep-inelastic
structure functions or as the Q2 evolution equation’! for
those ones. To define the very structure functions in the
whole range of the X and Q% values we have either to invert
the moments or to solve the Q% evolution equation. As is
well known, in both cases initial information on X -depen-
dence of the structure functions at a fixed Qg value is
necessary. Usually it is extracted from the relevant ex-
perimental data. Thus, we can see that up to now the deep
inelastic structure functions have not been clear theoreti-
cally (without any empiricism) calculated within QCD. Evi-
dently, the main reason for this situation is a strong
dependence of the short-distance phenomena on the long-range
nature of theory. We can factorize the long and short dis-
tances’ , but not separate them completely. It is clear,
for self-consistent solution of the short distances problem
in the framework of QCD the long-range structure of theory
should be established. Recently there has been developed
a series of phenomenological models 3/ , which imply the
QCD scaling violation. The structure-function parametriza-
tions which have been provided with these models are very
useful for applications and permit to check particular QCD
properties.

In this paper we propose a quark-parton model, based on
the Kuti, Weiskopf ideas ’%/ , that is used here in more
radical ways, and some principles of QCD. The model contains
two free parameters and agrees well with the experimental
data.

The paper is organized as follows:

In Sec. I main assumptions of our model are formulated
and explicit expressions for quark and gluon distribution
functions in a nucleon are obtained.
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In Sec. II the cross-sections of deep inelastic eN—, ed-
and YY) N -scattering and the asymmetry of polarized ep -scat-
tering are calculated. The ed ~scattering should be calcula-
ted taking into account the nucleon Fermi motion in the
deuteron.

Section III is dedicated to the comparison of model pre-
dictions with the experimental ep , ed and v()N data.

1. QUARK-GLUON DISTRIBUTIONS

Here follows the list of our model assumptions.
1. As usual, we shall assume that a nucleon consists of
three valence gquarks which define its quantum numbers, and

of a singlet "sea" of quark-antiquark pairs and neutral

vector gluons.

2. Single-particle distribution of valence guarks is

selected in the form

1—a (0)
fs X
e — i I 17 £
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where a (0)=1/2 is the intercept of A, -meson Regge trajec-
tory; x , the fraction of a nucleon longitudinal momentum p
carried by a parton of mass ¢.

We have taken these assumptions without alterations from
vef. /% | 1t provides a conventional Regge asymptotic of
a nondiffractive component of the forward virtual Compton
amplitude.

The following two assumptions are decisive for the des-
cription of scaling violation and present a generalization
of the Xuti, Weisskopf ideas’?’ .

3. We will assume quark-gluon interaction to be renorma-
lizable (QCD as an example) and the scaling violation arises
mainly due to the coupling constant renormalization’/®’ #
which results in the change of the "bare" coupling constant
to the running one in all expressions for the structure
functions. Of course, there are more ingenious effects of
scaling violation (for example, because of the wave function
renormalization) but in the framework of our phenomenologi-
cal consideration we will not take them into account.

4. Finally, let us assume that the nature of a nucleon
"sea" is similar to the one of an equivalent photon system
of quantum electrodynamics. The present assumption seems

2

to be justified at least for the case 9g/large m?mentum
transfers and small coupling constant . . Thus %t looks
quite natural from the point of view of asymptotically free
theories.

With the mentioned assumptions the "bare" quark anq :
gluon distributions can be obtained. The "bare" distributi-
on (see re£.”’?7’ ) is that one which does not reflect the
fact that quarks and gluons are constituents of a concrete

hadron. -
The spectrum f(Ey) of "equivalent" photons has the form:

f(E,) ~a/E,, ‘ /1.2/

where a is an electromagnetic coupling constant; Ey., pho-
ton energy. Exp. /1.2/ has the form of a single-particle
phase space distribution. . .
Taking the 4th assumption we will choose the following
form for the distribution functions of the "sea" quark o]

and gluons ¥

-Bzx
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Here g is the quark gluon coupling constant; a’(g) and
a’(g) are some unknown functions of g . _ _ .

It should be noted that in a contrast to the distributi-
on function ¢ the V¥ -function has an additional.Boltz—
mann factor e"B’. The introduction of this factor 1s sup-
ported by the fact that the gluon gas in a nucle?n ﬁa§,
evidently, a rather high density which exceeds significant-
ly the density of the quark gas.. (It is knqwn.at least tha;
more than 60% of the nucleon momentum is car¥1ed.by neutra
gluons) . Thus, it is reasonable to descr%be it with an
equilibrating statistical distributicn like the Boltzmann
distribution. Taking into account assumption 3 we have ;o
change in /1.3./ g to the running coupling_;oaftant g(Q° ).
In the case of a renormalized interaction g(Q*)depends on
Q2 logarithmically. Thus it follows:

-Bx
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It means that within our assumpticns X and Q® -dependence
of the "bare" distribution functions are factorized.

