

объединенныя ИНститут ядерных исследований
 дубна

$2447 / 2-80$

E2-80-117

G.M.Sotkov*, R.P.Zaikov

ON THE STRUCTURE OF THE CONFORMAL COVARIANT N-POINT FUNCTIONS

Submitted to "Reports on Mathematical Physics".
*Higher Pedagogical Institute, Shoumen, Bulgaria.

1. INTRODUCTIION

As is well known ${ }^{1 / /}$, the conformal invariance condition in QFT allows one to determine total two- and three-point functions up to a few constants. Any higher n-point function ($n \geq 4$), generally, depends on some set of arbitrary functions of $n(n-3) / 2$ independent harmonical ratios. These functions can be determined from dynamical considerations only ${ }^{1,2 / 2}$. For the solution of this dynamical problem, it is convenient to use the partial wave expansion over three-polnt functions. Such an expansion allows one to write any n-point function in terms of ($n-1$)-point and three-point functions. Thus, one can obtain any n-point function from two- and three-point functions. However, ($n-3$) -intermediate integrations are necessary for this a1m. Hitherto this programe is applied effectively only for scalar/4/ and tensor/5/ fields.

The aim of this paper is to find the general form (without dynamical hypothesis) of conformal covariant n-point functions for the basic fields (from a class Ia of ${ }^{/ 6 / \text {) }}$ with arbitrary spin and scale dimensions. The conformal covariant n-point functions for the flelds which are transformed according to arbitrary irreducible representations (IR) of SL(2, C) are obtained by the method of homogeneous functions ${ }^{/ 7 /}$ for the realization IR of SL ($2, \mathrm{C}$). This method is presented in our papers $/ 8,9 /$. In Sec. III the explicit form of some four-point functions is given. The γ_{5}-invariance condition is discussed.

All our considerations are applied both for the Minkowski space-time and for the Euclidean space-time.

II. CONFORMAL COVARIANT N-POINT FUNCTION

Consider basic fields $\psi_{a}\left(\mathbf{x}_{\mathrm{a}} ; \mathrm{q}_{\mathrm{a}}, \chi_{\mathrm{a}}\right)(\mathrm{a}=1, \ldots, \mathrm{n})$, where z is a complex two-component spinor $z=(z, \bar{z})^{1 / 7 /}$ (in the Euclidean case $\left.z=(x, \bar{w})^{10,11 j}, \chi=\left\{d, j_{1}, j_{2}\right)\right\}$ labels IR of $\operatorname{SU}(2$, 2) according to which the field $\psi(x ; z)$-1s transformed. Here $d=d_{\psi}-j_{1}-j_{g}, d_{\psi}$ is the scale dimension of ψ, j_{1} and j_{2} label IR of the subgroup $\operatorname{SL}(2, C)(S U(2), S U(2)$ in the Euclidean case).

For finite-dimensional representations $j_{1}, j_{\ell}=0,1 / 2,1, \ldots$ and for infinite-dimensional ones j_{1}, j_{2} are generally
complex numbers. The irreducibility For the field $\psi(x ; z, X)$ with respect to the $\mathrm{SL}(2, \mathrm{C})(\mathrm{SU}(2) \mathrm{SU}(2))$ subgroup takes the form of a homogeneous condition:

$$
\begin{equation*}
\psi(\mathbf{I} ; \lambda z, \bar{\lambda} \bar{z})=\lambda^{2_{j_{1}}} \quad \bar{\lambda}^{2 \mathrm{j}_{2}} \quad \psi(\bar{x} ; \mathrm{z}, \overline{\mathrm{z}}) \tag{2.1}
\end{equation*}
$$

where λ is a complex number.
Let us consider the n-point function

The conformal covariance condition (in inflnitesimal form) (with respect to $\mathrm{SU}(2,2)$ or $\mathrm{SU}^{*}(4)$) has the form:

$$
\begin{equation*}
\left.\sum_{k=1}^{n} X_{A B}^{k} F_{\left\{X_{a}\right.}^{(n)}\right\}^{\left(x_{a} ; z_{a}\right)}=0 . \tag{2.3}
\end{equation*}
$$

where $X_{A B}^{k}(k=1, \ldots, n ; A, B=0,1,2,3,5,6)$ represent the generators of $\operatorname{SU}(2,2)$ which are realized in the space of the fields $\psi(x, z, \chi)$. The irreducibility condition (2, 1) for an n-point function $F(n)$ takes the form:

For the finite-dimensional representations of $\mathrm{SL}(2, \mathrm{C})$ eq. (2.4) must be added by the condition for polynomiality on z and z .

