

сообщения обьедииенного
 института ядерных исследований
 дубна

$2 / 6-80$
E2-80-110
E.-M.IIgenfritz, M.Mueller-Preussker

THE PERMEABILITY OF THE INTERACTING YANG-MILLS INSTANTON GAS

1. Introduction

In their recent work Callan, Dashen, and Grosa have proposed to consider the Euclidean Yang-Milla vacuum as a magnetizable medium in the aense of fourdimenalonal magnetostatics, responding to external (classical) "magnotio" fields $/ 1 /$. The sources of the latter are thought to be heavy static quarks. In this ploture the main role is played by instanton solutions $/ 2 /$. They ought to dominate the vacuum-to-vacuum amplitude within the dilute gas approximation. In other words, the Euclidean vacuum time historiea are described in terms of a grand canonical ensemble for a four-dimensional gas of dipole-like ingtantons and antiinatantons. It has been suggested $/ 1 /$ that such a gas can undergo a firat-order phase transition driven by an external Minkowakian electric field, in thí sense providing a micropeopic basis for the MIT bag model /3/. From another point of view, instantons turned out to renormalize the coupling conatant of the Yang-Mills theory beyond the behaviour dictated by the perturbative β-function $/ 4 /$. With inatantion contributions included the β-function interpolates between the perturbative one at small coupling and the etrong coupling β-function determined within Buclidean lattice $Q C D / 5 /$. The central notion sppearing in both questione turns out to be the permeability μ of the instanton ges.

In a recent paper $/ 6 /$ we reinvestigsted the exiatence of the phase tranaition on the besis of a corrected, soft suppreseion of inatantons by an external electric field. This wes necessary due to the isct that the thermodynaracal, "magnetostrictive" mechanien faile to provide etrong exponential suppression of large-aize instantons. A first order phase transition was zever-theienef-ahow to exist, even in absence of interactions awong ingtantons. In Ref. /6/all calculations were based on the oneinstanton amplitude according to the Pauli-Villars ragularization echeme, and relatively large coupling constanta had to be taken into account in order to obtain a \quad ignificant influence of the instanton gas onto the equation of atate of the vacuam. In this paper we will extend the analyaia to other regularization schemes.

In the preceding paper wo stadied the influence of instanton interactions using different effective field methods. The ansatz proposed in Hef. $/ 1 /$ (based on Onsager's treatment of strongly dielectric media/7/) was found to modify the phase transition only alightly compared to the noninteracting case. An a priori as well posaible mean field ansatz (inspired by Veiss' theory of ferromagnetism), however, changed this picture and opened the possibility that the first order transition becomes lost. Inatead Of this spontaneous polarizstion would show up. In view of this ambiguity it seems worthwhils to treat the instanton interactions in a more systematic, i.e., microscopic way, a problem which is solved to some extent in this paper.

We will investigate the grand partition function of the in-stanton-antiinstanton gas with account of the dipole-dipole interaction. We aucceeded to calculate the logarithm of the partition function up to second order in the external field obtaining in this way the permeability of the interacting instanton gas. We arrived at the approximate formuls

$$
\begin{equation*}
\mu=1+\frac{4 \Sigma^{2} x_{0}}{1-\left(5^{2} x_{0}\right)^{2}} \tag{1}
\end{equation*}
$$

where X_{0} denotes the susceptibility of the noninteracting gas. This formuls exhibits an irregular behaviour of the interecting gas to be expected as $\pi^{2} x$. approaches 1 . It has to be compared with the corresponding expression

$$
\begin{equation*}
\mu=4 \pi^{2} x_{a}+\sqrt{1+\left(4 \pi^{2} x_{0}\right)^{2}} \tag{2}
\end{equation*}
$$

used by Callan, Dashen, and Gross $/ 1,4 /$ and based on the inear response to Onsagsi"s local field exerted onto an instanton in a cavity by the continuous medium surrounding it.

Since we do not know the logarithm of the partition function at arbitrary strong external fielda, we shall use formula (1) in order to introduce an effective field analogous to that used in connection with expreasion (2) and consider again the firat order phase transition in terms of the equation of state. Compared with the nonintaracting case the behaviour ia qualitatively reproduced within small deviations.

Furthermore, expression (1) for the permeability will be ap-
plied to renormalize the coupling constant by instanton effects. So far as the interpolation to the etrong coupling β-function is concerned, the regults obtained in Ref. $/ 4 /$ remain quelitatively unaltered.

In section 2 the ansatz for the partition function is witten down, and some formulae are colleoted. In section 3 the gtandard method of functionsl averaging is uaed to deal with the dipoledipole interaction. From the full expreasion for the permeability the approximation (1) is derived. The eatimation of the validity of the Gausaian approximation for the functional average is relegated to the appendix. We epply formula (1) to the equation of state and the coupling constant renormalization in section 4 and conclude in section 5 .

