

объединенный
 институт
 ядерных
 исследовании
 дубна

$2446 / 2-80$
E2-80-138

V.Ogievetsky, E.Sokatchev

TORSION AND CURVATURE IN TERMS OF THE AXIAL GRAVITATIONAL SUPERFIELD

Submitted to $Я \Phi$

1. Introduction

The success of the component approach to supergravity (the so-called "tensor calculus") is explained by the existence of a manifestly covariant superfield approach to this theory. Supergravity can be formulated as a theory of the curved superspace and the powerful methods of differential geometry can be applied, as it is done in Einstein's general relativity. In such a framework the basic objects are the aupervierbeins E_{A}^{M} and the connections $C_{A B}{ }^{C}$. They allow one to define covariant derivefiver

$$
\begin{equation*}
D_{A} \phi_{B}=E_{A}^{M} \partial_{M} \phi_{B}+\omega_{A B}{ }^{c} \phi_{C} . \tag{1.1}
\end{equation*}
$$

The (anti) commutators of these derivatives give covariant quanttitis, the torsion $T_{A B} D$ and curvature $R_{A B}{ }^{e f}$ tensors

$$
\begin{equation*}
\left[D_{A}, D_{B}\right\} \Phi_{C}=-T_{A B} D_{D_{D}} \varphi_{C}-R_{A B}, C D \Phi_{D} . \tag{1.2}
\end{equation*}
$$

where

$$
R_{A B, C} C^{D}=R_{A B}{ }^{e f}\left(\Lambda_{e_{f}}\right)_{C}^{D}
$$

and Def are the Lorentz-group generators.
One of the first geometric approaches $/ 1,2 /$ is based on the general coordinate transformation group in auperapace $\left\{\left(x^{m}, \theta^{\mu}, \bar{\theta}^{\mu}\right)\right\}$. There the supervierbeine $E_{A}{ }^{M}$ are the primary potentials. This theory cannot be made a theory of eupergravity by purely geometrice means. Additional covariant constraints on the torsion componente have to be postulated in order to eliminate a large number of the field-componente of $E_{A}^{M}(x, \theta, \bar{\theta})$. The form of these conattaints has successfully been guessed by Tess and $Z u m i n 0^{1 / *)}$.

In Ref. ${ }^{/ 5 /}$ it was shown that aupergravity can be constructed on a more transparent, purely geometric ground. To this end one starts with the general coordinate transformation group in 4+2-
F) In Ref. ${ }^{137}$ the classification and possible algorithms in searching for those constraints have been discussed. In some recent pa. pere ${ }^{/ 4 /}$ they have been guessed for $N=2$-supergravity too.

dimensional complex superapace $\left\{\left(x_{L}^{m}, \theta_{L}^{\mu}\right)\right\}$. The imaginary part of x_{L}^{m} is identified ${\text { ith the axial superfield } \mathcal{H}^{m}(x, \theta, \bar{\theta}), ~(x)}^{m}$ that is the primary potential in the theory. Ail geometric objecte are expressed in terms of the dorivatives of \mathcal{H}^{m}. The corresponding formulae for $E_{A}{ }^{M}$ and $C U_{A B}{ }^{C}$ were given in Ref. ${ }^{16 /}$.

In the present paper the components of torsion $T_{A B} C$ and curveture $R_{A B C}{ }^{D}$ are written down in terme of eeveral besic superfielde $R, \bar{R}, G, W, \bar{W}$. Explicit expreseions in terms of H^{m} and identities for these besic superfielde are derived. All covariant constraints guessed in Refa. $1,2 /$ are automatically fulfilled here. Thus, our geometric approach is shown to be equivalent to the approach of Ref. $/ 1 /{ }^{*}$), although involving lese postulates and superfluous field varisbles.

Instead of the Bianchi identities we shall intentionally use the normal gauge (NG below) $/ 8 /$ in order to ehow ite effectivenese and constructiveness. In this gauge st a given euperapece point $Z_{0}^{N}=\left(x_{0}^{n}, \theta_{0}{ }^{V}, \bar{\theta}_{0}{ }^{\nu}\right)$ the following derivatives of \mathcal{H}^{m} do not vanish (thair dimensions and types of Lorentz-group representations are listed also):

$$
\begin{equation*}
\left.\partial_{\nu} \bar{\partial}_{i} \mathcal{H}^{m}\right|_{0}=-\left(\sigma^{m}\right)_{\nu \dot{\nu}} \tag{1.3}
\end{equation*}
$$

$$
\left(\mathrm{cm}^{\circ}\right)
$$

$\partial^{2} \partial_{2} \partial_{m} H^{m}=\frac{3 i}{2} \bar{R} l_{0}$ and h.c. $\quad\left(\mathrm{cm}^{-1},(0,0)\right)$
$\left.\partial^{v} \partial_{V} \bar{\partial}_{\dot{\nu}} \bar{\partial}^{\dot{\nu}} \mathcal{H}^{m}\right|_{0}=-\left.3 G^{m}\right|_{0} \quad\left(\mathrm{~cm}^{-1},\left(\frac{1}{2}, \frac{1}{2}\right)\right)$

$$
\left.\bar{\partial}_{\dot{r}} \bar{\partial}^{\dot{r}} \partial_{\alpha} \partial_{m} H^{m}\right|_{0}=\left.\frac{3 i}{2} D_{\alpha} R\right|_{0} \text { and br.c. } \quad\left(\mathrm{cm}^{-\frac{3}{2}},\left(\frac{1}{2}, 0\right)\right) .(1.8)
$$

Here $\partial_{m}=\partial / \partial x^{m}$, etc.; $\partial_{\nu \dot{y}}=\sigma_{r \dot{\nu}}^{m} \partial_{m}, \mathcal{H}_{v \dot{ }}=\sigma_{\gamma \dot{r}}^{m} \mathcal{H}_{m}$; the world and Lorentz indices are not distinguishable in Na; b.c. mesne Hermitian conjugated terms. The remeining derivatives of \mathcal{H}^{m} with

[^0]dimension from $\mathrm{cm}^{+\frac{1}{2}}$ to $\mathrm{cm}^{-\frac{3}{2}}$, asmell 日s \mathcal{H}^{m} itself, vanish in NG.

In the right-hand sides of Eqs. (1.3)-(1.8) there are basic tensor auperfielda that reduce juvt to these derivatives of $f^{\text {m }}$ in NG.

NG in analogous to the normal coordinate frames in general relativity. It gimplifies aignificantiy and makes tranaparent a number of calculations and derivations. For inatance, EqB. (1.3)(1.8) Immediately yield the absence of geluge-independent (i.e., tensor) quantities with dimension $\mathrm{Cm}^{-\frac{1}{2}}$ (of courge, without using the coupling constant x as aimenaion-regulating factor), Thia simply means that the torsion componanta with dimension cm $\mathrm{cm}^{-\frac{1}{4}}$ should vaniah. We hope that aimilar gauges will be posaible and constructive in extended supergravity too.