If the functions $F^{(n)}$ depend on x_{a}, z_{a} and \bar{z}_{a} by the independent relativistic invariants of these variables, then the relativistic invariance condition (i.e., $X_{A B}=P_{\mu}, M_{\mu \nu}$) is fulfilled. These invariants are constructed in Appendix A. Note that in this case invariance condition for the function
$F_{\left(X_{a}\right)}^{\left(y_{a} ; z_{a}\right)} \quad$ takes place instead of the covariance condition for $F^{(n)}\left\{a_{1}\right\} \ldots\left\{a_{n}\right\}^{1 / 7 /}$.

It follows from (A. 3) that the relativistic invariant n-point function is of the form:

$$
\begin{equation*}
F_{\left\{X_{a}^{\prime}\right\}}^{(n)}\left(x_{a} ; z_{a}\right)=F_{X_{a}}^{(n)}\left(x_{j k}^{2}, z_{a} \in z_{b}, \bar{z}_{a} \epsilon \bar{z}_{b}, z_{a} x_{j k} \bar{z}_{b}, \ldots\right) \tag{2.5}
\end{equation*}
$$

The irreducibility condition (2.4) will be required in final results

The change

$$
\begin{align*}
& x_{0} \rightarrow x_{4}=i x_{0}, \quad(z, \bar{z}) \rightarrow(z, \bar{w}), \\
& \sigma=\left(\sigma_{0}, \alpha\right) \rightarrow t=\left(\frac{1}{} \sigma_{0}, \underline{\sigma}\right), \tag{2,6}
\end{align*}
$$

realized the transition Erom the Minkowski space-time M_{4} to the Euclidean space-time E_{4}. In M_{4} the function $F(n)$ is the
 is the corresponding ${ }^{-}$Schwinger function $S^{(n)}$.

The scale and special conformal invariance conditions (in an infinitesimal form) of the n-point function (2.5) lead to the equations:

$$
\begin{align*}
& \sum_{\mathbf{k}=1}^{n} D_{k} F_{\left\{\chi_{a}\right.}^{(n)} f_{a}^{\left(x_{n} ; E_{a}\right)=0} \tag{2.7a}\\
& \sum_{k=1}^{n} K_{\mu}^{k} F_{\left\{\chi_{a}\right.}^{(n)}\left(x_{a} ; E_{a}\right)=0, \tag{2.7b}
\end{align*}
$$

where

$$
\begin{align*}
& D=i \boldsymbol{x}^{\mu} \partial_{\mu}+\Delta, \\
& \mathbf{K}_{\mu}=-\mathbf{i}\left\{2 \mathbf{x}_{\mu} \mathbf{m}^{\nu} \partial_{\nu}-\mathbf{z}^{\mathbf{2}} \partial_{\mu}-\mathbf{2 i} \mathbf{x}^{\nu}\left[\mathrm{g}_{\mu \nu} \Delta+\mathbf{\Sigma}_{\mu \nu}\right]\right\}, \\
& \Delta=i\left[d+\frac{1}{2}\left(z \frac{\partial}{\partial \mathbf{z}}+\bar{z} \frac{\partial}{\partial \bar{z}}\right)\right], \tag{2.8}\\
& \mathbf{\Sigma}_{\mu \nu}=\frac{1}{4}\left(\varepsilon, \frac{\partial}{\partial \bar{\Sigma}}\right)\left[\gamma_{\nu}, \gamma_{\nu}\right]\left(\frac{\frac{\partial}{\partial z}}{\bar{\Sigma}}\right),
\end{align*}
$$

and y_{μ} are the Dirac matrices in a representation where γ_{b} is diagonal.