2. Partition fanction of the interacting instanton gas

We are going to consider the vacuur-to-vacuum transition amplitude for the pure $S U(N)$ Yang-Mills theory. The Euclidean functional integral will be calculated within the quasiclassical approximation by expanding the action around field configurations given by superpoaitions of \mathbb{N}_{4} ingtantons and N_{-}antiingtantons (in singular gauge)

$$
\begin{equation*}
R_{\mu}^{a}(x)=\sum_{i=1}^{N_{+}+N_{H}} D_{\mu \nu}^{\varepsilon_{i}} \frac{2\left(x-x_{i}\right)_{\nu}}{\left(x-x_{i}\right)^{2}\left[\left(x-x_{i}\right)^{2}+\varphi_{i}^{2}\right]}=\sum_{i=1}^{N_{4}+N_{-}}{f_{i} a_{i \mu}\left(x-x_{i}\right)}^{H_{i \mu}} \tag{3}
\end{equation*}
$$

considered as approximate stationary points. Here

$$
\begin{equation*}
D_{\mu \nu}^{\epsilon_{i}} a=\frac{\underline{g}_{i}^{2}}{g} R_{i}^{a d} \eta_{\infty \mu_{\nu}}^{\varepsilon_{i}} \tag{4}
\end{equation*}
$$

denotes the dipole moment of the i-th instanton ($E=+1$) or antiinstanton $(\varepsilon=-1)$, respectively. x_{i}, ρ_{i} and R_{i} are are the usual collective coordinates, the letter matrix determining the global gauge orientation. The η symbola have been introduced in Ref.

Fie write the vacuum-to-vacuum amplitude in the form of a grand canonical partition function corresponding to the instan-ton-antiinstanton gae in a four-volume V,

$$
\begin{align*}
z\left[\tilde{H}_{1} \zeta_{ \pm}, v\right] & =\sum_{\mu_{4}, N} \frac{1}{N_{t}!N_{i}!} \prod_{j=1}^{\nu_{t}+N_{-}} \int_{V} d^{4} x_{j} \int^{\rho_{i}} \frac{d f_{i}}{\rho_{j}} n_{0}\left(\varphi_{i}\right) \int\left[d R_{j}\right] \times \\
& \times e^{5_{\varepsilon_{j}\left(x_{j}, \rho_{i}, R_{j}\right)}} e^{2 \sigma^{2} D \delta_{j \nu} \varepsilon_{\mu \nu} \tilde{H}_{\mu \nu}^{a} e^{v_{\text {int }}}}, \tag{5}
\end{align*}
$$

where the one-loop single-inatanton amplitude is given by $/ 8 /$

$$
\begin{equation*}
n_{0}(\rho)=C_{s u(\omega)} \frac{1}{\rho^{4}} x(\rho)^{2 N} e^{-x(\rho)}, \quad x(\rho)=\frac{8 \pi^{2}}{g^{2}(\rho)} . \tag{6}
\end{equation*}
$$

In the partition function has beon introduced the classical interaction with the external field $H_{\mu \nu}^{a}=$ const..

$$
\begin{equation*}
-\delta S=2 \pi^{2} D_{\mu \nu}^{\varepsilon a} \tilde{H}_{\mu \nu}^{Q} . \quad \tilde{H}_{\mu \nu}^{a}=\frac{1}{i} \varepsilon_{\mu \nu \lambda \sigma} H_{\lambda \sigma}^{*} \tag{7}
\end{equation*}
$$

and, for later use, a cherical potential $\zeta_{e}=\zeta_{e}(x, \mathcal{Q}, R)$.
As to the one-ingtanton amplitude, the effective coupling constant will be taken according to the one-loop epproximation for the β-function, i.e.s

$$
\begin{equation*}
-\frac{d \rho}{\rho}=\frac{3}{11 N} d x, \quad x(\rho)=\frac{19 N}{3} \ln \frac{1}{9 A}, \tag{8}
\end{equation*}
$$

where \wedge depends on the regularization scheme, as well as the factor $\mathrm{C}_{\mathrm{SU}(\mathrm{N})}$ in equ. (6) does. (The dependence of $\mathrm{C}_{\mathrm{SD}(\mathrm{N})}$ both on N and the regularization scheme adopted will be epecified in seotion 4.)

The integration over instanton sizes ρ will be cut off at some $\varsigma_{c}=\rho\left(x_{c}\right)$ as usual $/ 1 /$. Appropriate phyaical conditions to determine X_{c} in either case are discussed later, too.

From the partition function will be obtained, e.g., the everage instanton density

$$
\begin{equation*}
\left\langle n_{e}(x, g, R)\right\rangle=\left.\frac{\delta h_{1} \tilde{z}\left[\tilde{H}, S_{ \pm}, V\right]}{\delta \xi_{2}(x, s, R)}\right|_{y_{ \pm}=\sigma} \tag{9}
\end{equation*}
$$

or the "magnatization" of the instenton gas

$$
\begin{equation*}
4 \tilde{\Pi}^{2} \tilde{M}_{\mu \nu}^{a}=\frac{\partial}{8 \tilde{H}_{\mu^{v}}^{a}}\left\{\left.\frac{1}{v} \ln Z\left[\tilde{H}, S_{ \pm}, v\right]\right|_{5_{ \pm}=0}\right\} \text {. } \tag{10}
\end{equation*}
$$

