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1. The dynamical description of a system is as a rule the 
construction of the system invariance group representations. 
In this paper an attempt is made to consider the stationary 
quantum states of Yang-Mills fields as the representation of 
the homotopy group. 

2. We consider the Yang-Mills theory in gauge A a = О with 
the Hamiltonian 

H = /d 8
Xi-[(Ep 8 + (B*) 2], (1) 

E Ho A t : B t - i j k ^ 4 + f a b C A j A

k

C ) 
(2) 

The finiteness of action and energy is one of the basic requi­
rements of the theory . According to this one considers usu­
ally fields A a as smooth functions (i.e., differentiable 
throughout R(3) and vanishing at spatial infinity). The the­
ory is invariant under- the stationary gauge transformations 

A;(x,t)=v(x)"1(A.(x,t)+^)v(ii); A , - g — A ' (3) 
i i i l g. l 

The matrices v(x) are a smooth mapping from R(3) to SU(2) 
and, as is known, «sach matrix is characterized by an integer 
index (n) . The total gauge group G is the production of a 
small gauge group GQ( n = 0) and the homotopy group TTQ (Sl}(2))--
= Z . There is a quantify Л (A) that realizes the homotopy-

/P/ group repre sentation'e/ 

Я (A) = l l / d 3 x £ . . ( 1 , 9 A a A * + J . A » A V < a b c >. (4) 
8»r 2 ijk 2 J J k 3 ' J к 

5ll(v<n>~ ( A , + d , ) v < n > ) = J l ( A j ) + n . ( 5 ) 
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3. Consider qu~ntization of the theory. WeArealiz~ the com­
mutator [ ~(x), A(y)] = i8 3 (x -y) in the form A= A; E = i8/8A , 
as A~ are smooth functions. Let 'I' f (A)=<Al t> be an exact 
wave functional satisfying the Schrodinger equation: 

H'l't -=€'1'£ (6) 

and the auxiliary conditions: 

V ab (A)Eb 'I' = 0 • 
i i E ' 

V~b =8abal +gf'&bcA~, (7) 

T'l' = e tO 'I' . 
f ( • 

d t. 
T = exp I d )I (A) (8) 

Here eq. (7) is the invariance condition of '1'£ under the 0 0 
transformations; eq. (8) is the covariance condition under the 
homotopy group. The operator T may be represented i.n the form: 

T=expl :":[iJd
3 xB 2r 1 fd3 xB~E~I 

(In fact, we have Tf( )l) = f()l + 1)). 

(9) 

Theorem 1: There is no complete system of physical solutions 
of eqs. (6)- (8) • 

Proof: The operators H and T do not commute: [ H ,T] f. 0, 
[ H, [ H, T]] ,;,. 0, etc. Therefore, H and T have no complete 
system of common physical eigenstates. It is known that the 
existence of the physical solutions in this case is rather an 
ex~ption to the rule than the rule. But there are exact 
nonphysical solutions of eqs. (6)-(8) ala "plane wave": 

'1' 0 =expl ±i{2~rk+O))l (AJI. 

According to eq. (8) k is integer, -rr::; (}::; rr • 
eq. (6) only under conditions £ = 0 and 

817 2 
(277k + (}) = ± i-2-. 

g 

(10) 

'I' 0 satisfies 

(11) 

Therefore '1'0 is the nonnormalizable, nonphysical solution. 
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4. Thus we must carry out a noncontradictory "synthesis" of 
the "plane wave" and "oscillator state" (6) . 

Theorem 2: To construct the physical states as the unitary 
representation of the homotopy group, it is sufficient to in­
troduce the new dynamical variable N(t) 

)l(t) = )l(A) + N(t) ( 12) 

-
so that the transformation (cyclic) properties of )1(0 do not 

change (5), and the topological translation operator (~=~) 
commutes with the total Hamiltonian. dn dN 

Proof: The dynamical variables in the gauge theory are defined 
by the equations of constraint /3, 41 in arbitrary gauge. 

~=0 
BAo 

where 

~ 2 
V . (A) A 0 = V. (A) a

0 
A. , 

I I I 

S=JdtL=-Jdtd
3x! (F;11 ) 2 , 

F a =a A a -a A a + g£ abc A b A c 
1111 11 II II 11 11 II ' 

We introduce a zero-mode c(t) of the operator 
explicit solution of eq. (13) 

a • a ( 1 a )a A 0 =c(t)<l> +-V. 0A. , v2 I I 
k 

where <I> a satisfies the equation 
2 

Vk<l> = 0. 