If we extend the conformal transformations with the $\gamma_{5}-$ transformation eqs. (2.7) take place instead of the condition

$$
\begin{equation*}
\sum_{k=1}^{n} \pi^{(k)} F_{X_{n} \mid}^{(n)}\left(\mathbf{n}_{\mathrm{a}} ; \mathbf{z}_{\mathrm{a}}\right)=0 \tag{2.9}
\end{equation*}
$$

where the generator of $\quad y_{5}$-transformation has the form:

$$
\begin{equation*}
\pi=i\left[x+\frac{1}{2}\left(z \frac{\partial}{\partial z}-z \frac{\partial}{\partial \bar{z}}\right)\right. \tag{2.10}
\end{equation*}
$$

Here κ is the y_{5}-dimension of the field $\psi(x ; z)$.
In Appendix B the general solution of eqs. (2.7) is obtained:

Here

$$
\begin{equation*}
\delta_{j k}=\frac{1}{(n-1)(n-2)}\left[\sum_{\ell=1}^{n} d_{\ell}-(n-1)\left(d_{j}+d_{k}\right)\right], \tag{2.12}
\end{equation*}
$$

$\{\ell$,
$\phi\{x\}$
$\{$
are arbitrary functions of the independent harmom nical ratios. The spectrality, locality, and positivity conditions required some restriction on these functions. The last

 in the sums in (2.11) can be obtained from the irreducibility (2.4) and polynomiality conditions, which qive

$$
\begin{aligned}
& \sum_{k=1}^{n} \ell_{j k}+\sum_{m=1}^{n} p_{j m}+\sum_{k, \sum_{k=1}^{n} q_{j k}^{k}+\ldots=2 j{ }_{1}^{j}, ~}^{j, \ldots} \\
& \mathrm{k} \neq \mathrm{j} \quad \mathrm{~m} \neq \mathrm{j}, \mathrm{j}+1
\end{aligned}
$$

$$
\begin{aligned}
& F_{\left\{X_{a}\right\}^{(n)}}^{\left(x_{a} ; z_{z}\right)}=\prod_{j<k=1}^{n}\left(x_{j k}^{2}\right)^{\delta}{ }_{j k} \sum_{\{\ell, p, \eta, \ldots\}} \phi^{\left\{\ell, p, q_{b} \ldots\right\}^{\prime}}\left(h_{1}, h_{2}, \ldots, h_{n(n-8) / 2}\right) \times
\end{aligned}
$$

$$
\begin{align*}
& \sum_{\substack{j=1 \\
j \neq k}} \ell_{j k}+\sum_{m=1}^{n} p_{k m}+\sum_{m, \ell=1}^{n} \bar{q}_{k \ell}^{m}+\ldots=2 j_{2}^{k}, \tag{2.13}\\
& (j, k=1, \ldots, n)
\end{align*}
$$

Here $j+k \xrightarrow{j+k>n} j+k-n$. Hence, there exist $2 n$ dependences between the powers in (2.11).

In the case when we require the γ_{5}-invariance in addition, it follows from $(2.9,10)$ that:

$$
\begin{equation*}
\sum_{k=1}^{n}\left(j_{1}^{k}-j_{2}^{k}\right)=\sum_{k=1}^{n} \kappa^{k} . \tag{2,14}
\end{equation*}
$$

Thus the invariant n-point function exists only for those representations of $S L(2, C)$ for which eq. (2.14) is satisfied.

The corresponding n-point function in terms of spinor indices can be obtained from (2.11) by taking the $2 j_{1}^{k}$-th and $22_{2}^{k}-t h(k=1, \ldots, n)$ derivatives with respect to z^{k} and $\overline{\mathrm{z}}{ }^{\mathrm{k}}$, respectively, and performing a symmetrization.