For convenience of the reader the peper is planned as followa: In Section 2 a complete list of the reaults is given, and their derivation is demonstrated in the subsequent sections. The notation used ia explained in the Appendice日. They also contain some necessary information about the operators \triangle, the spinor connections, etc., as well ss some identities following from the main text.

2. Summary of the Resulte

Here the components of the toraion tensor $\bar{T}_{A B} C$ are listed and their dimensione are indicated.
$T_{\alpha \dot{\beta}}^{c}=2 i\left(\sigma^{c}\right)_{\alpha \beta}(a), T_{\alpha \beta}^{c}=T_{\alpha \beta}^{c}=0(b) ; \quad\left(\operatorname{cm}^{c}\right) \quad(2.1)$
$T_{\alpha \beta}^{\mu}=T_{\alpha \dot{\beta}}^{\mu}=T_{\alpha \dot{\beta}}{ }^{\mu}=O$ and h.c.; $\quad\left(\mathrm{cm}^{-1}{ }^{\mu}\right)$ (2.2)
${ }_{\alpha \cdot}{ }^{c}=0$ cand h.c.; $\quad\left(\mathrm{cm}^{-\frac{1}{2}}\right)(2.3)$
$T_{\alpha, \beta \beta}^{\phi}=-\frac{i}{4} \varepsilon_{\alpha \beta} G_{\beta}^{\gamma}$ and h.C. $\quad\left(\mathrm{cm}^{-1}\right)$ (2.4)
(throughout the paper the vector indices are often repleced by
 Appendin A);
$T_{\alpha, \beta \beta, \dot{\beta}}=\frac{i}{4} \varepsilon_{\alpha \beta \beta} \varepsilon_{\beta j \bar{R}} \quad$ and $1 . c . ; \quad\left(\mathrm{cm}^{-1}\right) \quad$ (2.5)

$$
\begin{align*}
& T_{a b}{ }^{c}=-\frac{1}{8} \eta^{c d} \varepsilon_{u b d e} G^{e} ; \tag{2.6}\\
& \left(\mathrm{cm}^{-1}\right) \\
& T_{\alpha \dot{\alpha}, \beta \beta_{1 \beta}}=\frac{1}{2} \varepsilon_{\dot{\alpha} \beta} W_{\alpha \beta \beta}+\frac{1}{f b} \varepsilon_{x \beta}\left(\bar{x}_{\dot{\alpha}} G_{\mu \beta}+\bar{D}_{\beta} G_{\beta \dot{\alpha}}\right)- \\
& -\frac{1}{16} \varepsilon_{\alpha ;}\left(\varepsilon_{\beta \mu} Q_{k} R+\varepsilon_{\alpha j} 2_{\beta} R\right) \text { and h.i. }\left(\mathrm{cm}^{-\frac{3}{2}}\right)^{(2.7)} \text {. }
\end{align*}
$$

The components of the curvature are related to the torsion components ${ }^{\prime 9}$, so, we shall give here the aimplast ones only, thet ill be discussed below.
$R_{\alpha \beta, j}=-\frac{1}{2}\left(\varepsilon_{\alpha j} \varepsilon_{\beta} \delta+\varepsilon_{\alpha} \delta \varepsilon_{\beta \beta}\right) \bar{R}$ (and $1.2 . ; \quad\left(\mathrm{cm}^{-1}\right)(2.8 \mathrm{a})$
$k_{\alpha \beta, j^{j}}=0$ and h.c.;
$R_{\alpha \beta}, C D=0$.
As it is seen Prom EqB. (2.1)-(2.9) the components of toraion and curvature are all expressed in terma of the basic superfielda $R, \bar{R}, G_{\times \dot{\alpha}}, W_{\alpha} \not \mu_{1}, \bar{W}_{\alpha j \dot{\beta}}$ /21. The latter have the following properties. R, \bar{R}, W, W are chiral:
$\bar{D}_{\dot{\alpha}} R=2_{\alpha} \bar{R}=0(a), \bar{D}_{\dot{\delta}} W_{\alpha \beta \beta}=D_{\delta} \bar{W}_{\dot{\alpha} \beta \dot{\gamma}}=0(b)$.
The suporfield $G \alpha \dot{\alpha}$ is Hermitian
$G_{x \alpha}^{\top}=G_{\alpha \dot{\alpha}}$.
The euperfields $W_{\alpha \beta \beta}, \bar{W}_{\dot{\alpha} \beta} \dot{\beta}$ are totally aytanetric in thair indices, i.e., they realize Lorentz-group representations ($\left.\frac{3}{2}, 0\right)$, $\left(0, \frac{3}{2}\right)$: reapectively. Pinally, the following identities hold
$D^{\alpha} G_{\alpha \dot{\alpha}}=-\bar{D}_{\dot{\alpha}} \bar{R}$ (a), $\bar{D}_{\dot{\alpha}} G_{\alpha}^{\dot{\alpha}}=-D_{\alpha} R$ (b);
(2.12)
$\partial^{\alpha} W_{\alpha \beta \beta}=-\frac{1}{8} \bar{D}_{\dot{\alpha}}\left(D_{\mu} G_{\delta}^{\dot{\alpha}}+D_{\delta} G_{\mu}^{\dot{\alpha}}\right)$ and h.C.
The basic superfields can be expreased in terms of derivatives of H^{m} :
$R=\bar{\Delta}_{\bar{\alpha}} \bar{\Delta}^{\alpha}\left(\bar{F}^{2}\right)(a), \quad \bar{R}=\Delta^{\alpha} \Delta_{\alpha}\left(F^{2}\right)(b) ;$
$G_{\alpha \dot{\alpha}}=2\left(F \Delta^{\beta} \bar{w}_{\dot{\alpha} \alpha \beta}+4 \bar{u}_{\dot{\alpha} \alpha}^{\beta} \Delta_{\beta} F+\frac{\bar{E}}{F} \omega_{\alpha \dot{\alpha} \beta} \bar{\Delta}^{\dot{\beta}} F+\right.$
$+w_{\beta \dot{\beta}} \bar{w}^{\dot{\beta}} \beta_{\beta x}+2 \bar{F} \bar{\Delta}_{\dot{\alpha}} \Delta_{\alpha} F+\bar{F} \Delta_{\alpha} \bar{\Delta}_{\dot{\alpha}} F+\Delta_{\alpha} \bar{F} \cdot \overline{\Delta_{\dot{\alpha}}} F+\frac{\bar{E}}{F} \Delta_{\alpha} F \bar{A}_{\dot{\alpha}} \bar{F} /(2.15)$
$W_{\alpha \beta \mu}=\frac{1}{3}\left(V_{\alpha \beta \mu}+V_{\beta \beta \alpha}+V_{\beta \alpha \beta}\right), \bar{W}_{\dot{\alpha} \beta \dot{\gamma}}=\left(W_{\alpha \beta \mu}\right)^{+}$
where
$2 V_{\alpha \beta \gamma}=-F \bar{F}\left\{\Delta_{\alpha,} \bar{\Delta}_{\alpha}\right\} \bar{\omega}_{\beta \beta}^{*}-F \bar{\omega}_{\dot{\alpha} \alpha} \varepsilon / \Delta_{\delta} \bar{\omega}_{\beta \mu}+$
$\left.+\frac{1}{2} \Delta_{\beta} \bar{\omega}^{\dot{\alpha}} \delta_{\mu}+\frac{1}{2} \Delta_{\mu} \bar{\omega}^{\dot{\alpha}} \delta_{\beta}\right)+\left(\frac{F}{\bar{F}} \Delta^{\delta} \bar{F} \cdot \bar{\omega}_{\alpha} \times \delta-\right.$
(2.15)
$\left.-F\left[\Delta_{\alpha}, \bar{\Delta}_{\alpha}\right] \bar{F}-\bar{F} \Delta_{\alpha} \bar{\Delta}_{\dot{\alpha}} F+2 \frac{F}{\bar{F}} \Delta_{\alpha} \bar{F} \bar{\Delta}_{\dot{\alpha}} \bar{F}+\frac{F}{F} \Delta_{x} F \bar{\Delta}_{\dot{\alpha}} F\right)(\bar{\omega} \cdot \hat{\omega}$
The explicit form $16 /$ of the operators $\Delta_{\alpha}, \bar{\Delta}_{\alpha}$, spinor connections $\omega_{\alpha \beta \beta}, \bar{\omega}_{\alpha \beta \gamma}$ and factors F, \bar{F}, sll in terme of H^{m}, is given in Appendix B.