For small external field H one expecte

$$
\begin{equation*}
M_{\mu \nu}^{a}=x H_{\mu \nu}^{a} \tag{11}
\end{equation*}
$$

where X is called "suaceptibility" of the instanton gas. One introduces a microbcopic field B

$$
\begin{equation*}
8_{\mu^{\prime}}^{a}=H_{\mu \nu}^{a}+4 \pi^{2} M_{\mu^{\prime}}^{a} \underset{H \rightarrow 0}{\sim} \mu H_{\mu^{\prime}}^{a} \tag{12}
\end{equation*}
$$

including both the external field and the average field of the (anti)instanton dipoles. The "parmeability" of the instanton "medium" is then given by

$$
\begin{equation*}
\mu=1+4 \pi^{2} x . \tag{13}
\end{equation*}
$$

Our main task in this paper is to calculate the permeability μ with account of the inetanton-antifnstenton interaction, schematically indicated in equ. (5) as $Y_{\text {int }}$. In general, interaction terms not lactorizable within the partition function arise on classical and quantum level. Clasaical interactions stem from overlap contributions between different (anti)instantons to the action; interactions on the quantum level appear from multiscattering expansions of multilnstanton determinante and due to the fact that the field configuration to expand about are not true minima of the action. Moreover, there are corrections coming from the Jacobien with respect to all collective coordinates. This has boen exteneively studied by Levine and Yeffe /9/. Thay have clessified all interaction terme with respect to their dependence on the distance between (anti) Inetentona, expresesble in terms of $\rho_{i} \varsigma_{j} /\left(x_{i}-x_{j}\right)^{2}$, and have ahown that there are no contributions falling loss rapidly than $\rho_{1}^{2} \rho_{j}^{2} /\left(x_{i}-x_{j}\right)^{4}$, typical e.g., for the classical dipole-dipole interaction. Therefore we will concentrate upon the dipole-dipole interaction,

$$
\begin{equation*}
V_{\text {int }} \approx-S_{\text {int }} \approx-\frac{1}{3} \sum_{i, j} \int d^{4} y{\stackrel{+}{H_{i}} \mu\left(y-x_{i}\right) \square_{y} \bar{H}_{j \mu}^{a}\left(y-x_{j}\right) .}^{a} . \tag{14}
\end{equation*}
$$

3. Punctional averaging method for the partition function of the interacting inatanton gas
We rewrite the interaction factor exp $\gamma_{\text {int }}$ in equ. (5) in the form of a functional integral

$$
\begin{aligned}
& \exp \left(-\frac{1}{2} \sum_{i j} \int d{ }^{4} y \dot{म}_{i \mu}^{a}\left(y-x_{i}\right) D_{y} \bar{म}_{j \mu}^{a}\left(y-x_{j}\right)=\exp \left(-\frac{1}{4} \dot{F}_{N}^{i} \cdot \hat{\square} \cdot म_{H}\right)\right. \\
& =\left(\operatorname{det} \hat{Q}^{-1}\right)^{\frac{1}{2}} \int \delta h_{M} \exp \left(-\frac{1}{2} h_{H}^{T} \cdot \hat{\square}^{-1} \cdot h_{H}-\frac{i}{K} \eta_{M}^{\top} \cdot h_{M}\right) \text {, }
\end{aligned}
$$

where we used the matrix notation

Space integration and sumantion cver Lorentz and colour indices are underatood. Then we are able to sum up the noninteracting partition function with fluctuating external fields $h^{ \pm}$under the sign of functional averaging and obtain instead of equ. (5)

$$
z=\left(\operatorname{det} \hat{\Pi}^{-1}\right)^{\frac{x}{2}} \int \delta \hat{K}_{H} \exp \left\{-\frac{1}{2} \hat{h}_{M}^{T} \cdot \hat{\square}^{-1} \cdot \hat{h}_{M}+\right.
$$

We integrate by expanding the exponent up to second order in h^{t}

$$
z=z_{0}\left(\operatorname{det} \hat{\square}^{-1}\right)^{\frac{1}{2}} \int \delta h_{M} \exp \left\{-\frac{1}{2} \hat{h}_{H}^{T} \cdot\left(\hat{\square}^{-4}+\hat{x}\right) \cdot h_{M}-\exists_{h}^{\top} \cdot h_{H}\right\}\left(1+\theta\left(h^{3}\right)\right)
$$

where

$$
\begin{equation*}
z_{0}=\exp \left\{\int d^{4} x \int \frac{d \rho}{\rho} n_{v}(p) \int[d R] \sum_{\varepsilon_{m} \pm}^{-1} \exp \left[\zeta_{e}+2 \tilde{\pi}^{2} D_{\mu \nu}^{c a} \tilde{H}_{\mu \nu}^{a}\right]\right. \tag{19}
\end{equation*}
$$

represents the partition function for the noninteracting gas, and where $\tilde{\chi}$ and J_{M} denote

$$
\tilde{x} \equiv\left(\begin{array}{cc}
\dot{x}_{\mu \mu^{\prime}}^{a^{\prime}}\left(y-y^{\prime}\right) & 0 \tag{20}\\
0 & \bar{x}_{\mu \mu^{\prime}}^{a e^{\prime}}\left(y-y^{\prime}\right)
\end{array}\right) \quad, \quad \exists_{M}=\binom{{\underset{\mu}{\mu}}_{a}(y)}{\bar{f}_{\mu}^{a}(y)}
$$

with

$$
\begin{align*}
& \int_{\mu}^{\frac{1}{3}}(y)=\frac{i}{\sqrt{2}} \int \frac{d \rho}{\rho} n_{v}(\xi) \int[d R] \exp \left[\zeta_{E}+2 r^{2} f \tilde{H}\right] \int d^{4} x \mathbb{H}_{\mu}^{\frac{R_{\mu}}{a}}(y-x) . \tag{21}
\end{align*}
$$

$$
\begin{aligned}
& \hat{\square}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \underline{\square}_{y} \delta\left(y-y^{\prime}\right) \delta_{Q Q^{x}} \delta_{\mu p^{\prime}} \quad .
\end{aligned}
$$