One can verify that the function (2.11) is a totally conformal invariant.
III. COVARIANT FOUR-POINT FUNCTIONS

The known two- and three-point functions ${ }^{9 /}$ were obtained from (2.11) when $n=2,3$. Consider in detall the four-point function. In this case only three of $x_{j k}$ are independent and hence eq. (2.11) reduces to the term

$$
\begin{equation*}
\frac{z_{j} x_{j k} \tilde{x}_{k \ell} x_{\ell_{m}} \bar{z}_{m}}{\left(x_{j k}^{2} x_{k \ell}^{2} x_{\ell_{m}}^{2} x_{j m}^{2}\right)^{1 / 2}} \tag{3.1}
\end{equation*}
$$

* Taking into account (A.5), we obtain that there are only twelve independent invariants of kind (3.1). Thus, it follows from (2.11) when $n=4$ that:

$$
\begin{aligned}
& F_{\left\{\chi_{a}\right\}}^{(4)}\left(x_{a} ; \varepsilon_{a}\right)=\prod_{j<k=1}^{4}\left(x_{j k}^{2}\right)^{\frac{1}{8}\left[\sum_{p=1}^{4} d p-3 d_{j}-3 d_{k}\right]} \underset{\{\ell, q, q \bar{q}, r\}}{\sum \phi^{\{Q, \ldots, r\}}\left(h_{1}, h_{Q}\right) \times}
\end{aligned}
$$

$$
\begin{equation*}
\sum_{k=1}^{4} \kappa_{k}=0 \tag{3.7}
\end{equation*}
$$

b) Tensor fields $2 \mathrm{j}_{1}^{\mathbf{k}}=2 \mathrm{j}_{2}^{\mathbf{k}}=\mathrm{n}_{\mathrm{k}}(\mathrm{k}=1, \ldots, 4)$
$F_{\left|X_{A}\right|}^{(4)}\left(x_{a} ; z_{a}\right)=\prod_{j<k=1}^{4}\left(z_{j k}^{2}\right)^{\frac{1}{6}\left[\sum_{\{=1}^{4} d_{\ell}-3 d_{j}-3 d_{k} \mid\right.} \quad \times$
dere we denote

$$
g\left(\mathbf{x}_{\mathrm{jk}}\right)=\mathrm{g}^{\mu \nu}\left(\mathbf{x}_{\mathrm{jk}}\right) \xi_{\mu}^{\mathrm{j}} \xi_{\nu}^{\mathrm{k}}=\left(\mathrm{g}^{\mu \nu}-\frac{\mathbf{x}_{\mathrm{jk}}^{\mu} \mathbf{x}_{\mathrm{jk}}^{\nu}}{\mathbf{x}_{\mathrm{jk}}^{\mathbb{Z}}}\right) \mathrm{z}_{\mathrm{j}} \sigma_{\mu} \overline{\mathbf{z}}_{\mathrm{j}} \mathrm{z}_{\mathrm{k}^{\sigma} \mu} \overline{\mathrm{z}}_{\mathrm{k}}
$$

and

$$
\begin{equation*}
\lambda_{k \ell}^{j}=\left(\frac{x_{j k}^{\mu}}{x_{j k}^{2}}-\frac{x_{j f}^{\mu}}{x_{j f}^{2}}\right) \xi_{\mu}^{j}=\frac{1}{2} z_{j} \sigma^{\mu} \bar{z}_{j} \partial_{\mu} \ln \left(\frac{x_{j k}^{2}}{x_{j f}^{2}}\right) . \tag{3.4}
\end{equation*}
$$

One obtains from the irreducibility condition (3.4) the equalities

$$
p_{j, j+2}=n_{j}-\sum_{\substack{k=1 \\ k \neq j}}^{4} q_{j k}-p_{j, j+3}, j+k \xrightarrow{j+k>4} j+k-4 .
$$

