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INTRODUCTION 
An adequate treatment of experimental data on the pion in

teraction with lightest nuclei requires to solve the corres
ponding roultiparticle equations in the potential theory. It 
is, obviously, a necessary step after which the problem of roe-
son degrees of freedom can be analysed for the considered pro
cess. The system T2N was carefully studied by using the Fad-
deev equations, e.g., in ref. / 1 / whereas for the system *r3N 
exact four-body equations were not considered. Several appro
ximations were proposed: the optical model with a first-order 
potential / 8 /, the Glauber model / 3 / , the fixed-scatterer mo
del . The problem appears to what extent each of them cor
responds to the exact 4-particle equations. 

In this paper we consider the correspondence of the fixed-
scatterer model and its modifications to the exact four-par
ticle eguations. In paper / 5 / approximate four-body equations 
were proposed. The approximation implied a finite-rank-appro
ximation of the target Hamiltonian. This approximation, an ex
tension out of the framework of the fixed scatterer model, is 
well-founded mathematically at pion energies not exceeding the 
nearest threshold of breaking of the 3-nucleon system. On the 
other hand, at pion energies much larger than the mean kinetic 
energy of a nucleon in nucleus the use of the fixed-nucleon 
approximation may turn out to be justified. In this connection 
it is interesting to study the range of applicability of the 
model at intermediate energies. Here two specific features 
of the pion-nucleon interaction, important in analysing the 
model applicability, are to be noted: 
1) At sufficiently low energies the nN-interaction is small 
(i.e., scattering phases are small) in all partial waves. 
2) At energies E „ -200 MeV the P 3 3-wave has a resonance. 

Due to the first feature the integral term in the equation 
(4) for the low-energy elastic scattering is small. At 
energies much higher than the nucleus binding energy the in
tegral term is small in virtue of its own structure. Thus, at 
all the considered pion energies the equation for amplitude 
can be restricted by the inhomogeneous term, i.e., by the am
plitude of scattering on fixed centers. This description im
plies that in the intermediate states the nucleus propagates 
as a unique object. By this reason the resonance behaviour in 
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the system >r3N disappears and the elastic-scattering cross 
section sharply decreases as compared to that on the free nuc-
leon. Since the equation for the scattering amplitude has been 
derived by approximating the nuclear Hamiltonian by the first-
rank operator (in this case the contribution only from the 
bound state was taken into account in the spectral expansion 
of the target Hamiltonian), it is clear that an increase of 
the cross section requires higher terms in the spectral decom
position of nucleon Hamiltonian, i.e., the contribution from 
the continuous spectra of the three nucleon systems must be 
taken into account. 

In our paper this difficulty is removed by introducing the 
elements of the impulse approximation; thus the agreement with 
experiment is achieved without using additional phenomenologi-
cal parameters. 

The paper is organized as follows: 
Section 2 gives a short exposition of the formalism; in 

Sec.3 we discuss the difficulties of the fixed scatterer model 
applied to the n-nucleus scattering and present the results 
of calculations of differential cross sections within the mo
dified fixed-scatterer model. 

Let us represent the total Hamiltonian of the system in the 
form 

H = h 0 + V + H c , (1) 

where h 0 is the kinetic-energy operator of the relative moti-3 
on of the "pion-nucleus", V = z V f f N , V f f N is the potential 
of the pion interaction with an i-th nucleon, H c is the nuc
lear Hamiltonian. It is convenient to rewrite the Lippmann-
Schwinger equation for the transition operator T in the form 

T«T°+T°G 0(E)H CG C(E)T (2) 

with 
T°-V-VG 0(E)T°, G 0(E)=(h 0-E) _ 1 

O c(B)-(h 0+H c-E) -1 
(2«) 

The target Hamiltonian H c will be approximated by the first-
rank operator 

H c«H ( 1 )«e№><<H. (3) 
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Here t and \ф~ are, the energy and wave function of the gro
und state of the target nucleus, respectively. 