The NG-values of the basic superfields and of some of their covariant derivatives have already been given in Section 1 , Eqe. (1.3)-(1.8).

Now, let us diecuse the proofe.
3. Toraion Components with Dimension Cm° and $\mathrm{Cm}^{-\frac{1}{2}}$
In Ref. $/ \mathrm{h} /$ we sdopted the following definition of the vector covarient derivative

$$
\begin{equation*}
{\underset{L}{\alpha}}_{a}=\frac{i}{4}\left(\tilde{\sigma}_{a}\right)^{\dot{\alpha} \alpha}\left\{\bar{L}_{\alpha}, \overline{2}_{\dot{\alpha}}\right\} \tag{3.1}
\end{equation*}
$$

Comparing Eq.(3.1) with Eq.(4.2) one imediately gets Eq. (2.1a). Moreover, Eq. (2.1a) is unique, because in NG the only nonvanighing dimensionless derivative of \mathcal{f}^{m} is the invariant tenacr $\sigma_{\alpha \dot{\alpha}}^{a}$ (aee Eq. (1.3)). For the same reason the dimensionless torsion components $T_{\alpha \beta}^{c}$ and $T_{\alpha / i}^{c}$ vanish, as stated in Eq. (2.1b).

Analogously, the absence of nonvaniehing derivatives of $H^{\text {me }}$
with dimension $\mathrm{Cm}^{-1 / 2}$ in $N G$ proves the correctness and unique-
nece $\because f$ Aqs. (2.2), (2.3). The same arguments ghow the undqueness of our definition of the spinor connections $/ 6 /$ (see Eqs. (B.4), (B.5)). Two poseible connections would have to differ by a tensor with divension $\mathrm{cm}^{-1 / 2}$.

Note that Eqs. (2.1)-(2.3) are part of the kinematic conetraints of Hess and Zunino $/ 1,2\rangle$. In our case they are automatically fulfilled. The last of the kinematic conetraints, $T_{4} 6^{c}=0$ (dimension Cm^{-1}) is not unique: It can be modified by redefining the vectur connection (see Sect.6).

Pinally, Eqs. (3.1) and (1.2) yisld Eq. (2.9) too. Eq. (2.8b) means that in NG the tenaor $R_{\alpha \beta}, \dot{f} \dot{\varepsilon}$, symuetric in x_{j}, β and $\dot{H}, \dot{\delta}$ cannot be constructed out of the nonvarishing derivatives With dimension Cm^{-1} (Eqs. (1.4), (1.5)). Eq. (2.8b) leads to identity (0.1) when written out in detail.
4. Explicit Forn of the Basic Superfieldg $R_{2} \bar{R}$

To oltejr an expression for \bar{R} coneider the anticommutator $\left\{D_{\alpha}, D_{\beta}\right\} q_{\gamma}=D_{\alpha}\left(F \Delta_{\beta} q_{j e}+\omega_{\beta \mu} \delta Q_{\delta}\right)+(\alpha \leftrightarrow \beta)=$
$=-\frac{1}{2} \Delta^{5} \Delta \delta\left(F^{2}\right)\left(\varepsilon_{\alpha \beta} P_{\beta}+\varepsilon_{\beta \beta} q_{\alpha}\right)$.
Here Eqs. (B. 1), (B.5), (B.9) were used. From Eq. (4.1) gtatements (2. Ba), (2.14b) follow. The chirality of \bar{R} (statement (2.10a) is obvious (aee Eq. (B.9)). Note that Bq. (2.1b) haa once again been dersved.

Let us find the NG-valus of \bar{R}. From the definition (E.3) of factor F follows
$\Delta_{\alpha} F=F\left(-\frac{1}{3} \hat{\imath}_{m}^{a} \Delta_{\alpha} \hat{\eta}_{a}^{m}+\frac{1}{6} \hat{\imath}_{m}^{a} \Delta_{a} \hat{l}_{a}^{m}\right)$.
Further, in NG (see Eq. (1.3))
$\left.\hat{\tau}_{a}^{m}\right|_{0}=-\left.\hat{l}_{a}^{m}\right|_{0}=2 \delta_{a}^{m},\left.\hat{Z}_{m}^{a}\right|_{0}=-\left.\hat{l}_{m}^{a}\right|_{0}=\frac{1}{2} \delta_{m}^{a},\left.F\right|_{0}=1 ; \quad$ (4.3)
$\left.\Delta_{\alpha} \hat{Z}_{a}^{m}\right|_{0}=\left.\Delta_{\alpha} \Delta \sigma_{a} \Delta \alpha^{m}\right|_{0}=\left(\tilde{\sigma}_{a}\right)^{\beta \beta}\left[\partial_{\alpha} \partial_{\beta}\left(-\bar{\partial}_{\beta}^{-i} \bar{\partial}_{\beta} H^{m}(1+i \lambda)_{n}^{-1} \partial_{k}\right) H^{m}\right]_{0}=$
$=\left.\left(\tilde{\sigma}_{a}\right) \beta^{\beta} \partial_{\alpha} \partial_{\beta} \bar{\partial}_{\beta} H^{m}\right|_{0}=0 ;$
similarly, $\left.\Delta_{\alpha} \ell_{a}^{m}\right|_{0}=0$, i.e.,