The function (3.8) is Y_{5}-invariant when the condition (3.7) is satisfied.
c) Two scalar and two vector fields, i.e., $n_{i}=n_{4}=0$, $\mathrm{n}_{2}=\mathrm{n}_{3}=1$.
In this case it follows from (3.8) that

$$
\begin{equation*}
\mathrm{F}^{(4)}\left(\mathrm{x}_{1}, \mathrm{x}_{2} ; \xi_{2}, \mathrm{x}_{3} ; \xi_{3}, \mathrm{~s}_{4}\right)=\prod_{\mathrm{j}<\mathrm{k}=1}^{4}\left(\mathbf{x}_{\mathrm{jk}}^{R}\right)^{\frac{1}{6}\left[\sum_{\ell=1}^{4} \mathrm{~d}_{\ell}-3 \mathrm{~d}_{\mathrm{j}}-3 \mathrm{~d}_{\mathrm{k}}\right]} \times \tag{3.6}
\end{equation*}
$$

a) Scalar fields $j_{1}^{k}=j_{R}^{k}=0 \quad(k=1, \ldots, 4)$

$$
\begin{equation*}
F_{\left\{d_{k}\right\}}^{(4)}\left(x_{a}\right)=\prod_{j<k=1}^{4}\left(x_{j k}^{2}\right)^{\frac{1}{6}\left[\sum_{p=1}^{4} d_{\mathcal{R}}-3 d_{j}-3 d_{k}\right]} \phi\left(h_{i} h_{\mathcal{L}}\right) \tag{K}
\end{equation*}
$$

and the γ_{5}-invariance condition requires

$$
\begin{equation*}
\sum_{k=1}^{4}\left(j_{1}^{k}-j_{2}^{k}\right)=\sum_{k=1}^{4} \kappa^{k} \tag{3.5}
\end{equation*}
$$

One may deduce from (3.2) the explicit form of the four-point functions for some fields:
where ϕ is an arbitrary function of the harmonical ratios. The γ_{5}-invariance condition (3.5) requires

$$
\begin{aligned}
& \times\left\{\phi_{1}\left(h_{1}, h_{2}\right) \frac{g\left(\mathbf{x}_{23}\right)}{\mathbf{x}_{23}^{2}}+\phi_{2}\left(\mathrm{~h}_{1}, \mathrm{~h}_{2}\right) \lambda_{13}^{2} \lambda_{12}^{3}+\phi_{8}\left(\mathrm{~h}_{1}, \mathrm{~h}_{2}\right) \lambda_{34}^{2} \lambda_{12}^{3}+(3.9)\right. \\
& \left.+\phi_{4}\left(\mathrm{~h}_{1}, \mathrm{~h}_{2}\right) \lambda_{13}^{2} \lambda_{24}^{3}+\phi_{5}\left(\mathrm{~h}_{1}, \mathrm{~h}_{2}\right) \lambda_{34}^{2} \lambda_{12}^{3}\right\}
\end{aligned}
$$

The $\phi_{1}, \ldots, \phi_{5}$ are arbitrary functions of harmonic ratios (3.3). The transition to the ordinary vector indices can be made by differentiating (3.9) with respect to ξ_{2} and ξ_{3}, 1.e.,

$$
\begin{equation*}
\mathrm{F}_{\mu \nu}^{(4)}\left(\mathrm{x}_{\mathrm{a}}\right)=\frac{\partial^{2}}{\partial \xi_{2}^{\mu_{\partial \xi}} \xi_{3}} \mathrm{~F}^{(4)}\left(\mathbf{x}_{1}, \mathrm{x}_{2} ; \xi_{2}, \mathrm{x}_{3} ; \xi_{3}, \mathrm{x}_{4}\right) \tag{3.10}
\end{equation*}
$$

Because of the fact thet (3.8) and (3.9) depend only on ξ eqs. (3.8) and (3.9) can be written in tensor indices by the change of the variables $g\left(x_{j k}\right)$ and λ_{k}^{j} ? by the tensors:

$$
g_{\mu \nu}(x)=\frac{\partial^{R_{g}\left(\mathbf{x}_{j \mathbf{k}}\right)}}{\partial \xi_{j}^{\mu} \partial \xi_{k}^{\nu}}=g_{\mu \nu}-\frac{\mathbf{x}_{\mu}^{j \mathbf{k}} \mathbf{x}_{\nu}^{j \mathbf{k}}}{\mathbf{x}_{j \mathbf{k}}^{2}}
$$

