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~HHaMHKa 83aHMOAeHCTBHA H yCTOH4H80CTb 
HeTOnOnOrH4eCKHX COnHTOH08 8 paMKaX CyllleCTBeHHO
HenHHeHHOH MOAenH KOMnneKCHOrO CKanApHOrO nonA 

MeTOAOM 4HCneHHOro 3KcnepHMeHra HccneA08aHw AHHaMH-
4eCKHe C8oHCT8a 113aPA*eHHWX11 COnHTOH08 80 8CTpe4HWX CTOnK
HOBeHHAX 8 paMKaX penATHBHCTCKH-HH8apHaHTHOrO ypa&HeHHA 
Kne~Ha-ropAOHa c caMOAeHCTBHCM /roKx TOK/. B pe3ynbrare 
4HCneHHWX 3KcnepHMeHTOB HaHAeHa ~nacrb ycroH4HBOCTH 
4aCTH~enOAo6HWX peweHHH H KnaCCH~~HpO&aHW 8HAW HX B3aHMO
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In recent years there has been observed wide interest in 
particle-like solutions (PLS) to nonlinear equations arising 
in plasma physics, solid state theory and nonlinear optics ' !,2/ 
It is hoped that the PLS are probably connected with const
ructing consistent elementary particle theory '3:rn two-dimen
sional space-time there are many models bearing PLS. Further
more, some of them are integrable 4 1. There are many lnt.::res
ting nonlinear equations with Lagrangians for which one knows 
nothing about solitary wave c0llision nature . The only reliable 
method to distinguish whether a solitary wave is the true so
liton or not remair!s computer experiment . A significant number 
of qualitative effects has been observen in numerical calcula
tions. These phenomena include the Fermi-Pasta-U1am effect , 
the "soliton" character of PLS interactions for the sine-Gor
don and other equations , the self-induced transparency and 
the exponential decrease of mode energy with the wave number ' 5 '. 
The theoretical importance of synergetic use of computers was 
mentioned by Zabusky 16 t . 

The interest to such computations is restricted by the pos
sibility of constructing stable solutions in a nonlinear model 
for which nonlinearity depends essentially on field s and thei~ 
derivatives. 

Consider the model 171 
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where 

J 1, =!_(.p•a1Jo-<hcJP.o *>, ~'- ~- 0.1. 
We study

2
the following properties of this model: 

1) stability of PLS in numerical experiments (the transverse 
and longitudinal stabilities have been considered in linear 
theory of perturbations I S /) ; 

2) the stable PLS interaction dynamics . 
We find the PLS stability regions versus the parameters g

1
. 

g 2, m, w . This regions are in good agreement with the results/8/ 
The PLS interaction dynamics and its features are described. 

The equation of motion for the model (1) is 
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where 
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Take the solution to {2) in the form 

¢(x, t) = )((X) exp(iwt). 

At w=const it is extremum for the energy functional 
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Instead of {2) we have a houndary value problem 

)( -(m2-w2)x+2(g +g2w2)x3=0, 
XX 1 

X ( ± oo) = 0 , )( X ( ± oo) = 0 . 

It has the PLS 

x(x) = v' 
m2-w2 

2 
g 1 + g 2w 

1 

cosh(xy'rn2-w2) 

Taking into account the Lorentz invariance of model {1) as 
well as r atio {5) , solution of eq . {2) has the form 

{3) 

{4) 

{5) 

¢(x, t) =v' m 
2
-w2 

g1+g2w2 

exp[ iD wy(t- vx + 8)) 
{6) 

cosh [y(x- vt + x 0 )y'm2-w2) 

where y = 1/(1- v2) 'h , v is the PLS velocity, D=± 1. The func
tionals of energy (3), momentum 
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on the solution {6) are 

E =My, p = Mv y, (7) 

where 

2 2 2 2) 4wy'm - w (g w +3g
1 

~ 2g
2

rn , 
2 2 2 

3(g 1 +g 2w ) 
Q = 

4y'm2-w2 [w2(2g +3g2m2) +glm2]. 
M = 2 2 1 

3(g 1 +g2w) 

One may construct the conserved current j 
11 

= c ~ () v cb{x, t) , 
where l p.v is the totally antisynunetric tensor (c

01 
=1). Then 

define the topological charge 

Q T = f j 0 dx = f <I> x dx , l <1>(-t oo) - <1> (- ... )] = 0 . 

Thus the solutions (6) for the model ( 1) have a trivial topology 
(nontopological solitons). 

In the following, the mass and charge (7) are measured in 
units of m2=1. From the general necessary conditions of stabi
lity ' 8 'and behaviour of M(g 1,g2 ,w) and Q(g 1,g 2 , w) (see~) 
we assume t~at the solutions (6) have stable states in the re
gion w i > <ocR and unstable ones at wk::; CJJ~R' where w CR cor
responds to 

.. 
• l. ·~ 

~ ~. t. ·.t 

dM I = 0 
d w ~: 2 /g 1 = const ' 

~I =0 
d CJJ g 2/ g 1 = const · 

(8) 

' ... 