Now, when we know the "bare" distributions /1.4/, we
can obtain the distribution functions of quarks and gluons
inside a nucleon. To do this let us consider all sorts of
multi-particle configurations corresponding to the nucleon
in the infinite momentum frame (IMF). The probability of
an N -particle state can be written down in the form:

|
AP (%, % X Y= » | 30
-t - :
lekzlkBYt‘
N 3 k1+k2+k3
(1 - £ x ) I f(x)dx; 11 &(x)dx. «x 1.5/
=1 i=1 j=1 J J
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Here Z is the normalization constant; N =3 + ki+V,
1

ki = 0,2,4,... is the number of "sea" quarks and antiquarks,
' is the number of gluons in a given N -particle state,

i is the flavour. Integrating over all x -variables except
one and summing over all possible configurations we find the
sought distribution functions (see refs. 48’ ). After a
series of transformations we get the following expressions:
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where Ch% ,(%%, GE are the distribution functions in a

" "

proton for valence quarks, "sea" (anti-) quarks, and gluons,
respectively; i 1is the flavour. For neutron (T?V =GRy

The A -operator is defined by the relation
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substituting /1.4/ into /1.6/ and fixing the normaliza-

we get the final expre;sions:
" o X—l/g(l—x)ﬂg ) qy(a”(QE),r(Q 2)+11—ﬁ(1—xj)
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¢ (a,B:2) is a degenerated hypergeometric function,r (Q°)
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C;;nZiiy é%lthe nucleon " " (charm is suppressed) we can
Symm
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where Ogiac <1/4 is the parameter of charm suppression

in a nucleon. It is not our model parameter, but clearly

a kinematical one. The suppression mechanism we have used
is a simple replacement of a’ by (l—ac)a’ and of a” by
(1-a, )a” in the "bare" distributions /1.4/ of light and

charmed quarks, respectively.

It would be more natural to accept a,-parameter to
depend on x and Q2 . However, it is not our goal to cla-
rify the properties of a (x,Q %) ~function and below we
will consider the 2, ~parameter as some averaged value of
this function over the kinematic region we are interested
im.

The &° and a” -functions we have introduced earlier
define the form of scaling violation. In the pPresent paper
we will use the following simple pPhenomenological represen-
tation for a’ and a* /7

2’(@)=a"(@? =a(@?- _2__ /1.10/
g°(a?)
In the case of QCD the running coupling constant E(QQ) is:
Q) 4ne 187 L
25/ Q2/A2
where A = 0.5 (GeV/c) (the conventional value). The

rigorous calculation of the a’(Q%) ang a”(Q2) -functi-~
ons in the framework of QCD may be a subject for a sub-
sequent paper. Here we notice that the representation
/1.4/-/1.5/ leads, according to /1.8/, to the increase of
the "sea" contribution at large Q% in the region x- 0 .
Moreover, /1.4/-/1.5/ and /1.8/ automatically ensure the
decrease of structure functions with the growth of Q% in
the large- x region. As is well known both phenomena are
observed experimentally and predicted by QCD.

A peculiar prediction of our model arises from /1.8/
and /1.10/-/1.11/. Let us find the separation point X (Q")
which satisfies the equation

dF (x,,Q%)
0Q*

=0 /1.12/

Here F' is one of the structure functions /1.9/. For large
Q® we can obtain

6

X:(QE)"' 1 = 1 . ) /1_13/

® a’(@®)+a”@® 2a(@?)

Thus, %¥,(Q% is a decreasing function of Q% since a(Q?) is
an increasing one. It leads to the contraction with the
growth of Q® of the region x<:xs(Q2) ; where the st§ucture
functions are increasing functions of Q° and to the disap-
pearance of this region in the limit Q%> «

2. THE CALCULATION OF THE CROSS~SECTIONS

In the case of deep inelastic electromagnetic interacti-
ons the differential cross section of scattering has the
following form in a single-photon approximation

2 e 2
d7¢ 4 1B ‘(2W15in2%—+ W, cos —%)x

dE’dQ at /2.1/

£ / A ),
(1+épe” \” Jré’[,é"L ~l._)

where as usual ép is the degree of longitudinal electron
(muon) polarization (with respect to the electron momentum
in the laboratory frame); ¢, and ¢, are components of
target polarization on the lepton scattering Plane, perpen-
dicular and parallel to ﬂ, respectively; 6 is the lepton
scattering angle in the laboratory frame.