(13) 

(14) 

( 15) 

2 . 
Vi by the· 

(16) 

( 17) 

Substituting the solution (16) into the Lagrangian (14) and to 
"the definition of the Pontiyagin index 

. g2 
11[A] =JdtN(t) = 

32
" 2 Jdtd

3 xr11~ F,! £ p.vpa (18) 
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4. Thus we must carry out a noncontradictory "synthesis" of 
the "plane wave" and "oscillator state" (6). 
Theorem 2: To construct the physical states as the unitary 
representation of the homotopy group, it is sufficient to in­
troduce the new dynamical variable N(t) 

ft (t) = 31(A) + N(t) (12) 

so that the transformation (cyclic) properties of Jl(t) do not 
change (5), and the topological translation operator (-r-s ) 
commutes with the total Hamiltonian. dJl °" 
Proof: The dynamical variables in the gauge theory are defined 
by the equations of constraint / 3- 4 / in arbitrary gauge. 

J | _ = 0 | = > V?(A)A = V (A)* A , (13) 

where 

S = /dtL = -/dtd3xj-(F£„ ) 8 , (14) 

2 
We introduce a zero-mode c(t) of the operator у . by the 
e x p l i c i t so lut ion of eq.(13) 

А* = о(0Фа

 + (^ -У.<? 0 А 1 ) а , 
vk

8 
(16) 

where Ф satisfies the equation 
V®<& = 0. (17) 

Substituting the solution (16) into the Lagrangian (14) and to 
the definition of the Pontryagin index 

о 
v[ A] « /dtN(t) = J L - /dtd 8xFMt F £ < ^ (18) 
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we get* 

Ь=/<1 8хА.[(Е ( Т )) г-В 8] +4-(о) г[/(1 3х(УФ) 8]-с[/д 3хЕ ( Т )УФ], (19) 
3 л 

8 , 8 " dt ^ ) = С ( 1 ) - § - [ / < 1 3 Х В У Ф ] - ) } ( А ) ; ji=j£L = a 0Ji 0 Л ' (20) 

where )l is defined by eq.(4) 

•T^-Vl "(Vi ̂ T VJ W * ^ Vi E (i T ) = ViBi = °- (21) к 
For smooth transverse fields В, В ( Т ) , У Ф (eqs. (17), (21)) 
all coefficients of the new variable c(t) in eqs. (19) , (2o) 
are equal to zero and we obtain a theory equivalent to that 
considered in parts 2 and 3. The new variable has physical 
meaning if the fields B, E ( ',V0 are singular functions. 
We shall consider here stationary singularities. In other 
words, we represent the field A in the form of a sura of the 
singular "Bose-condensate" and a smooth dynamical "quasipar-
ticle" field. 

A(x,t) =b(x)+a(x, t). (22) 

According tp (20) we may pass from the independent variables 
с , a to N , a . The Lagrangian (19) with account of (20) 
(c = Jl[g8/d3xB УФ] 8w8)depends just on the combination of 
variables (12) in Theorem 2. The canonical momentum 

8L 5L 
sH * N 

(23) 

is an integral of motion, as L depends only on N , a . Ex­
pressing the action (14) in terms of P we get S = /dtL(b+a) , 
where 

L(b4*) -i-[/d3x(E(T)(b+a))8-<E>8]-l[/cl8x(B(b+a))8V<B>8], (24) 
— ft "* * ~ 

* For more details see paper / 4 /. 



,2 =p*(±LL) 2

 E (ft* + в)8 (-*£)* (25) 

Here <B>,<E> are q u a n t i t i e s topologica l ly invar ian t under 
smooth f i e lds va r i a t ions and dependent only on the "condensa­
t e " : 

<D> 8 = (/d 3xDV<S) 8//d 3x(V<l>) 8; D = E ( T ^ b ) ; B(b) . (26) 

Let us show that the existence of a singular condensate does 
not contradict the basic assumptions of finite action and sta­
bility. Just from these assumptions we shall obtain an equati­
on for the condensate and the quasiparticle spectrum. We ex­
pand the action (24) in powers of the smooth fields 

S(b + a) =S(b) +S'(b)a + i-S"(b)a 2+ ... (27) 

The action finiteness for the stationary field is 
S(b) = 0. (28) 

We require (28) to be fulfilled for both Euclidean and Minkow­
ski spaces. Then we get two equations 

/d 3xE 2(b) =<Е> 2^Е(Ь)-У(Ь)Ф, 
(29) 

/d *B8(b) = p 2 < B > 8 . 