Some of these expressions have only a formal meaning, but there remaln only welldefined quantitiea, when they are arranged as indicated. Notice that for vanishing external field $H=0$ we have $\int_{\mu}^{a}(y)=0$, since

$$
\begin{equation*}
\int[C \mid R] R^{\alpha a}=\sigma \tag{23}
\end{equation*}
$$

In this case the corroction term $O\left(h^{3}\right)$ in formula (18) is in fact of order $O\left(h^{4}\right)$. In the appendix we estimate its magnitude to check the validity of the Gaussian approximation for $2[\tilde{H}=0]$. (This check ia sufficient also for H near zero which is needed to define the permeahility.)

The Gausaian approximation of the functional iotegral (18) is immediately known. We expand the determinant of $(1+\hat{\square} \hat{X})^{-1}$ and the operator itself and ohtain

$$
z=z_{0} \exp \left(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n} \operatorname{Tr}(\hat{\square} \cdot \hat{X})^{n}\right) \exp \left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2} F_{n}^{T} \cdot(\hat{\square} \cdot \hat{X})^{n} \cdot \hat{\square} \cdot F_{n}\right) \text {. (24) }
$$

Spelling out the matrix structure of $\hat{\eta}$ and \hat{x} and introducing Fourier transforme we arrive at

$$
\begin{align*}
& \left.+\left(\overrightarrow{j_{1}} \bar{x} \longrightarrow \overline{y_{1}}, \dot{x}\right)\right\} . \tag{25}
\end{align*}
$$

The first exponential (due to the determinant) can be viauslized as a aum of ring graphs containing instantons and antilnstantona in alternating sequence,
whereas the second one is represented by alternsting chains with "currenta" J at the ends.

Chaing with different $\mathrm{J}^{+}, \mathrm{J}^{-}$at their ends vanish identically and are therefore omitted in equ. (25). The Fourier transforms of $\bar{\chi}$, $\frac{E}{J}$ have the form

$$
\begin{align*}
& k\}_{\mu}^{2}(k) \quad-\frac{i}{\sqrt{2}} \int \frac{d \xi}{\xi} n_{0}(f) \int[d R] \exp \left(\int_{\varepsilon}+2 \pi^{2} D^{\varepsilon} \tilde{H}\right) k \vec{H}_{\mu}^{E}(k) \cdot(2 \pi)^{4} \delta(k)
\end{align*}
$$

where the Pourier trangformed (enti)instanton solution ia

$$
\begin{equation*}
k \ddot{R}_{\mu}^{\ell}(k)=4 \pi^{2} i D_{\mu \nu}^{\ell} \hat{k_{,}}, F\left(k_{\rho}\right) \tag{26}
\end{equation*}
$$

With $\quad \hat{k}_{\nu}=k_{\nu} / k \quad$ and $\quad F(x) \neq \frac{4}{x^{2}}\left(1-\frac{x^{2}}{2} k_{2}(x)\right)$.
Fe notice that $P(x)$ is monotonically falling from $P(0)=1$ to $F(x \rightarrow \infty)=0$.

To calculate the permeability μ we expnind $\ln Z$ up to second order in H. Then, due to the form of $\mathbf{k}^{2}{\underset{X}{x}}^{e^{2}}$ at $H=0$,

$$
\begin{equation*}
\left.k^{2}{\underset{X}{X}}_{\mu \mu^{\prime}}^{\varepsilon a^{\prime}}(k)\right|_{H=0}=-^{2} X_{E}\left(S_{E}, k\right) \delta_{a a^{\prime}}\left(\delta_{\mu \mu^{\prime}}-\hat{k}_{\mu} \hat{k}_{\mu^{\prime}}\right) \tag{28}
\end{equation*}
$$

wth

$$
\begin{equation*}
x_{\epsilon}\left(\zeta_{\varepsilon}, n\right)=\frac{1}{N^{2}-1} \int_{0}^{\rho_{k}} \frac{d \rho}{\rho} n_{0}(\rho) x(s) \rho^{4} e^{s_{\varepsilon}} F^{2}(k \rho), \tag{29}
\end{equation*}
$$

both the ring and the chain terms will be strongly simplified. Ne will not go into the somewhat lengthy, but otraightforward calculstions. Only the following properties of R-integration should be mentioned:

$$
\begin{align*}
& \int[d R]=1, \quad \int[d R] R^{* a} R^{\alpha^{\prime} a^{\prime}}=\frac{1}{N^{2}-1} \delta_{d a^{\prime}} \delta_{a a^{\prime}} \\
& \int[d R] R^{=a} R^{B b} R^{r c}=\frac{1}{N\left(N^{2}-1\right)} f^{* \beta r} f^{a b c}, \tag{30}
\end{align*}
$$