€y

+ (n«—»p)

a) b)

Fig.1.
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The longitudinal A, and transversal "‘\.L asymmetries are

% (E +E’cos 0)Mg, +Q2g2
S SR ’
1 0
Wy g ctg X5-) Wy

/2.2/
E 'sind (Mg, + 2Eg,)

w20 0
Wi+ fog™(5)W,

A

1=

For the case of weak deep inelastic interactions the dif-
ferential cross section in the lowest order in the week
coupling constant G is defined as follows:

bl

d Eai 02

u?
1 2 M +
R L e U, (RO
dx dy g M2 ;@2 “
ex /2.3/
2 + +
Xy o ¥ t
3 Fl 7 (y Q%X FS ],
where Mex corresponds to wlor Z° bozon masses; x:Qz_'QMV;
y=r'E . E is the energy of the neutrino beam.

In the framework of a parton model one may obtain cor-
respondence rules’?’ between quark distributions of a nuc-
leon and structure functions F¥ for the interactions with
the hadron V-A current of the general form:

J = =gy (cVich
PR RO 72kt

; . . v ‘LA
where q; 1is the field of an i-th quark; Ci‘. and Cij are
the vector and axial coupling constants. Taking into ac-
count the kinematic mass corrections to scaling and the
threshold effects due to the heavy quarks production we can
find these rules in the form:

Pt ¢ (F? F¥

k £ ( i T m ) /2,51
+ vZ A%, ;

Fﬁ(l): (cij +Ci,j )nj ()6 (1-€)) /2.6/

FE P /2.
ij(n ij(1)

L = anVak gt 1 & Tt pt 2.8
Fji(3) e NC,”_ ij c_bj (fi JO(L-£ ), F;_j(_i&) =Fis / /
pt _e %  FE @t ;

i@ TS iy @) " ije /2.9/

Here ¢ "2,Q%) and ¢~ (2,Q%) correspond to the momentum dis-
tribution functions of i-th type quarks and antiguarks. 6 (1-£))
factors define the thresholds of production of quarks with

masses m, F‘I? P F'iji are partial structure functions
of the guark transitions: Fi; and F‘”' for qi»qj i Fl-_‘
and i‘: for ?;i v ;e Using the reduced ¢ -scaling varia-
ble {3: (Q2+m?);’2Mv‘ , we have taken into account the most

important mass corrections to scaling for the processes
considered below. ‘fi coincides with the conventional ¢ -

-scaling variable 19/ to the second order in (M/Q)% The
summation in /2.5/ is performed over such a set of quark
transitions which leads to the final hadronic state of the
considered reaction.

Using (2.5)-(2.9) it is easy to calculate the structure
functions for interactions with electromagnetic current,
with charged and neutral currents (in concrete calculations
we use the standard 4-quark model WS-GIM) and for the case
of charmed hadron state’/9/ production. Assuming (like it
has been made in ref.’4/ ) that the main contribution into
the polarized scattering is made by valence quarks and
that 710/

LigP' gy -2gP
o 1Y 1v 3

1v
#4340
Lig?' g 1. lgP
B 2V gV 8 BW
we obtain the polarized structure functions
9 % ; A
Mg =Ll(L(GP'-gM )+Ll(GP"-aP )-S5g
1 4 9 v 1v 9  2v 2v 18 2v /2.11/
g, = 0.
9



If the W?z and W? ¢ nucleon structure functions are ‘w‘ a) 103] \\\\\ b)

known it is possible to proceed to the calculation of the ,T 3 \\\\
deuteron structure functions. There is a large number of : 102 \\\\\\\
approaches to this problem. In the present paper we use N k 3

the conventional Atwood-West approach/12/ .| As long as we 3
intend to consider only the x >1 region, the difficulties
of this formalism, which have been pointed out in ref./13/,
are not emerged. The upper blocks of the diagram (Fig. 1b) = 2
are described by the nucleon structure functions and depend
on their Fermi-motion momentum inside of a deuteron.