Using the approximation (3) for the n 3He elastic scatter
ing amplitude we obtain the simple integral equation 

<k0T0k'>=<MT° k'0 -+«/———- — - г . и ' 
(E"-E)(E"+€-E) (2*)3 

Here the inhomogeneous term and kernel are defined by the fix-
ed-scatterer T -matrix averaged over the targe»-, ground state 
wave function and taken at the total energy E of the system. 
In the calculation of this quantity, as is seen from eq.(2*), 
the motion of the whole nucleus is taken into account, whereas 
in the traditional model of fixed scatterers the kinetic ener
gy of the nucleus is neglected 4 (abandoned). 

As is noted in the Introduction, the integral term in eq. 
(4) is small at all the considered energies. If the contribu
tion from the continuous spectrum to the spectral expansion of 
the target Hamiltonian is taken into account, the correspond
ing integrals may turn out to be not small. 

Now let us discuss the construction of the amplitude T° in 
more detail. By definition 

<kV|T°|k0>* /•«Ir"1Bdr3KHr*1B,r8)| <k',?12 ,r*3|T Ik.r 13.Гз -, 

where к , к' are momenta of the relative motion of the pion 
and nucleus, г \g, Г3 are the Jacobian variables of nucleons, 
and <к'Г12>гз|Т°|кг igr 3 "• obeys eq. (2) which in the mixed 
representation has the form 

<k',r12r;iT°ik,r*gv* > -:k*iv<rv;8) i ^ - f i i ^ k - i «?„.?,> ̂  x 

<а.?1/з1т°|к, г; гг> ( 5 ) 

E q-E 
For our purposes it is convenient to rewrite eq.(5) in the 
Faddeev form. 

V V £ Vj t t = V , - V i G 0 ( E ) t i , 

Т ° Л т 0 1 T 0 l = t , L t 1 O 0 ( E ) C r 0 | f T 0 k ) . ( 6 ) 

We stress here that the equation for the two-body operator t( 

is not the equation for the free nfi t-matri.x since by defi
nition (2') the Green function C1„(E) contemns the mnss of the 
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3He nucleus instead of the nucleon mass in the target kinetic 
energy. At the same time while S and 8 1 P wave solutions of 
eg.(6) for the operator tj practically coincide with the free 
jrN-t -matrix, for 8 3 P -wave, where there is a resonance in 
the free »TN -scattering, these solutions are essentially dif
ferent. The difference is in that the solutions of eq.(6) for 
tj in 83p wave do not manifest the resonance behaviour. A 
numerical experiment has been performed on calculating the pi-
on scattering phase shift on a particle with mass m . Parame
ters of the pion-particle interaction were chosen so as to re
produce the 33p-phase in JTN scattering at m = M N . In Fig.l 
scattering phase shifts are drawn for different masses of the 
particle. Phase shifts were calculated by the formulae 

k8otgS =-*(m_.m,E)h~8(k)[A~1+J(m,E)], 

J(m.E) 1 — P fq 8dqh 8(q) (7) 
щ 77m -sr— + \/q 2+m£- m _-E 2m V 4 " n 

(mff+m)V* + Щ 

m„[m + Vk + m„] "'
 E = 2 m ' + ^ k 2 + m * " n , ; 7 ' (8) 

m=l036 MeV 
m-lOlO MeV 
m«970 MeV 

Fig.1. Dependence on mass 
N of the resonance p -wave 
phase-shift for nN -scat
tering. 

As is seen from the figure, 
even a negligible increase 
in mass m shifts the reso
nance position to lower 
energies and at m > М з Н е 

the resonance disappears at 
all. By this reason, the 
amplitude found by exactly 
solving the corresponding 
equation has no resonance 
behaviour. As a result, 
the * -nuclear scat

tering cross section calculated with such an amplitude becomes 
very email at "N resonano» energies, rather smaller than the 
cross section of elastic scattering of pion on the free nucle
on. 

Eub(MeV) 
200- m-m(3He) 

m-1300 MeV 



We have established that within the approximation (3) - a 
natural extension of the fixed-scatterer model, using nN -po
tentials obtained to the corresponding phase shifts - one 
fails to describe the experimental data on elastic n-sHe -
-scattering at intermediate energies. Hence it follows that 
the continuous spectrum of the nuclear system should necessa
rily be taken into account. 