$$
\begin{equation*}
\Delta_{\alpha} F i_{0}=0 \tag{4.5}
\end{equation*}
$$

Then we find

$$
\begin{align*}
& \left.\vec{R}\right|_{0}=-\left.\frac{1}{3} \Delta^{\alpha} \Delta_{\alpha} \hat{乙}_{a}^{a}\right|_{0}-\left.\frac{1}{6} \Delta^{\alpha} \Delta_{x} \hat{\ell}_{a}^{a}\right|_{0}= \\
& =-\left.\frac{1}{3} \Delta \Delta \cdot \Delta \sigma_{a} \bar{\Delta} H^{a}\right|_{0}-\left.\frac{1}{6} \Delta \Delta \cdot \vec{\Delta} \tilde{\sigma}_{a} \Delta H^{a}\right|_{0} \tag{4.6}
\end{align*}
$$

The firgt terw contains three \triangle 's and vaniahes according to Eq.(B.9). In the second term $\vec{\Delta}$ and Δ change their places with the help of $\mathrm{Bq} .(\mathrm{B} .10)$. Pinally, taking into account that the lower-order derivatives vanioh, one geta
$\left.\bar{R}\right|_{0}=\frac{i}{6}\left(\widetilde{\sigma_{a}}\right)^{\alpha \alpha}\left[\Lambda^{\beta} \Delta_{\beta}\left(\left[\Delta_{\alpha}, \overline{\Delta_{\alpha}}\right] X^{m} \partial_{m} \mathcal{H}^{a}\right)\right]_{0}=-\left.\frac{21}{3} \partial^{\alpha} \partial_{\alpha} \partial_{m} K^{m}\right|_{0}$ which is juat $\mathrm{Eq} \cdot(1.4)$. The expression (1.8) for $\left.\overline{Q_{\alpha}} \bar{R}\right|_{0}$ is easily obtained in the eame manner.

We have carried out the above calculations in auch detail for illustration. In whet follows many etreightforward etepg of these $N G-c e l c u l a t i o n s$ will be omitted.

5. Torsion Componente $7 \alpha, \beta, C$ and Bonic Suporfiold $G \alpha \dot{a}$

Consider the commutator

This quantity is antioymmetric in α and β. Indeed,

$$
\begin{equation*}
+\left(D_{\alpha} \overline{\partial_{\beta}} D_{\beta}-\partial_{\beta} \bar{\omega}_{\beta} D_{\alpha}\right) \phi \tag{5.2}
\end{equation*}
$$

The antisymmetry of the first two terms in due to Eqg.(1.2), (2.1), (2.8b), and the last two are obviously antiaymmetric. Then,
$T_{x, 3, j}{ }^{C}=\frac{1}{2} \varepsilon_{\alpha, \beta} T^{E}, \varepsilon_{j i}{ }^{C}$,
and the indices α and β can be contracted when evaluating Eq.(5.1). Putting the explicit expraseions (E.1) for $\hat{X}_{\alpha}, \vec{x}_{\bar{x}}$ and (B .5) for $U_{\alpha \beta} \beta$ into Eq. (5.1), and making some straightforward rearrangements, one getb

$\left.-2 \omega_{\alpha \alpha \dot{j}}\left\{\Delta^{\alpha}, \bar{\Delta} \dot{\beta}\right\}\right\} C P+\left\{\frac{F^{2}}{\bar{F}} \Delta \Delta \bar{F} \varepsilon_{\dot{x} \dot{j}}+F \Delta^{x} \omega_{x \dot{x} j} ;\right.$
$+3 \Delta^{\alpha} F \cdot u_{\alpha \dot{x} \dot{p}}+\frac{2 F}{\bar{F}} \Lambda^{\alpha} \bar{F}_{1} \omega_{\alpha \dot{\alpha} \dot{p}}+\omega^{\alpha} \dot{\alpha}_{\dot{\rho}} \omega_{\alpha} \dot{\rho} \dot{\mu}+$
$\left.+\frac{4 F}{\bar{F}} \Delta^{\alpha} F . \Delta_{\alpha} F \varepsilon_{\dot{\alpha j}}\right\} \overline{\alpha^{k}} \phi+$

$+u^{\delta} \dot{\beta} \dot{x} \bar{u}_{\delta}^{\mu}+2 \bar{F} \bar{\Delta}_{2} \Delta^{\mu} F+\bar{F} \Delta^{\mu} \bar{\Delta}_{\dot{2}} F+$
$\left.+\Delta^{\pi} \bar{F} \cdot \bar{\Delta}_{\dot{u}} F+\frac{\vec{F}}{F} \Delta^{d} F \cdot \bar{\Delta}_{\dot{x}} \bar{F}\right\} \omega_{\gamma t} q$.

With the help of Eqs.(B.10), (E.11) one can easily show that all the terms in the first braces in Eq. (5.4) are proportional to the spatial derivative. So, according to Eqs.(1.2), (B.1), (B.10) these terms form the torgion component $7^{\infty}, \dot{\beta}^{c}$. However, the latter has already been ahown to vanish (Eq.(2.3)).

The second braces in Eq. (5.4) determine the component
$T_{1 \times 1}^{\alpha} \dot{n}$. Let us find its NG-value. One of the higher-order-derivative terms (the lower-order ones vanish), F $\Delta^{\alpha} \omega_{x}$ pig , equals zero in NG (see Eq, (B.Ga)). The second one gives
$\left[\frac{F^{2}}{\bar{F}} \Delta \Delta F\right]_{0} \varepsilon_{\beta \gamma}=\frac{2 i}{3} \partial^{\alpha} \partial_{\alpha} \partial_{m}-\left\langle\left.^{m}\right|_{0} \varepsilon_{\beta} \gamma^{i}\right.$.
Comparing Eq. (5.5) with Eq. (1.4) and recalling the teraor character of the quantities considered one proves statement (2.5). Identity (0.2) is simultaneously obtained also.