With the help of the relativistic spherically-symmetri-
cal deuteron wave function ¥ it becomes possible to per-
form the averaging over the nucleon Fermi-motion momenta 3
and to obtain the deuteron structure functions:

195 Gev
v - 1600ev

P
Goy ur
=

0= 50°

dEu

e - 13
{ « - 7060ev
'
t

4G

8 r R T TR S TR * ; 06 08 10
a_ d”p - 2 . B n(s) p(s) 00 07 0 06 08 0 02 04
wuv‘fms—lll’(lpsnl (WW+WW)=WW W s /2012 x X

8° s

Fig. 2. Differential cross section of deep inelastic a) ep—,
l y 1 b —— - . . - .
where wﬁLp are the structure functions of neutron and b) ed-scattering. Solid lines are the predictions of our

proton, respectively;p, , Egq , My are the 3-momentum model.

energy and mass of a free spectator nucleon emitted from !
the bottom block of the diagram in Fig. 1b. In our calcula-
tions we have used the Reid "hard core" wave function/14/
extended to the relativistic region in accordance with
Atwood-West 12/

3. COMPARISON WITH EXPERIMENT

We have compared the above obtained predictions of our
model for deutron and proton targets with the experimental
data on the deep inelastic ed-, ep- ‘1%’ and v(V) N -scat-
tering/16J7/ To test the prediction of our model in more
detail we have carried out a joint analysis of these data,
using a unique set of free parameters of the model. The
best agreement of theoretical curves with experimental

6=102%*/ nucleon

points (see for illustration Figs. 2 and 3 presenting a
part of data analysed) is obtained at the following values
of free parameters: a =5.2, B =-3.5, a, =0.23. In this case 2
X% % 2=370/378. Using the found values of the varied para- )

i V -
meters we have calculated the curves for the longitudinal 1 2 34 & W 2 34 8 W 2

asymmetry coefficient of electron scattering on proton. The E(Gev) o
comparison of the theoretical curves with the known experi- Fig. 3. Total cross section of deep inelastic v (#)N —-scat-
tering. Solid lines are the predictions of our model.
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Fig. 4. longitudinal asymmetry of deep inelastic ep—scat-
tering. Solid lines are the predictions of our model. The
points are the experiment'la/.
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Fig. 5. Cross section of charmed-particle production in deep
inelastic v(v)N-scattering. The prediction of our model.
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Fig. 6. The model predictions for behaviour of 1/W; -struc-

ture function in the range of large momentum transfers.

mental points/lg/ is given in Fig. 4. The cross section of

the charm production ¢®(Ac=+1) has been also calculated
(see Fig. 5).

The considered experimental data cover a rather kinema-
tie region: 4 < Q%g 30 GeV, 0.34 <x< 0.97 and are well
described by our model. Thus it seems quite natural to ex-
tend the model predictions to the large 92 region which is
not well investigated yet. In Fig. 6 we show the Qz—depen~
dence of the electromagnetic structure function :»WJ) of
the proton predicted by our model. "

4. CONCLUSION

Thus, the quark parton model with loaarithmic scaling
violation we have proposed describes quite successfully the
experimental data on ep-, ed-, and V(DN —deep inelastic
scattering.

The model contains two free parameters which are defined
from the experimental data. The basis ideas of our model do

13
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not contradict QCD. Moreover it may happen that they follow
from QCD in a natural way. Clarification of such a possibi-
lity is in fact the substantiation problem for our model in
the context of this theory.

We would like to summarize some specific predictions of
the model. It predicts that the separation point xs(Qz)
/1.13/ tends to zero when Q2 tends to infinity. This means
that the region x<x KQQ), where structure functions are
increasing functions of Q2 , contracts and disappears in
the limit Q% o

Gluons inside a nucleon are treated as a gas with the
Boltzmann-type distribution functions. It is necessary to
point out that the negative value of f -parameter in /1.3/
obtained from the comparison with experimental data does not
lead to any contradictions. A self-consistent thermodynami-
cal description requires negative values of the Boltzmann
exponential power (i.e., 8>0) only in the large momentum
limit that ensures the finiteness of the free energy integ-
ral. So, we consider the B -parameter as an average value
of a certain function B (x)(in exp(—xB(x) ) over the inter-
val 0.34< % < 0.97 (experimental region) and B(x)>0 atx~1.

In principle, there may be another point of view on the
negative value of the [ -parameter. It can be regarded as
the case of negative'temperatures (in the e E/T _qistribu-
tion) encountered in the statistical systems at the inverse
population of energy levels (e.g., laser). The latter pos-
sibility can be realized only in the weakly self-interacting
systems. The gluon gas obeying QCD satisfies this condition
at small distances (Q2s « ). Certainly such an interpre-
tation is not well grounded on and it has a very preliminary
character.

The authors are very indebted to D.V.Shirkov, S.M.Bilen-
ky, V.A.Efremov and A.V.Radyshkin for useful discussions.
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