The stability condition is the vacuum-transition absence 
S'(b)a = 0. (30) 

The system will be stable if the fields bj satisfy the clas­
sical equation out of singularities and the fields a have the 
zero boundary condition at the singularities. As the" variatio­
nal derivatives for b* are not defined, a unique way to sa­
tisfy (30) is to impose a condition of the type of (11) on the 
physical values of momentum P : 

,e-lK> (2„k + 0)8«(2!LL)8 

«re 
^ . l ^ ^ k + ffj-.l^r-) . (31) 

5 



That leads to the stationary duality equations: 
E ~B - УФ. (32) 

Formula (31) completes the proof of Theorem 2. 
5. Let us consider an exactly solvable example. Cylindrical-

symmetric singular solutions of the self-dual stationary equa­
tion are found in ref. 

Ь»=(Ф а,Ь 1
а) 

r z ' Ш i*k г sinz z 
*» m x'/„ f.. K , .a rn x , 1 1ч 
Ф = (ctgz ); b,= — (,.,. -r-v _,__ — ) , 

Г5" where z = mr , г = V * j » m is a solution parameter with 
the dimensionality of mass. For illustration of the quasipar-
ticle spectrum we consider an equation for a scalar coloured 
field in the same class of cylindrical-symmetric functions 

( [ V „ ( b ) ] 2 ) c d a d = к 8 а * . 
Г Г ~ — 

With the substitution 

(̂ £ are coefficients of the expansion over eigenfunctions). 
We obtain the equation for V g (r) 

о 
m 2 [ _ _i_ + JL<_i + — 1 )]!»- ̂ E 8 ^ 2 ) * , . 

az 2 2 staVS) oô (z/2) 

To solve this equation, it is sufficient to consider one "cell" 
of the periodic potential. The solution and spectrum look as 
follows 

*, (r) = V — Ц С JB) (cosz) sin8z, / dz*,, (r) * - (r) - в- . 

sJ+K*)-m*(8 + £ ) 8 ; С -0,1,2 
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fO\ /в/ 
where С ) ' is the Gegenbauer polynomial . The eigenvalues of 
operator [iV k(b)] 2 are positive and nonzero and we have no 
infrared divergences in the new quasiparticle perturbation 
theory. Stable quasiparticle excitations of the system may on­
ly increase the energy, therefore the state of "condensate" is 
energetically favourable. 

The considered solutions are in fact gluon bags / 7 /' and we 
have provided here the mechanism of such a bag formation. 

CONCLUSION 
The approach assumed for constructing the colour fieid qu­

antum states is physically appealing as it repeats the history 
of the theory of superfluidity (i.e., the theory in which for 
the first time the infrared catastrophe problem has been sol-
ved /8.», 10/ ,. 

I) The new variable N(t) corresponds, in fact, to the Lon­
don / 8 /' cooperative variable describing the topological "rigid" 
excitation of the whole system. 

II) According to the Bogolubov / 1 0 / microscopic theory we 
separate the c-number condencate and q-number quasiparticle 
fields. The very presence of the singular condensate provides 
the "rigid"-excitation condition. 

III) The finiteness of action in field theory is the condi­
tion for the existence of the orthonormalizable basis diagona-
lizing the Hamiltonian. The conditions of "finiteness" and 
"stability" lead to the "Landau" / 9 / equation for the potential 
condensate ("superfluid component") and Bogolubov quasipartic­
le spectrum. 

Points I, II, III constitute general features of the coope­
rative dynamics of systems with infinite number of degrees of 
freedom and with strong coupling in the infrared region. The 
criterion for the validity of such an approach to the infra­
red-catastrophe problem (i.e., the "necessary" analog of Theo­
rem 2 ) is - as a rule - considered to be its self-consistency 
and the energetically favourable condensate. 

We suggest to consider the non-Abelian fields as a physical 
medium like superfluid helium in a rotating bucket / 1 1 /'. To 
calculate the parameters of the condensates singular configu­
ration we must know the external boundary conditions and the 
helium atomic size. We do not know those for gluons, therefore, 
the "gluon-bag" parameters have to be determined experimental­
ly. 
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