The third braces in Eq. (5.4) determine $T^{*}{ }^{\prime}$ so, thet statements (2.4) and (2.15) are confimed. The NG-value of $G \times i$ (1.5) is obtained considering only the terme $\Delta^{\alpha} \bar{c}_{\dot{\alpha} \times \mu \mu}, \bar{\Delta}_{\dot{\alpha}} \Delta_{\mu} F$ and $\Delta_{f} \bar{\Delta}_{\bar{\chi}} F$, the remaining ones vanisin in NG. Eq. (1.5) clearly shows that ' $G_{x \dot{x}}$ is Hermitian, i.e., that Eq.(2.11) holds. The vanishing of the antihermitian part of $G_{\text {ex }}(2.15)$ leads to identity ($\mathrm{C}, 3$).

Consider $\alpha^{2 \times} G_{x}$ in $N G$:

$$
\begin{align*}
& 2^{x}\left(\left.G_{x}\right|_{0}=2\left[A^{x} \Delta^{\beta} \omega_{\beta_{x}}+2 \Delta^{\alpha} \bar{A}_{x} \Delta_{x} F+\Delta^{x} \Delta_{\alpha} \Delta_{x} F\right]_{t}=\right. \\
& =-\left.\frac{2 i}{3} \hat{\theta}^{\alpha} \hat{C} \overline{\hat{\alpha}} \hat{\partial}_{m} \mathcal{H}^{m}\right|_{0}=-\left.\overline{D_{\dot{\alpha}}} \dot{R}\right|_{0} \tag{5.6}
\end{align*}
$$

according to Eq. (1.8). Thus, statement (2.12a) is also proved. Pinally, Eq. (1.7) can easily ba verified.
6. Torsion Componente Tae
Prom Eqg. (1.1), (1.2) one finds

$$
\begin{equation*}
T_{a b}^{c}=E_{a}^{M} \partial_{M} E_{b}^{N} E_{N}^{c}+\omega_{a b}^{c}-\left(a \leftrightarrow e^{c}\right) \tag{6.1}
\end{equation*}
$$

In $N G$ the aupervierbeins $E_{A}{ }^{M}$ turn into $\delta_{A}^{M} / 8 /$, hence the first term in Eq. (6.1) includes the spatial derivative ∂_{a}. However, according to Eqs. (1.4), (1.5) in NG there are no appropriate derivatives with dimension $\left(m^{-1}\right.$ containing D_{a}. Therafore, (see EqB. (B.7), (1.5))
$\left.T_{a b}^{c} /_{0}=\left[u_{a e^{c}}{ }^{c}-\omega_{b a}{ }^{c}\right]_{0}=-\frac{1}{8} \eta^{c d} \varepsilon a b d e^{G}\right]_{0}$.
$\overline{T a}^{c}{ }^{c}$ and G^{Q} are tenaors, so Eq. (6.2), i.e. Eq. (2.6) holds in an arbitrary gauge.

Stress that the rector connection $W_{a} C_{C}$ is not defined uniquely. There is a tensor, $G_{x \alpha}$, with the game dimension cm^{-1} that can be added to $W_{c} 6 c$. For ingtance, if one chooses

$$
\begin{equation*}
w_{a b_{c}}=\omega_{a b c}+\frac{1}{4} \varepsilon_{a b c d} G^{d} \tag{6,3}
\end{equation*}
$$

one obtaina $7_{a}^{\prime} e^{c}=0$, i.e.,jugt the laat kinematic conatraint in Refs. $/ 1,2 /$. So, one aees that this conatraint, being correct,
is not unique. In our case, to obtain $T_{a}{ }^{c}=O$ we have to adopt the vector covariant derivative
$D_{a}=\frac{1}{4}\left(\tilde{\sigma}_{a}\right)^{\dot{\alpha} \alpha}\left\{x_{\alpha,}, \overline{\alpha_{\alpha}}\right\}+\frac{1}{4} \varepsilon_{a \in c d} G^{d} \Lambda^{b c}$
instead of the natural definition (3,1).

7. Torsion Cormponent $T_{a} \epsilon^{\mu}$ and Baeic Superfield $W_{\alpha \beta}$

Now, from Eqs.(1.1), (1.2) follows
$T_{a b}{ }^{\mu}=E_{a}^{M} \partial_{M} E_{\ell}^{N} E_{N}^{\mu}-(a \leftrightarrow b)$
since $\omega_{\mu} \beta^{\kappa}$ (or $\omega_{b}{ }^{\mu}$) does not exist. In NG
$T_{a} b_{0}=\left.\partial_{a} E_{b}^{\gamma}\right|_{0}-\partial E_{a} \%_{0}$.
The explicit form of $E_{a}{ }^{\prime \ell}$ was given in Ref. ${ }^{16 /}$ (it can easily be obtained from Eqs.(3.1), (B.1)). Putting it into Eq.(7.2) one finde (in epinor notetion)
$\left.T_{\alpha \dot{\alpha}, \beta \dot{\beta}, j^{k}}\right|_{0}=\left.\left(\sigma^{\mu}\right)_{\alpha \dot{\alpha}}\left(\sigma^{b}\right)_{\rho \dot{\beta}} \varepsilon_{\gamma \delta} T_{a \beta} \delta\right|_{0}=$
$=\left.\frac{i}{2} \partial_{\alpha \dot{\alpha}}\left(\varepsilon_{\beta \mu} \bar{\partial}_{\beta} F+\bar{\omega}_{\beta \beta \mu}\right)\right|_{0}-(\alpha \dot{\alpha} \leftrightarrow \beta \dot{\beta})=$

$-\frac{i}{24} \varepsilon_{\dot{\alpha} \dot{\beta}}\left(\left.\varepsilon_{\beta \gamma} \bar{\partial}_{\dot{\gamma}} \bar{\partial}^{\dot{v}} \theta_{\alpha} \partial_{m} H^{m}\right|_{0}+\left.\varepsilon_{\alpha} \gamma^{2} \bar{\partial}_{\dot{\gamma}} \bar{\partial}^{\dot{\gamma_{2}}} \partial_{\beta} \partial_{m} H^{m}\right|_{0}\right)$.
The second term in the last equation is identified with $\operatorname{Sym}_{(2)} \bar{D}_{2} G_{\beta} \beta \|_{0}$
 So, Eq.(7.3) establishes the coefficients of these superfields in Eq. (2.7). The first term in Eq. (7.3) determines a new quantity, $W_{\alpha \beta \mu}$, which is to be examined now. Eq. (7.3) shows that $W_{\alpha \beta \gamma}$ is totally eymetric in $\alpha_{,}, \beta_{1}$. To obtain an explicit expres -
sion for $W_{\alpha \beta}$ rone has to evaluate the comimutator (gee EqB. (1.2), (3,1))
$\frac{1}{4}\left[\left\{\hat{D}_{\alpha}, \bar{D}_{\dot{\alpha}}\right\},\left\{\hat{D}_{\beta, \bar{\partial},}\right\}\right] C p=T_{\alpha \dot{\alpha}, \beta \beta}{ }^{C}{ }_{\alpha}^{C}, C P$.
When doing tinis, one can keep the terms proportional to $\partial_{\mu i} C P=F \Delta_{\mu} q$ only (do not forget that $\Delta_{\mu} \varphi$ takes part in the derivative $\mathcal{D}_{c}(P$ too). Purther, one cen also contract the indices \dot{x} and \mathcal{B} at the beginning, and omit all the terma antiaymatric in any pair of the indices α, β, β. After all that one obtains $W_{\alpha \beta \mu}$ as in Eq. (2.16). Note that $W_{\alpha \beta \gamma}$ can also be found by evaluating the curvature component