The accurate treatment of the contribution of the continuum 
spectra, implies to solve the relevant four-particle equations 
that is out of our purpose. Being aware of the reason for the 
failure of the model of Sec.2 at intermediate energies and 
preserving its simplicity we shall introduce its certain modi
fication in the spirit of impulse approximation. 

The partial-wave decomposition at the ffN -potential is 
written in the form: 

<fc'f>|V*|itft> - 2 V£ Дк')¥г*(к)(4т'/1'|1М)(4т''1'гм)у^(к'к'>' 
U M , (9) 
mm 

where t is the nN isospin, y.,y.' are projections of the nuc-
leon spin, the other notation is obvious. 

In the considered energy region we shall assume the nN -po-
11 Я1 ЯЧ Al 

tential components V {j* , Vg , V j , V | to be nonzero, 
as the phases in other partial waves are small. Potentials 
Vf* (k,k') were chosen in the separable form: 
V»1(k.k')-A*h1(k)hi(k') 
v'lfr.kO-AghjWhgU') The form factors hj(k) and 

parameters с 
are written 
in Appendix. 

0" ... parameters of potentials (10) 
V.*^k,k')«A8hJ(k) h.CkO are written down explicitly 

vJkk'J-Ajh/Wh^kO 

For convenience we introduce the following multidimensional 
state vectors: 

•* -» 
h>-l4 k,.db>-e" l l |r e

+
1 1h e(k). 

|а,>-|*. 1 в и(к)>-е' 1 к ,»Г в" вЬ в(к). 
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у/An a = 1,2 
(11) 

ГашЧ^(4т±1||- т±4)У 1 т(к) а = 3 
V4,(l|m±|-|4-m±-|.)Ylra(k) = 4 

zl = 2"r 1 8 + Х Г з ' 8 2 = --2" г1г + _з - Г3' 2 з = -1- гз-
In the notation (11) the matrix elements of the two-body ope
rators t j (see formula (6)), over nSti wave functions with a 
given value of the total isispin T can be rewritten as 

<¥j*:2lt |*JSrJ>-<4|t,h>-<41(k)|A|»;l(k')> ( 1 2 ) s s 

for the n o n s p i n - f l i p ampl i tude , where matrix haa' -

^ + I a ( E ) 

and 

A 1 = X S ' A 2 = A S ' Л 3 " Л Р ' Л 4 = Л Р ' 

Constants С а and integrals Ia(E) are given in Appendix. The 
spin-flip amplitude will be expressed as follows: 

<% T S
=^|t i|* M

T SJ^>-<, l(k) lAI^.Ck'», (14) 

where 
О о -1,2 

Л £ <а'=5аа'Л в: Л « " i r T ^ „ . g 4 

' "If * T - y 
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With the matrix elements of the two-body opera tors t j we ob
t a i n the system of two matrix equations for the s p i n - f l i p and 
nonsp in- f l ip amplitude T ° : 

<4!T 0 i | J ? >=< 9 | t i | J / >-< 1 ; | t 1 h>G 0(E) <Ч|Т 0. + Т 0 Ь | Ч > -
(15) 

-< I ? | t , | < u >O 0 (E)< f i > |T 0 j +T 0 f c | r ? >, 

« u | T 0 1 | , > = « u | t .!,>-<&, |tj | ,>G 0(E) <4lT 0 j+T„ k1 v> -

- « u | t i | < u > G 0 ( E ) « u | T 0 j + T 0 k | I , > . 

The so lu t ions of the system for a s t a t e with d e f i n i t e i sospin 
a r e of the form 

<ч|т?|ч>-<ч1г^и>. г^-[1-х-»вт<«|о0|«> x 

X Y _ I B T < 7 ? | G 0 | I J > ] " 1 X - 1 [ 1 - R T < < U | G 0 | U ) > Y ~ 1 R T ] , (16) 

where matr ices X and У a re defined as follows: 

X" 1 =A~ 1 +| J j>G 0 (E)< 7 i ; Y~ 1=A~ 1+|<u>G 0(E)< f t)l 

and matrix R T has a form 

( 0 0 0 0 

0 0 0 0 
R T * I о о t T о 

10 0 O r 1 

The exact form of matrix elements of the matrices X and Y 
is given in Appendix. 