where $f^{\alpha \beta}$ denotes the structure constants of $S U(N)$-Lie algebra, (We are interested here only in the cases $N=2,3$.) Using the identities fulfilied by the η symbola (see Ref. /B/) and fixing

$$
S_{x}=\zeta_{ \pm}(\rho) \quad \text { we get the Pollowing contributions for } \frac{1}{V} \mathrm{t}_{\mathrm{n}} \text { I. }
$$

$$
\begin{align*}
& \text { With } \quad x_{e}\left(\xi_{c}\right)=x_{e}\left(y_{5}, k \rightarrow \delta\right) \quad \text { (compare equ. (29)), } \\
& \hat{\nu} \ell_{\nu} \chi_{*}\left[\xi_{s_{1}} H\right]=\sum_{\varepsilon} \int \frac{d g}{\xi} n_{v}(\xi) e^{k(\xi)}+\frac{1}{2} \sum_{\varepsilon} \tau^{2} \chi_{\varepsilon}\left(\xi_{\varepsilon}\right) H_{\mu \nu}^{n}\left(H_{\mu \nu}^{4}-\varepsilon \hat{H}_{\mu \nu}^{*}\right) \tag{31}
\end{align*}
$$

is the noninteracting part corresponding to the "fres" permeability $\mu=1+4 \pi^{2} x_{0} \quad\left(x_{0}=x_{ \pm}(0)\right)$.
Because of the $\delta(k)$ function in the expreasion (22') for kj (k) the k-integration over chain contributions is reduced to an engular average around $k=0$, simplified further due to the structure (28) of $\left.k^{2} \chi\right|_{\mathrm{H}=0}$:
contributing to the permeability (1). The ring Eraphs give finully $\left(\frac{1}{V} \ln Z\left[J_{ \pm}, H\right]\right)_{\text {rings }}=\frac{1}{16 H^{2}} \int d k^{3}\left\{-3\left(N^{2}-1\right) \ln \left(1-E^{2} X_{+} / \zeta_{+1} k\right) J^{2} X_{-}(\}, k\right)+$

$$
\begin{align*}
& +\frac{1}{2}\left[\sum_{ \pm} 3 \pi^{4} K_{ \pm}\left(\zeta_{ \pm}, b\right) \frac{\pi^{2} X_{7}\left(J_{F, k}, k\right]}{1-\pi^{2} X_{4}\left(\zeta_{4}, m\right) \pi^{2} X_{1}(\eta, k)}+\right. \tag{33}\\
& \left.\left.+\sum_{ \pm} \frac{2 \Phi^{6}}{N} \Omega_{ \pm}^{2}\left(\xi_{ \pm} k\right)\left(\frac{\pi^{2} X_{\mp}\left(\xi_{\mp}, k\right)}{1-\pi^{2} X_{+}\left(\zeta_{+}, k\right)^{2} X_{-}(\zeta, k)}\right)^{2}\right] H_{P^{\alpha}}^{a}\left(H_{\mu^{a}}^{a} \mp \tilde{H}_{\mu^{+}}^{a}\right)\right\} \text {. }
\end{align*}
$$

been used

$$
\begin{align*}
& K_{ \pm}\left(\zeta_{2}, k\right)=\frac{1}{\mu^{2}-1} \int \frac{d \rho}{\rho} n_{0}(\rho) x^{2}(\rho) \rho^{t} F^{2}(k \rho) e^{\zeta_{ \pm}} \tag{34}\\
& \Omega_{ \pm}\left(\zeta_{ \pm}, k\right)=\frac{1}{\mu^{2}-1} \int \frac{d \rho}{\rho} n_{0}(\rho) x^{\frac{3}{2}}(\rho) \rho^{6} F^{l}\left(h_{\rho}\right) e^{\zeta_{ \pm}} . \tag{1}
\end{align*}
$$

Later $K(\zeta)$ and $\Omega(\zeta)$ will denote thest irtegrals for $k=0$.
In order to ensure the convergence of the eum of chain as well as ring terms, one has to require $\pi^{2} x_{0}<1$. This condition, if it is not automatically satisfied, defines the lowest x_{c} for either regulerization scheme employed to define the instanton arplitude. It turns out to be aomewhat gore reatrictive than the usually applied diluteness criterion (compare the Table). In the appendix will be seen that for the Gaussian approximation to be valid, $1-\left(\pi^{2} x_{0}\right)^{2}$ mast be not too small. However, $\pi^{2} x_{0}=0.95$ will be an acceptable value.

The k-integrals in equ. (33) are convergent.Nevertheless, we decide to "regulerize" them by cutting of et $\mathrm{k}_{\mathrm{c}}=\frac{1}{\alpha_{c}} \sim O\left(\frac{1}{\rho_{c}}\right)$. This procedure is equivalent to swoothing the interaction term (14) at small distances $\left|x_{i}-x_{f}\right| \leqslant d_{c}$. Such an assumption seems ${ }^{\text {to }}$ us justifyable as long as there is yet a principal lack of knowledge how to deal with the problem of dense instanton configurations. The eatimation of the correction term $O\left(h^{4}\right)$ to the Geussian approximation for $Z[\tilde{H}=0]$ shows that this approximation becomes better the saxaler k_{c} in chosen (cf. the Table).