Fig. l . The functions M (w) and 
G{w) for different values of g2 at 
g1=1.The initial part of dotted 
line defined the boundary of sta
bility region of sol~t ions (6) 
for corresponding w CR • 
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Table 

T 
Sign oflPhase Computer 

experiment Amplitude Velocity charge diffe Remarks 
runs r e nee 

AI A2 v1 =- V2=V 01 0 2 1\0 

0 . 5 0 . 5 0.9 + - 0 At 0 1 ~+1, 02 - 1 
we have inelastic 

tri 2, 1T interaction of so-
litons 

0. 7 0 . 7 0 . 9 + + 0 At D 1 ~0~1we have 
0 . 9 0 . 9 0 . 9 + + tr f 2,TT weakly inelastic 

I interaction of 
solitons 

0 . 9 0 . 9 0 . 07 0 l. At 01 =02•+ 1 
0 . 2 + + we have production 
0 . 4 + - of third soliton . 
0 . 6 2 . At 01 =+ 1, 02 =- 1 
0 . 9 we have weakly in-

elastic interactio 
of solitons . 

AI A2 v1 v 2 01 02 Mi Remarks 

0 . 6 0 . 9 0 . 9 0 + - 0 "Repulsion" of tr/2 
II 1T 

sol i t ons 

+ + 0 "Transmission" 
1"~2 of solitons 

--

Our computations confirm this assumptio7 . The considered va
lues of w1.ksatisfy the condition wk<wcR<w 1 , where wb R 
are determined from equation (8) (see fig . 1). 

n 

We study the interaction dynamics of stable PLS in numerical 
experiments (the results are presented in the Table) . 

Consider the case g 1 = 0 , g 2 = 1 (the pure current Y current 
interaction) . 

4 

T 
10; 

Fig . 2. Weak inelastic interaction of solitons with 
equal charges (0 1= D2 = d):A1 =A2 - 0.7, v1 .. -v2 =0.9, 
t\o = to1 -o 2 1 ,.o. 

X 

X 

fig . 3 . Inelastic interaction of solitons with opposite 
charge s (0 1=+ 1, 0 2 =- 1): A1 .. A2 =0.5, v 1=-v 2 =0.9,M=IBc 8

2
I=D. 



Fig.4. Interaction of test solitons with resting heavy 
target soliton for equal charges (01 ~D2 =+1X"transmis
sion"): A 1 =0.6, A 2 = 0.9, v1 =0.9, v 2=0, 1\S=TT/ 2. 

Our computations reveal a rich spectrum of interactions versus 
the PLS masses , charge signs and velocities: 

1) weak inelastic i nteraction (fig.2) ; 
2) inelastic interaction (fig . 3); 
3) production of an additional soliton (fig .6). 
The first interaction type is observes in PLS collisions 

with equal charges and presented in fig. 2. Note that at the 
moment of collision of solitons they are not overlapped . 

The second interaction type takes place in PLS collisions 
with opposite charges <!!2.:2> . In this case 1\8 = rr too and the 
solitons are not overlapped also. 

As a result of the collisions of a light soliton with heavy 
one , either "transmission" (fig . 4) or "repulsion" (fig . S) of 
the solitons was observed depending on the sign of the ratio 
of their charges . 

The most interesting phenomenon is the third interaction 
type since the production of an additional soliton has been 
observed early only for interactions of very specific objects , 
gaussons 191

. Our computer experiment reveals that the third so-

6 

~ 

·~ 

Fig.S. Interact i on of test sol iton wit h resting heavy 
target soliton for opposite charges (0 1 :+ 1, D2 =- 1) 
("repulsion") A1 = 0.6, A 2 -0.9, v1= 0.9, v2 = 0, t15=TT/ 2. 

T 
~0 

Fig . 6 . Production of the th ird soliton at D t=D 2"'+1: 
A 1 =A2 = 0.9 , v1 =- v 2 =o.s. tio - o. 
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Fig . 7. Prediction and decay of the third soliton versus 
the frequency w (final stages after the collision) I -
region of the third PLS production, II - region of decay 
of the third PLS , III - region of weakly inelastic in
teraction. 

liton production takes place in collisions of two solitons 
with equal charges 0 1 =0 2 =+ 1 and sufficiently large masses 
(wS0.6) . The regions of the additional soliton production and 
decay are presented in fig. 7. On the left picture one can 
see the function M(w) having characteristic zones I-III . 

Concluding, note that peculiarities of the PLS (repulsion , 
attraction , overlapping and so on) depend essentially on the 
energy E, ratio of charge signs (d= 0 1/ D2=±l )and initial phase 
difference 6o. That means that for relevant description of 
real physical phenomena by such nonlinear models and numerical 
expP-riments it is necessary to have an adequate procedure of 
averaging in the phase difference of colliding obj ects .More 
detailed dependence of interactions on E,d and Ao is to be 
studied . 

One of the most interesting results of our investigation is 
the discovery of the third PLS production in the interaction 
of two solitons. Until now similar phenomena have been obser
ved only for nonrelativistic equations 19· 111 
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