$$
\begin{equation*}
R_{\dot{\alpha}, \beta \dot{\beta}, \alpha \beta}=-i \varepsilon_{\alpha \dot{\beta}} W_{\alpha \beta \gamma} . \tag{7.5}
\end{equation*}
$$

The chirality of $W_{\alpha \beta \beta \ell}(2.10 \mathrm{~b})$ is esaily proved in NG. Indeed, in NG the spinor connections and terms such as $\Delta_{x} F$ venish, and so does the term
$\left.\bar{\Delta}_{j \dot{ }} \bar{\omega}_{\alpha \beta \gamma}\right|_{0}=-\left.\frac{1}{8} \bar{\Delta}_{j i} \bar{\Delta} \bar{\Delta}_{\beta} \Delta_{\gamma j \dot{\alpha}}\right|_{0}+(\beta \leftrightarrow \gamma)=0$
due to Eq. (B.6b). So, vertfying Eq.(2.10b) one has only to look at the tema
$\left.\vec{\Delta} \dot{\beta}\left\{\Delta_{\alpha}, \bar{\Delta} \dot{\alpha}\right\} \bar{\omega}_{\beta \gamma}^{\dot{\alpha}}\right|_{0}=-\left.2 i \partial_{\alpha \dot{\alpha}} \bar{\Delta}_{\beta} \bar{\omega}_{\beta \gamma}^{\dot{\alpha}}\right|_{0}=$
$=\left.\frac{i}{4} \partial_{\alpha \dot{\alpha}} \mathbb{\Delta}_{\dot{\beta}} \bar{\Delta} \bar{\Delta} \Delta_{\beta} H_{\gamma \dot{\alpha}}\right|_{0}+(\beta \leftrightarrow \mu)=0$.
Here Eqs. (B. 10), (B.11), (B.6b) were used.
Pinally, identity (2.13) can also be derived in NG.

8. Conclusion

So, the atatements made in Section 2 have been proved. The normal gauge has frequently and effectively been used in the
proof. It has aimplified the coneiderations and underlined the geometric nature of the axial gravitational superfield \mathcal{H}^{m}. The main aim of the paper has been to demonstrate the abilities of our seometric approsch in deriving the explicit form of all the components of torsion and curvature and establishing identities between then. The reaulta obtained agree with those of Grima, Wess and zamino $/ 2 /$. Starting from a more adequate group in super-日pace we have derived the constraints they had guessed. One of those congtraints, $T_{a} \epsilon^{C}=0$, has turnec out not to be unique (see Sect.6).

The reaulta of the present paper concern the case of $N=1-$ aupergravity. We hope that in extended supergravity the search for an adequate group as a framework for a minimal geometric approach will aucceed. Then the methods described above could be generalized.

The authors are Erateful to Dr. E.A.Ivanov and Prof. J.Wess for discussions.

Appendix A. Notation

The following notation is used in the paper. The world vector (m, n, \ldots) and apinor $(\mu, v, \ldots j, \dot{r}, \ldots)$ indices are combined into M, N, \ldots, and the Lorentz ones $(\alpha, \alpha, \dot{\alpha} ; \dot{\psi}, \beta, \dot{\beta}, \ldots)$ into A, B, \ldots, The Lorentz vector indices are raiged and 2owered by $\eta^{2} A^{\prime}=$ diacy $(+--)$, the spinor ones by $\varepsilon^{\alpha \beta}, \varepsilon^{\alpha} \dot{f}\left(\varepsilon^{12}=-\varepsilon^{21}=-\varepsilon_{12}=\varepsilon^{i 2}=1\right)$. The contrection mule ie: $q^{A} \psi_{A}=c p^{\prime \alpha} \psi_{u}+q^{\alpha} \psi_{\alpha}+c p_{\alpha} \psi^{\dot{\alpha}}$. The vector indices are often represented as a pair of spinor ones $p_{\alpha \dot{\alpha}}=\left(\sigma^{u}\right)_{\alpha \dot{\alpha}} q_{a}, p^{\alpha \dot{\alpha}}=\left(\sigma^{a}\right)^{\alpha \alpha} q_{a}, p^{\alpha \dot{\alpha}} p_{\alpha \dot{\alpha}}=2 q^{a} q_{a}$ using 2×2 matrices $\sigma^{a}=(1, \vec{\sigma}), \tilde{\sigma}^{a}=(1,-\vec{\sigma}), \vec{\sigma}$ being the Pauli matrices. Further,
$\left(\sigma_{a b}\right)_{\alpha \beta}=\frac{1}{2}\left[\sigma_{a}, \tilde{\sigma}_{b}\right]_{\alpha \beta},\left(\tilde{\sigma}_{a B}\right)^{\alpha \dot{\beta}}=\frac{i}{2}\left[\tilde{\sigma}_{a}, \sigma_{b}\right]^{\alpha \beta}$,
$\left(\sigma_{a} \sigma_{b}\right)_{\alpha \beta}=-\eta_{a b} \varepsilon_{\alpha \beta}-i\left(\sigma_{a b}\right)_{\alpha \beta ;} \quad\left(\sigma_{a B}\right)_{\alpha \beta}=\left(\sigma_{\alpha b}\right)_{\beta \alpha} ;$
$\left(\sigma^{a}\right)_{\alpha \dot{\alpha}}\left(\sigma_{a}\right)_{\beta \beta}=2 \varepsilon_{\alpha \beta}\left(\dot{\alpha \beta}, \quad\left(\sigma_{a b}\right)_{\alpha \dot{\beta}}^{\beta}\left(\sigma^{\sim} a_{b}\right)_{\dot{\beta}}^{\delta}=0\right.$,
$\left(\sigma_{a b}\right)_{\alpha}^{\beta}\left(\sigma^{a b}\right)_{\alpha}^{\delta}=4\left(2 \delta_{\alpha}^{\delta} \delta_{j}^{\beta}-\delta_{\alpha}^{\beta} \delta_{\alpha}^{\delta}\right)$.