Table
Numerical values for different quantities defined in this paper. For compariaon they are shown for two resularization schemes applied in the calculation of the one-instanton amplitude (see Rers./1,4,8/). x_{c} and ρ_{ρ} ure determined by the requirement $\pi^{2} x_{0} \approx .95$ (which is aatomatically satiafied in the fauli-Villars case even for $x_{c}=0$).

	Pauli-villars regularization		dimensional regularization	
$\begin{aligned} & \mathrm{N} \\ & \mathrm{C}_{\mathrm{SU}(\mathrm{~N})}^{\mathrm{N}} \\ & \mathbf{x}_{\mathrm{c}} \end{aligned}$	$\begin{gathered} 2 \\ .01626 \\ .001 \end{gathered}$	$\begin{gathered} 3 \\ 1.518 \cdot 10^{-3} \\ .001 \end{gathered}$	$\begin{gathered} 2 \\ 27.96 \\ 17.1 \end{gathered}$	$\begin{gathered} 3 \\ 105.8 \\ 25.5 \end{gathered}$
$\mathrm{f}_{0}\left(\mathbf{x}_{0}\right)$. 52	. 98	.15	. 28
$\begin{aligned} & f\left(x_{c}\right) \\ & \text { equ. }(37) \end{aligned}$	$\begin{aligned} & 6.4 \cdot 10^{-2} \\ & *\left(g_{c}^{P} / d_{d}\right)^{4} \end{aligned}$	$\begin{aligned} & 8.9 \cdot 10^{-2} \\ & \mu\left(g_{i}^{\prime \prime \prime} / d_{c}\right)^{4} \end{aligned}$	$\begin{aligned} & 2 \cdot 2 \cdot 10^{-2} \\ & \cdot\left(g_{c}^{\text {PV }} / \alpha c\right)^{4} \end{aligned}$	$\begin{aligned} & 4.6 \cdot 10^{-2} \\ & k\left(s_{c}^{p /} / d_{c}\right)^{4} \end{aligned}$
$\pi^{2} x_{0}$. 88	. 86	. 94	. 95
$\begin{aligned} & \mu\left(x_{0}\right) \\ & \text { equ.(1) } \end{aligned}$	15.9	14.0	35.7	39.2
$\begin{aligned} & \Delta x \\ & \text { equ. (39) } \end{aligned}$	$\begin{aligned} & 2.3 \cdot 10^{-2} \\ & x\left(s_{t}^{p /} / d_{k}\right)^{4} \end{aligned}$	$\begin{aligned} & 3.1 \cdot 10^{-2} \\ & \times\left(\mathrm{ge}_{\mathrm{e}}^{\mathrm{P}} / \mathrm{d}_{c}\right)^{4} \end{aligned}$	$\begin{aligned} & 8.4 \cdot 10^{-3} \\ & v\left(g_{1}^{r y} / c_{c}\right)^{4} \end{aligned}$	$\begin{aligned} & 1 \cdot 3 \cdot 10^{-2} \\ & x\left(p_{1}^{P V / c h}\right)^{4} \end{aligned}$
$\begin{aligned} & \frac{a\left(g_{c}, d_{c}\right)}{\frac{1}{v} \ln z[H=c]} \\ & \text { equ. }(A 4) \end{aligned}$	$\begin{aligned} & 4 \cdot 2 \cdot 10^{-4} \\ & \times\left(\rho_{4}^{\prime v} / d_{2}\right)^{2} \end{aligned}$	$\begin{aligned} & 1.7 \cdot 10^{-3} \\ & =\left(p_{2}{ }^{\text {PV}} / d_{k}\right)^{8} \end{aligned}$	$\begin{aligned} & 1.3 \cdot 10^{-4} \\ & \cdot\left(p_{t} \mathrm{PV} / d_{c}\right)^{1} \end{aligned}$	$\begin{aligned} & 8.2 \cdot 10^{-4} \\ & \times\left(R^{v V} / d\right)^{2} \end{aligned}$

With the cutorf introduced the k-integrais can be eatimated from above by putting $F(k \rho) \rightarrow 1$.

$$
\frac{1}{v} \ln Z[\zeta, H] \leqslant 2 \int \frac{d}{g} n_{0}(\rho) e^{\Gamma(\rho)}-\frac{3\left(N^{2}-3\right)}{645^{2}} \ln \left[1-\left(\sigma^{2} x(j)\right)^{2}\right] \frac{1}{d 4}+
$$

$$
+\left[\frac{\pi^{2} x(5)}{1-\left(\pi^{2} x(5)\right)^{2}}+\frac{3 \pi^{2}}{64} K(5) \frac{\pi^{2} x(5)}{1-\left(\pi^{2} x(5)\right)^{2}} \frac{1}{d_{c}^{4}}+\right.
$$

$$
\begin{equation*}
\left.+\frac{I^{4}}{32 N} \Omega^{2}(\zeta)\left(\frac{5^{2} X(3)}{1-\left(\pi^{2} X(5)\right)^{2}}\right)^{2} \frac{1}{d c^{4}}\right] H^{2}+\theta\left(H^{3}\right) \tag{35}
\end{equation*}
$$

$$
\left(S(g)=S_{+}(q)=S_{-}(p)\right)
$$

Consider first tre case of vanishing external field. Accordirg to equ. (9) the mean denalty of instantons and antiingtentons is obtained

$$
\begin{equation*}
\langle n(\rho)\rangle \Rightarrow n_{c}(\rho)\left[2+\frac{3}{32} \times(\rho)\left(\frac{\rho}{d c}\right)^{4} \frac{\frac{4}{}_{2} x_{0}}{1-\left(\pi^{*} x_{0}\right)^{2}}\right] . \tag{36}
\end{equation*}
$$