and

$$
\left(\lambda_{k \ell}^{j}\right)_{\mu}=\frac{\partial}{\partial \xi_{j}^{\mu}}\left(\lambda_{k \ell}\right)=\frac{x_{\mu}^{j \mathbf{k}}}{\mathbf{x}_{j k}^{2}}-\frac{\mathbf{x}_{\mu \ell}^{j \ell}}{\pi_{j \ell}^{2}}=\frac{1}{2} \partial_{\mu} \ln \left(\frac{x_{j k}^{2}}{x_{j \ell}^{2}}\right)
$$

with the subsequent symmetrization and subtraction of the traces with respect to the indices $\{\mu\}$ and $\{\nu\}$, separately.
d) Two scalar fields and two fields with spln $-1 / 2$, for example $x_{1}=\left\{d_{1}, 1 / 4,0\right\}, x_{2}=\left\{d_{2}, 0,1 / 2\right\} \quad$ and $x_{3,4}=\left\{d_{3,4}, 0,0\right\}$.
One obtains from (3.2)

If $X_{1}=\left\{d_{1}, 1 / 2,0\right\}$ and $X_{2}=\left\{d_{2}, 1 / 2,0\right\}$ one has:

The y_{s}-invariance condition implies that eq. (3.11) exists if (3.7) is satisfied and for existence of (3.12) we must require

$$
\begin{equation*}
\sum_{k=1}^{4} \kappa_{k}=1 \tag{3.13}
\end{equation*}
$$

e) The Dirac fields, i.e. $\chi_{1,2}=\left\{d_{1,2}, 1 / 2,0\right\} \oplus\left\{d_{1,2}, 0,1 / 2\right\}$

Because of the conditions (3.7) and (3.13) in this case the four-point function is a combination of the invariant functions (3.11) and (3.12) only.

$$
\begin{equation*}
F=\prod_{j<k=1}^{4}\left(x_{j k}^{2}\right)^{\delta_{j k}}\left\{\phi_{1}\left(h_{1}, h_{2}\right) \frac{\hat{x}_{12}}{x_{12}^{2}}+\phi_{2}\left(h_{1}, h_{2}\right) \frac{\hat{\mathbf{x}}_{12} \hat{x}_{43} \hat{\mathbf{x}}_{32}}{\left(x_{12}^{2} x_{14}^{2} x_{34}^{2} x_{2 S}^{2}\right)^{1 / 2}}\right\},(\tag{3.14}
\end{equation*}
$$

if

$$
\sum_{j=1}^{4} \kappa_{j}=0
$$

and

$$
\begin{equation*}
F=\int_{j<k=1}^{4}\left(x_{j k}^{2}\right)^{\delta_{j k}}\left\{\phi_{1} \frac{\hat{x}_{13} \hat{x}_{32}}{\left(x_{13}^{2} x_{23}^{2} x_{12}^{2}\right)^{1 / 2}}+\phi_{2} \frac{\hat{x}_{14}^{\hat{x}_{12}}}{\left(x_{14}^{2}{\underset{x}{24}}_{\mathbf{x}_{12}^{2}}^{2}\right)^{1 / 6}}\right\} \tag{3.15}
\end{equation*}
$$

if $\sum_{j=1}^{4} \kappa_{j}=1$. Here $\hat{\mathbf{x}}=\mathbf{x}^{\mu} \gamma_{\mu}$.

APPENDIX A

An arbitrary n-point function depends on s_{j}, z_{j}, and \bar{z}_{j}. Translational invariance requires that the dependence on x_{j} takes place by means of

$$
\begin{equation*}
x_{j, k}=x_{j}-x_{k} \quad(j, k=1, \ldots, n) \tag{A.1}
\end{equation*}
$$

However, only $(n-1)$ of the variables $(A, 1)$ are independent. In general, we shall use the dependent variables. The question on independence will be discussed in the final result.