Differential cross sections are presented in terms of the 
above amplitudes in the following manner. 

d V 8 H e .fT«8/8 (8 + | gT-3/2|e 
d0 

йв 3 3 3 3 
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d o , mb dcT , m b . 

ttO sr п- + 3Не-*г,- 43Не 
E. ь = 68 MeV lab 

|T n (nonspin flip) 
Л1 ;7-(sum) 

<9* *f to* W #0* 1Ю* HO* tSO* <M» TO1 30* SO* ?9* 90* DO* 130» ISO» J7B* 
Fig.2. Differential cross sec- Fig.3. is non-spin-flip 
tion for the elastic rr+ 3He - cross section for elastic n~ He 
scattering at Е^бв MeV, nsf is scattering at E„=68 MeV, 
non-spin-flip cross section. sum spin-flip and non-spin-flip 

cross-section. 

dir 
n~ 3 H e ^ ° »H 2 , | r 3/2 , 1 / 2 , 2 , 3/2 1/2 

=-—l|f - f | + | g - g 

where 
dtf 

• -« '4 * .^»J . f r «- r » ) < , | T e T | , | > *» ' l r « 
g T = _ 4 r 2 , 

я не не 

The modification of the model consists in the change, in 
integrals Ia(E) in (13), of the " -nuclear Green function by 
the free n-nucleon Green function. What approximation in the 
eq.(6) this change corresponds to, will be considered below. 

Besides the ^N-phase shifts the "input" information conta
ins also the eigenfunction and eigenvalue of the target Hamil-
tonian. The calculations used the experimental value of the 
3He binding energy and an approximate function, containing 
the symmetric S-component with the Irving radial dependence / ? / 

Under these assumptions we have calculated the differential 



dfi sr 
) 

!7~ + 8Не-»ст~ + 3He 

ю vJT E U b - l » M e V 
non spin flip 

\l sum 

1 
\ \ | 

• |1 
!Н 

1 \ 
i V 

to* JO» ев* ТО» 90* 1W t30* « 0 * 170» 

1» 

F i g . 4 . The same a s in F i g . 3 , 
bu t a t E „ = 1 2 0 MeV. 

do / mb. 
dO sr 
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* + + 8 Неч * + + 3 He 
E ] a b = 145 MeV 

— nsf = sum 
- - Л - imitation of 

the continuum 

I I I 

\./^rr^. . 6fJ! 
* If If » » W 130* 1«* W 

Fig.5. is sum cross sec
tion for the elastic" He scat
tering at £^=145 MeV, imi
tation for the contribution of 
the continuum spectrum of the 
nuclear subsystem by introduc
ing an additional parameter Л . 

cross sections of elastic n- 3He scattering and charge ex
change reactions at various energies. Results of the calcula
tion are shown in Figs.2-7; experimental data are taken from 
refs. /7'e'/ . As is seen from the figures our predictions are in 
good agreement with the experimental data on elastic scatter
ing over the pion energy region before and after the n-nucle
ar resonance (see, e.g., the data at En = 68 MeV and 208 MeV), 
which is observed at an energy of 150 MeV. 

At other pion energies the agreement with experiment is 
achieved only in the forward hemisphere of the scattering ang
les. This relation between theory and experiment may be under
stood if one has in mind the sraallness of the ntt-amplitude 
far from the resonance. This smallness will, obviously, justi
fy the use of impulse approximation like in our calculations. 

S 



Fig.6. nsf cross section Fig.7. The same as in fig.3,but 
to the single charge-exchange at E =208 MeV. 
n~ by ^eat Ejr-68 MeV, 
sum sf and nsf. 
And vice versa, in the resonance region the nN amplitude has 
a magnitude comparable with the mean distance between nucleons 
and the applicability of impulse approximation is rather 
doubtful in that region. 