To estimate the effect of interactions onto the density we calculate the fractional occupied space-time volume

$$
\begin{align*}
& f\left(g_{c}\right)=\int_{0}^{\rho_{c}} \frac{d f}{\xi}\langle n(\rho)\rangle \dot{I}^{2} \rho^{4} \equiv f_{0}\left(g_{c}\right)\left(1+\Delta f\left(p_{1}\right)\right) \\
& \leqslant T^{2} \int_{0}^{p} \frac{d p}{f} n_{c}(\varphi) \rho^{4}+\frac{3 \pi^{2}}{64} \int_{0}^{2} \frac{d g}{\rho} n_{8}(\rho) \times(\rho) \frac{\rho^{p}}{d_{c}^{4}} . \tag{37}
\end{align*}
$$

The numerical results given in the Table indicate that the classical dipole-dipole interaction has only an effect of order $0\left(10^{-2}\right) \cdot\left(\frac{9_{2}}{d_{c}}\right)^{4}$ on the fractional occupied volume. According to eque. (11) and (13) by differentiating equ. (35) With respect to H we obtain the permeability (at $5=0$)
where

$$
\begin{equation*}
\mu=1+\frac{4 \pi^{-2} x_{b}}{1-\left(\pi^{2} \pi_{0}\right)^{2}}(1+\Delta x) \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
\Delta x \leqslant \frac{3 \pi^{2}}{64} \frac{x(0)}{d_{c}^{4}}+\frac{\pi^{4}}{32 N} \frac{\Omega^{2}(0)}{d_{c}^{4}} \frac{\pi^{2} x_{0}}{1-\left(\pi^{2} x_{0}\right)^{2}} \tag{39}
\end{equation*}
$$

To the relative correction ΔX contribute only terms coming from the ring expansion of the partition function which are of order $\left(\frac{9}{d}\right)^{4}$ multiplied by some factors (see the Table), which are
O(10^{-2}) and $O(1)$ in the case of Paldi-Villarg and dimensional regularization, reapectively. Adopting the view, that both d_{c} and the instenton density per 4-volum had to be pixed independently of the regularization scheme (i.e., p $_{6}^{D}=\frac{1}{7.7} 9_{2}^{p y}$), we obtain formula (1) within a deviation of aome percent in oither oase.

Up to order H^{2} we get the denaity of instantons and antiingtantons (neglecting terms corresponding to ΔX)

$$
\langle n(\rho)\rangle a n_{0}(\rho)\left[2+\frac{3}{18} x(\rho)\left(\frac{\rho}{4}\right)^{4} \frac{\gamma^{2} x_{0}}{1-\left(\bar{n}^{2} x_{0}\right)^{2}}+\frac{1+\left(x^{2} x_{0}\right)^{2}}{\left(1-\left(n^{2} x_{0}\right)^{2}\right)^{2}} \frac{\pi^{2}}{n^{2}-1} \times(\rho) \rho^{4} H^{2}\right]
$$

$$
\begin{equation*}
\Rightarrow n_{0}(s)\left[2+\frac{3}{2 z} \times(s)\left(\frac{1}{d_{1}}\right)^{4}(\mu-1)+\frac{\partial \mu}{\partial x_{0}} \frac{1}{N^{2}-1} \times(s) s^{4} H^{2}\right] . \tag{40}
\end{equation*}
$$

Here the effects of reaction of the surrounding inetanton medium and the external field (mediated by the medium) are separately exhibited.
4. Conaequences for the phase transiticn and coupling conetant renormalization
So far we have not calculated the partition function for arbitrary external fielag. Nevertheless, we use the approximate expression for the permesbility μ, derived for small external fields, in order to discuge again the phage tranaition problem in terms of un effective field approach. (We restrict ourselves here to the case of $S U(2)$ as in Ref. $/ 6 /$.) We specialize to electric type fields, inclading ïick rotation from Ninkowskien fields $E, 10$ to Laclidean onea

$$
\begin{align*}
& H_{k k}^{a}=i D_{k}^{a}=i \delta^{43} \delta_{k 3} D \\
& M_{k k}^{k}=i P_{k}^{a}=i \delta^{a 3} \delta_{k 3} P \tag{41}\\
& F_{4 k}^{a}=i E_{k}^{a}=i \delta^{* 3} \delta_{k 3} E
\end{align*}
$$