The derivativea at a point $Z^{N}=\left(x^{n}, \theta^{2}, \bar{\theta} v\right)$ are abbreviated by
$\partial_{N}=\frac{\partial}{\partial z^{N}}, \partial_{n}=\frac{\partial}{\partial x^{n}}, \partial_{\gamma \dot{r}}=\left(\sigma^{n}\right)_{\gamma \dot{V}} \frac{\partial}{\partial x^{n}}$,
$\partial_{V}=\frac{\partial}{\partial \theta^{\nu}}, \bar{\partial}_{\dot{v}}=\frac{\partial}{\partial \bar{\theta}^{\dot{v}}}, \partial^{\nu}=\frac{\partial}{\partial \theta_{\nu}}=-\varepsilon^{\nu \mu} \partial_{\mu}, \bar{\partial}^{\dot{\nu}}=-\varepsilon^{i} \dot{\mu} \bar{i}_{\mu}$.
The symbol Sym means aymetrization over the indices
cated below, e.g. indicated below, e.g. .

$$
\begin{aligned}
& \text { Symu }_{(\alpha \beta)} A_{\alpha \beta}=\frac{1}{2}\left(A_{\alpha \beta}+A_{\beta \alpha}\right) \\
& \text { Sum }_{(\alpha \beta \beta)} A_{\alpha \beta}=\frac{1}{6}\left(A_{\alpha \beta \beta}+A_{\alpha \beta \beta}+A_{\beta \alpha \beta}+A_{\beta \beta \alpha}+A_{\mu \beta \alpha}+A_{\beta \alpha \beta}\right) \\
& (\alpha,
\end{aligned}
$$

Appendix B, Connections and Operatora $A, \vec{\Delta}$

Here we list some of the resulta of Ref./6/. The spinor covariant derivatives look like
$\theta_{\alpha} \phi_{B}=F A_{\alpha} \phi_{B}+\omega_{\alpha B}{ }^{C} \varphi_{C}$,
$\bar{Q}_{\alpha} P_{B}=\bar{F} \bar{\Delta} \cdot Q_{B}+\bar{\omega} ; B{ }^{C} Q_{C}$.

where

$\Delta_{\alpha}=\partial_{\alpha}+i \partial_{\alpha} H^{n}(1-i H)_{n}^{-1 m} \partial_{m}=\partial_{\alpha}+i \Delta_{\alpha} H^{m} \partial_{m}$,
$\bar{\Delta}_{\alpha}=\bar{\partial}_{\alpha}+i \bar{\partial}_{\alpha} \psi^{\eta}(\eta+i \gamma)^{-1} \partial_{m}=-\bar{\partial}_{\alpha}-i \bar{\Delta}_{\alpha} H^{m} \theta_{m}$.
$H_{n}^{m}=\partial_{n} H^{m}$.
The factors F, F are ${ }^{*}$
*) There was an error in Ref. $16 /$. The factors $2^{2 / 3}$ in the definitions of Fand \vec{F} were omitted.
$F=2^{\frac{2}{3}} \operatorname{det}^{-\frac{1}{3}}\left(\hat{Z}_{a}^{m}\right) \cdot \operatorname{det}^{\frac{1}{6}}\left(\hat{\ell}_{a}^{m}\right)$,

$$
\begin{equation*}
\bar{F}=2^{\frac{2}{3}} \operatorname{det}^{-\frac{1}{2}}\left(\hat{l}_{a}^{m}\right) \cdot \operatorname{det}^{\frac{1}{6}}\left(\hat{z}_{a}^{w}\right) \text {. } \tag{B.3}
\end{equation*}
$$

$$
\hat{\imath}_{a}^{m}=\Delta \sigma_{Q} \bar{\Delta} \mathcal{H}^{m}, \quad \hat{\ell}_{a}^{m}=\bar{\Delta} \hat{\sigma}_{a} \Delta \mathcal{H}^{m} .
$$

Spinor connections:
$w_{\alpha \beta \beta}=\varepsilon_{\alpha \beta} \Delta_{\mu} F+\varepsilon_{\alpha \beta} \Delta_{\beta} F$,

$\omega_{\alpha \dot{\beta} \dot{\gamma}}=\frac{i}{2} F\left(\Delta_{\alpha} \hat{\tau}_{a}^{m} \cdot \hat{\tau}_{m b}\right)\left(\tilde{\sigma}^{2 b}\right)_{\dot{\beta j}}=$

$$
\begin{equation*}
=\frac{1}{4} F \Delta \Delta \bar{\Delta}_{\beta} \mathcal{H}^{m} \cdot \hat{\tau}_{m, \alpha \dot{i}}+(\dot{\beta} \leftrightarrow \dot{\gamma}) \tag{B.6a}
\end{equation*}
$$

$\bar{\omega}_{\alpha \beta \beta}=\frac{1}{4} \bar{F} \bar{\Delta} \bar{\Delta} \Delta_{\beta}{\psi^{m}}^{m} \hat{l}_{m, \gamma^{\alpha}}+\left(\beta \leftrightarrow \gamma^{\prime}\right)$,

$$
\begin{align*}
& \text { where } \tag{B.6b}\\
& \hat{\tau}_{a}^{m} \hat{\tau}_{m}^{b}=\delta_{a}^{b}, \hat{\ell}_{a}^{m} \hat{l}_{m a}^{b}=\delta_{a}^{b} \text {. } \\
& \text { Vector connection: } \\
& \omega_{a B C}=\frac{i}{4}\left(\widetilde{\sigma_{a}}\right)^{\dot{\alpha} \alpha}\left[F \Delta_{\alpha} \bar{\omega}_{\dot{\alpha} B C}+\bar{F} \bar{\Delta}_{\dot{\alpha}} \omega_{\alpha B C}+\right. \tag{8.7}\\
& \left.+\omega_{\alpha \dot{\alpha} \dot{\delta}} \bar{\omega} \dot{\delta}_{B C}+\bar{\omega}_{\alpha \alpha}{ }^{\delta} \omega_{\delta B C}\right] \text {. }
\end{align*}
$$

Conjugation rulee:
$\left(\Delta_{\alpha} A \cdot \bar{\Delta}_{\beta} B\right)^{+}=\Delta_{\beta} B^{+}, \bar{\Delta}_{\alpha} A^{+},\left(\Delta_{\alpha} \bar{\Delta}_{\beta} A\right)^{+}=-\bar{\Delta}_{\alpha} \Delta_{\beta} A_{,}^{+}$ $\left(\omega_{\alpha \beta \gamma}\right)^{+}=-\bar{\omega} \dot{\alpha} \dot{\beta} \dot{\gamma}$, etc.