Like in earlier attempts of the description of elastic 
n 'He-scattering and charge exchange, our approach also reve
als a significance of spin effects in the state with total 
isospin of the system w+ 8He T« 1/2 , i.e., in elastic n~ ̂ le-
scattering and charge exchange (see Fig.6). Based on the above 
results, we should conclude that the magnitude of the spin-
flip amplitude in the state with T « 1/2 depends slightly on 
the dynamics and character of approximations used. In view of 
the good agreement of our calculations with experimental data 
at E r > 68 MeV, the same can be expected at lower energies. 
In this region there are no experimental data, nevertheless we 
report the calculated cross sections at energy E „. > 24 MeV. 
(see Fig.8). 
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II-

dg ,mb . 
dn sr 

3 1 
+ He -. n + ' He 

Fig.8. Cross section for the 
elastic n 3He scattering at E , 
=24 MeV, is T+-mesons, 

is тГ-mesons. 

e„ 
«•'меда » * w nr «* w 
As was indicated above, the modification of initial equati

ons consists in the change, in eqs.(6) for T 0 l , of the two-
body operator tj by the free nN t-matrix. Obviously, this 
means that the elementary act of лИ -scattering occurs on the 
free nucleon, i.e., on that one which is in a state of the 
continuous spectrum, and the wave function, over which the 
operator is averaged, only holds the nucleons inside the nuc
leus. Thus, the procedure described simulates the contribution 
from states of the continuous spectrum of the nucleon system. 
To what extent this simulation is, from a theoretical point of 
view, adequate to the exact consideration of the continuous 
spectrum in four-particle equations, is a difficult task at 
present, however, the agreement between calculated and experi
mental cross sections indicates that operations of this type 
are sufficient. 

One more simple procedure can be mentioned, which simulates 
the contribution of the continuous spectrum of nucleons. As 
has been shown above (see Fig.1), the wN -resonance position 
shifts to lower energies with increasing mass of the scatterer, 
therefore the resonance position may naturally be reconstruc
ted by simply adding a constant to the denominator of the 
Green function (2'), and the two-body operator t( , eq.(6), 
being used. This addition of a constant is equivalent to the 
change of the contribution of the continuum to the spectral 
expansion of the target Hamiltonian by some constant Л . Figu
re 5 shows the pion angular distribution at E « 145 MeV, 
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calculated by introducing Л. As is seen, the choice of Д may 
provide the agreement of the theoretical curve with experimen
tal data. 

APPENDIX 

С i = C 4 = - g - [ l + 2( - l ) li ! I], 

2 T 
XJfi». '(E) - £*„A. s ' + « + . S a / S H - ( Е . й . - в . I) apmm v a e p i j mm mm m a p v •' 1 j •' 

A -f. aft — QQ 
Y i s given by the same formula with S^ -< S B

r , 
+ S{jf = 1 for a,/3 = 1,2. 

* я 8 8 it l m + l I 3 m + l s* 

* я 4 4 м * m+1 I l m + 1 ^ 8 S m = ( l - m ± F l T m ± - ) , 
2 ' 2 — 2 

н -св..) . ! f ^ЙйЙЦвЙШЙ 
8m з 

He 

where и в.. is the reduced mass of the n 3He system, m« ^ 4. ff He _ •„_ J ' 8He is the mass of aHe . 
1«№)-Н в в(Е.0)[т 8 ч^т н]. 
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Form factors Parameters 
1 sl 

k 8 + a 8 k 8 + / 3 8 

1 e 8 
S 1 8 : h 8 ( k ) = - r i — r + k 8

+ « 8 k» + /3« 

k S 3 k * 
? 8 8 : " ^ *" (k 8

+ «A) 8 + ( k 8

+ / 3 8 ) 8 

T M : h4(k) 
( k^+o 8 ) 8 

aj«= 3.188 fin-1, 

a 8 = 1.366 fin"1, 

fy» 0.823 ftn"1, 

j8 8-5.270 ftn"1, 

o g =3.382 fm~ 

a 4 =1.756 fm" 

/3 g =1.107 fm" 

S g =-0.0273, Sj =0.0502, 

S 8 =30.846 fm, 

Xg=-6.137 fin"6, A 8

S = 71.408 fm~6, 

A 8=-0.5907 fnT7, А х

р= 12.353 to-7. 
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