From the spinors z_{j} and \bar{z}_{j} one can construct the following tensors:

$\mathbf{z}_{j} \sigma_{\mu} \bar{\sigma}_{\nu} \in \mathbf{z}_{\mathbf{k}}, \quad \overline{\mathbf{z}}_{\mathrm{j}} \in \vec{\sigma}_{\mu}{\underset{\sim}{\nu}}_{\sigma_{\nu}} \overline{\mathbf{z}}_{\mathbf{k}}$,
$\varepsilon_{j} \sigma_{\mu} \vec{o}_{\nu}{\underset{\sim}{\lambda}}^{\sigma_{\mathbf{z}}} \overline{\mathrm{E}}_{\mathrm{k}}$,

and so on, where $\varepsilon=1 \sigma_{Q}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, $\sigma=\left(\sigma_{0}, \underline{g}\right), \tilde{\sigma}=\left(\sigma_{0},-\underset{\sim}{\sigma}\right)$
$\sigma_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), o_{j}(j=1,2,3) \quad$ are the Pauli matrices. The tensors (A.2) are not independent too.

From the four-vectors $\mathbf{r}_{j k}$ and tensors (A.2) one may form the following relativistic invariants.
$\mathrm{x}_{\mathrm{jk}}^{\mathrm{E}}$,
$\mathbf{Z}_{\mathrm{a}} \in \mathbf{Z}_{\mathrm{b}}=-\mathbf{E}_{\mathrm{b}} \in \mathbf{Z}_{\mathrm{E}}, \quad \overline{\mathbf{Z}}_{\mathrm{n}} \in \overline{\mathbf{Z}}_{\mathrm{b}}=-\overline{\mathbf{E}}_{\mathrm{b}} \in \overline{\mathbf{Z}}_{\mathrm{a}}$,
$\mathrm{E}_{\mathrm{a}} \mathrm{X}_{\mathrm{jk}} \overline{\mathrm{Z}}_{\mathrm{b}}$,

(A. 3c)

where $z=x^{\mu}{ }_{\sigma}$ and $z=\Sigma^{\mu} \tilde{o}_{\mu}$.
Using thé equalities
$\underline{E} \vec{Z}=I^{2}$,

$$
\begin{equation*}
\underset{\sim}{\mathbf{y}} \underset{\sim}{z}=(x y) \underset{\sim}{z}-(\mathbf{x z}) \underset{\sim}{y}+(y \mathbf{z}) \underset{\sim}{x}+1 e^{\mu \nu \rho f} x_{\mu} y_{\nu} v_{\rho_{\sim}}^{o}{ }_{r} \tag{A.4}
\end{equation*}
$$

one can verify that, if some variables $I_{\text {ik }}$ in (A.3) are dependent, then they may be expressed by means of the quantities
written above. All terms in (A.3) are products of no more than $(\mathrm{n}-1) \mathrm{x}_{\mathrm{k} \ell}$ as a consequence of the dependence of the n -point function on $n-1$ linear independent $\mathbf{x}_{j k}$.

The relativistic invariant n-point function depends only on the invariants (A.3). For example, when $n=2$, we have:

$$
F^{(2)}=\mathbf{F}\left(\mathbf{x}_{12}^{2}, \mathbf{z}_{1} \in \mathbf{z}_{2}, z_{1} \in \mathbf{z}_{2}, \quad z_{j} \mathbf{x}_{12} z_{k}\right), \quad(j, k=1,2) .
$$

APPENDIX B

To construct the conformal invariant n-point function, it is necessary to form, by means of relativistic invariants (A.3), conformal invariant variables, i.e., the quantities which satisfy eqs. (2.7). It is easy to verify that CI variables have the following form:

$$
\begin{aligned}
& h_{k Q}^{m n}=\frac{x_{l_{k}}^{2} \mathbf{x}_{m n}^{2}}{x_{k m}^{2} x_{\ell_{0}}^{2}}, \\
& \frac{z_{j} x_{j k} \bar{z}_{k}}{x_{j k}^{2}}, \quad \lambda_{j+1, m}^{j}=\frac{z_{j} \mathbf{x}_{j, j+1} \bar{z}_{j}}{\mathbf{x}_{j, j+1}^{2}}-\frac{z_{j} \mathbf{I}_{j m} \bar{z}_{m}}{\mathbf{x}_{j m}^{2}}, \\
& \frac{z_{j} x_{j k} \tilde{x}_{k \ell \in z_{\ell}}}{\left(x_{j k}^{2} x_{k \ell}^{2} x_{j \ell}^{2}\right)^{1 / 2}}, \frac{\bar{z}_{j} \in \tilde{x}_{j k} x_{k \ell} \bar{z}_{\ell}}{\left(x_{j k}^{2} x_{k \ell}^{2} \mathbb{Z}_{j \ell}^{2}\right)^{1 / 2}},
\end{aligned}
$$