Identities for the oparators $\Delta, \bar{\Delta}$:
$\left\{\Delta_{\alpha}, \Delta_{\beta}\right\}=\left\{\bar{\Delta}_{\alpha}, \bar{\Delta}_{\beta}\right\}=0, \quad \Delta_{\alpha} \Delta_{\beta} \Delta_{\beta 1}=\bar{\Delta}_{\dot{\alpha}} \bar{\Delta}_{\beta} \bar{\Delta}_{\dot{\beta}}=0 ;$
$\left\{\Delta_{\alpha_{1}} \bar{\Delta}_{j}\right\}=-i\left[\Delta_{d i}, \Delta_{j}\right] f^{m} \partial_{v_{m}}=$
$=-2 i \Delta_{\alpha} \bar{\Delta}_{j} \mathcal{H}^{n}(1-i H)_{n}^{-1 m} \partial_{m}=2 i \bar{\Delta}_{\beta} \Delta_{\alpha} H^{H}(1+i H)_{n}^{-1 m} \partial_{m} j$
$\left[\partial_{m}, \Delta_{\alpha}\right]=i \partial_{m} \Delta_{\alpha} \mathcal{H}^{n} \partial_{n}=i \Delta_{\alpha} \partial_{m} \mathcal{H}^{\alpha}(1-i H)_{k}^{-1} \partial_{n}$,
$\left[\partial_{m}, \bar{\Delta}_{\dot{\alpha}}\right]=-i \partial_{m} \bar{\Delta}_{\dot{\alpha}} \mathcal{H}^{n} \partial_{n}=-i \bar{\Delta}_{\dot{\alpha}} \partial_{m} \mathcal{H}^{k}(1+i \mathcal{H})_{k}^{-1} \partial_{n}$.
Appendix C. Identitiog for ω_{α} and $\triangle F$
The vaniebing of the curvature component $R_{\alpha \beta}, \gamma \dot{\prime}$
($\mathrm{Bq} .(2.8)$) yielde the identity
$F^{2} \Delta_{\alpha}\left(\frac{1}{F} \omega_{\beta \dot{\beta}} \dot{\delta}\right)+\omega_{\alpha \dot{\gamma} \dot{\rho}} \omega_{\beta}^{\dot{\rho}} \dot{\delta}+(\alpha \leftrightarrow \beta)=0$.
Similarly, the derivation of $\mathrm{Bq} \cdot(2.5)$ gives, by the way, the identity
$\Delta^{\alpha} \omega_{\alpha j \dot{\delta}}+\Delta^{2} \ln F^{-3} \bar{F}^{2} \cdot \omega_{\alpha j \dot{\delta}}=0$.
Pinally, the hermiticity of $G_{\alpha \dot{\alpha}}$ (Eqg.(2.11), (2.15)) moens that
 $+\frac{\bar{F}}{F} \omega_{\alpha \dot{\alpha} \beta} \bar{\Delta} \dot{\beta} F+\frac{F}{\bar{F}} \tilde{\omega}_{\dot{\alpha} \alpha} \beta_{\Delta_{\beta}} \bar{F}+2 \bar{F} \bar{\Delta}_{\dot{\alpha}} \Delta_{\alpha} F+2 F \Delta_{\alpha} \bar{\Delta}_{\dot{\alpha}} \hat{F}_{+}$
$+\bar{F} \Delta_{\alpha} \bar{\Delta}_{\dot{\alpha}} F+F \overline{\Delta_{\dot{\alpha}}} \Delta_{\alpha} \bar{F}+\frac{\bar{F}}{F} \Delta_{\alpha} F \cdot \overline{\Delta_{\dot{\alpha}}} \bar{F}+\frac{F}{\bar{F}} \overline{\Delta_{\dot{\alpha}}} \bar{F} \cdot \Delta_{\alpha} F=0$.
All these identities can also be proved directly without using NG.

Added Notor

1. Recently $/ 10 /$ the nonuniquenese of the constraint $T_{a b}^{c}=0$ (diacuseed in Sect.6 of the present paper) was demonetrated on the component-field level too. Our choice (Eq.(2.6)) was ahown
to be related to the introduction of an "improved" ordinaryfield connection $\hat{\omega}(e, \psi)$.
2. In a recent paper $/ 11$ / the constraints for conformal bupergravity have been discussed. We would like to point out that they can easily be derived in the framework described in thie paper. As shown in Ref. $/ 5$, the conformal supergravity group is the general coordinate tranaformation group in the left and right chiral superspaces. The Einstein's case $/ 12 /$ is obtained when invariance of the supervolume is required in sddition. As mentioned in Ref. $/ 8 /$, dropping this restriction one cen fix the normal gauge so, that the derivatives (1.4), (1.5), (1.7), (1.8) vanish bt point z_{0} too. Then, following the arguments of this paper one concludes that the only nonvanishing torsion component is

$$
\operatorname{Symi}_{(\alpha, \beta, j)} 7_{\alpha, \beta \dot{\alpha}, \mu^{*}}^{\dot{\alpha}}=W_{\alpha \beta \mu} .
$$

This fact explains why higher-order equations of motion are unavoidable in conformal supergravity.

References

1. Wess J., Zumino E. Prys.Lett., 1977, B66, p. 361.
2. Grimm R., Wess J., Zumino B. Nucl. Phys., 1979, B152, p.255.
3. Siegel W., Gate日 J. Prepr. HUTP-79/A-034;

Getea J., Stelle K., West P. Prepr. ICTP/79-80/8.
4. Wess J. Preprint, Karlsruhe, 1979.

Ereitenlohner P*, Sohnius M. Prepr. MPI-PAE/Pth. 43/79.
Stelle K., West P. Prepr. ICTP/79-80/9.
5. Ogievetsky V., Sokatchev E. Phys.Lett., 1978, B79, p.222.
6. Ogievetsky V., Sokatchev E. Prepr. JINR, E2-12511, Dubna, 1979
7. Siegel W., Gates J. Nucl. Phye., 1979, Bi47, p.77.
B. Ogievetsky V., Soketchev E. Prepr. JINR, E2-80-127, Dubna.
9. Dragon N. Z. Phye., 1979, C2, p.29.
10. Perrara S., van Nieumenhuizen P. Prepr. ITP-SB-79-78, Stony Brook.
11. Van Nieuwenhuizen P., West P. Prepr. ITP-SB-79-94, Stony Brook. 12. Ogievetsky V., Sokatchev E. Prepr. JINR E2-12469, Dubna, 1979

Received by Publishing Department on February 201980.

[^0]: ${ }^{*}$) It ie equivalent to the approach of Siegel and Gates $/ 7 /$ slso.