$$
\begin{align*}
& \frac{z_{k_{1}} x_{k_{1} k_{2}} \cdots \tilde{x}_{k_{n-1}} k_{n}^{f x_{k}}{ }_{n}}{\left(x_{k_{1} k_{2}}^{2} \cdots x_{k_{n-1} k_{n}}^{2} x_{k_{1} k_{n}}^{2}\right)^{\frac{1 / 2}{2}}} \tag{B.2.4}\\
& \text { if } n \text { is even, (B.2.3) } \\
& \text { if } n \text { is odd }
\end{align*}
$$

The variables $x_{j k}$ in (B.2.1 $\div n$) are linear independent. It follows from the equality

$$
\lambda_{a b}^{j}+\lambda_{b c}^{j}=\lambda_{a c}^{j}
$$

that only $n(n-2)-\lambda_{\text {min }}^{j}$ are independent. There are only $n(n-3) / 2$ independent harmonical ratios.

The general form of an n-point CI function is a polynomial in the variables (B.2) with the coefficient functions $f_{n}^{\text {a| }}\left(x_{j k}^{2}\right)$. These functions satisfy the equations:

$$
\begin{align*}
& \left\{\left.\sum_{j=1}^{n} x_{\mu}^{j} d_{j}+\sum_{j<k=1}^{n}\left(x_{\mu}^{j}+x_{\mu}^{k}\right) x_{j k}^{2} \frac{\partial}{\partial x_{j k}^{2}} \right\rvert\, f_{n}^{\{a\}}\left(x_{a b}^{2}\right)=0,\right. \\
& \left.1 \sum_{j=1}^{n} d_{j}+2 \sum_{j<k=1}^{n} x_{j k}^{2} \frac{\partial}{\partial x_{j k}^{2}} \right\rvert\, f_{n}^{\{a\}}\left(x_{a b}^{q}\right)=0, \tag{B.3}
\end{align*}
$$

i.e., $f_{n}^{\{a \mid}$ satisfy the equations of $_{\text {f }}$ invariance of scalar f1-
elds. It follows from elds. It follows from (B.3) that $f_{n}\{a\}$ has the form

$$
\begin{equation*}
f_{n}^{\{a\}}\left(x_{a b}^{2}\right)=\prod_{j<k=1}^{n}\left(x_{j k}^{2}\right)^{\delta_{j k}} \phi_{n}^{\{a\}}\left(h_{1}, \ldots, h_{n(n-s) / g}\right), \tag{B.4}
\end{equation*}
$$

where $\delta_{j k}$ are given by (2.12). Here h_{a} are conformal invariant independent harmonical ratios (B.1).

REFERENCES

1. Midgal A.A. Phys.Lett., 1971, 37日, 98, p. 386. Ferrara S. et al. Phys.Lett., 1972, 38B, p. 332.
2. Mack G., Todorov I.T. Phys.Rev., 1973, D8, p. 1764.
3. Mack G. Acta Univ. Wr., 1971, 207, 2, p.1.
4. Dobrev V.K. et al. Phys.Rev., 1976, D13, p.887.
5. Пальчих: М.Я., Фрадкин Е.С. Лекции ОИЯИ, 2-8847, Дубна, 1975.
6. Mack G., Salam A. Ann. Phys. (N.Y.), 1969, 53, p. 174.
7. Todorov I.T., Zaikov R.P. J.Math. Phys., 1969, 10, p. 2014.
8. Zaikov R.P., Bul.J. Phys., 1975, 2, p.89.
9. Sotkov G.M., Zaikov R.P. Rep.Math. Phys., 1977, 12, p. 375.
10. Bargman V., Todorov I.T. J.Math.PhYs., 1977, 18, p. 1141.
11. Dobrev V.K., Petcova V.B. Rep.Math. Phys., 1978, 13, p. 233.