We define an effective field $\mathrm{D}^{\text {ef }}$ such that it should determine We define an effective field a ach thot it shoul
the polarization as in the noninteracting case $/ 6 /$

$$
\begin{align*}
& 4 \pi^{2} P=4 \pi^{2} P_{\text {ident }}\left(0^{2} t\right) \text { a } \varphi\left(s^{2 f t}\right) \tag{42}\\
& \text { where, with } \quad=4 \pi^{2}\left(\rho^{2} / g(\rho)\right) D \text { eff } \\
& g\left(D(f)=\delta^{-2} \int \frac{d \xi}{\rho} n_{s}(\xi) \frac{\rho^{2}}{g(\tau)}\left\{\frac{\sin \xi}{\xi^{2}}-\frac{\cos \xi}{\xi}\right)\right. \text {. }
\end{align*}
$$

The susceptibility $\chi_{0}\left(D^{e f f}\right)$ will be defined as

$$
\begin{equation*}
4 i^{2} x_{0}\left(D^{e H}\right)=\frac{\left.y^{n} D^{e t t}\right)}{D^{4 t}} \tag{44}
\end{equation*}
$$

Then the permeability $\mu\left(D^{\text {eff }}\right)$ will be determined via $\mu\left(x_{\rho}\left(D^{\text {Qff }}\right)\right)$ according to our formula (1), to expression (2) as well as to the interaction-free permeability

$$
\begin{equation*}
\mu_{0}=1+4 \pi^{2} x_{0} \tag{45}
\end{equation*}
$$

for comparison, Ne obtain both

$$
\begin{align*}
& \text { obtain both } \tag{46}\\
& D=\frac{4 \pi^{2} P\left(D^{\pi}\right)}{\mu\left(D^{2} \pi\right)-1}
\end{align*}
$$

and

$$
\begin{equation*}
E=\mu\left(b^{e f}\right) D \tag{47}
\end{equation*}
$$

1.e., the equation of state $E(J)$ in either case,
ie have studied the corresponding equation of state $E(D)$, investigating (i) the dependence on the regularization scheme ueed to define the one-instanton mplitude, and (i1) the effect of including the ingtanton interaction in either way. Although we have performed these calculationa only for $S U(2)$ we notice here the dependence of $C_{S U(N)}$ on N and the regularization scheme (R)/4,10/

$$
\begin{equation*}
C_{g n(N)}^{R}=\frac{4.60}{1^{2}} \frac{e^{-1.68 N}}{(N-1)!(N-2)!}\left(\frac{\Lambda^{R}}{\Lambda^{R}}\right)^{\frac{11 N}{3}} \tag{48}
\end{equation*}
$$

(It has been used in calculating the numerical values of the Table). Λ^{R} ia the acale parameter of the one-loop running coupling constant $x_{p}(g)=(1 / N / 3) e_{n}\left(1 / g \Lambda_{q}\right)$, defined within R (FY refers to the Fauli-Villars echeme).

Consider first the case of $P V$ regalarization. As already noted in Ref. $/ 6 /$, the usiaal dilute gas criterion $f_{0}\left(k_{e}\right)<1$
fails to provide any reatriction bsyond $x_{c}>0$. Also the (generally more restrictive) condition necessary for convergence of $(24), \pi^{2} x_{0}\left(x_{c}\right)<1$,
does not apecify x_{c} any further. Thus x_{c} can be put zero.
In Fig. 1 the equation of state $\mathrm{E}(\mathrm{D})$ ia shown for the effective field epproach based on the formalae (45), (1), and (2), reapectively. qualitatively, the behaviour obtained in the noninteracting case (I) is reproduced in both ways of including the interaction; curve II, however, does more resembla the noninteracting case than curve III does. This is not surpriaing, ainoe for the correaponding dependence $x_{0}\left(D^{e f l}\right)$ - In the transition region - the permesbilities $\mu\left(x_{0}\right)$ in either case do not differ appreciably.

In the case of dimensionsl regularization, because of the large factor $C_{S U(2)}^{D}$, the dilute gas criterion does restrict

Fig. 1: $D=D(E)$ in the case of Pauli-Villars regalarization $\left(\mathrm{C}_{\mathrm{SU}(2)}^{\mathrm{PV}}=0.01626\right)$ for $x_{\mathrm{c}}=0.01$;
curve I: instanton gas without interaction,
curves II, III: interaction treated by an effective field acc. to equ. (1) and (2), resp.
$x_{c} \gtrsim 15$. Within this range relatively large χ_{0} are attainable. This is illustrated in Fig. 2, where the equation of state $\mathrm{D}=\mathrm{D}(\mathrm{E})$, produced by the noninteracting inatenton gas, ia shown for $x_{c}=15,17.5$, and 20. Within this range of coupling constants the behaviour of the equation of state may vary drastically. By the condition of applicability of our expension, $T^{2} x<1$. $x_{c} \geq 17.5$ is selected. For the latter value we compare in Fig. 3 the equation of etate corresponding to both effective ileld wethods with the noninteracting case. The general trend distinguishing the three curves is the same as in Fig. 1. (Notice also that the critical field strength values E_{c} in Fig. 3 are of the same order of magnitude as in Fig. 1, taking $\Lambda^{P V} / \Lambda^{D}=2.76$ into account.)

Callan, Deshen, and Gross $/ 4 /$ have proposed to consider the effective coupling constant $g^{2}(a)$, defined at leagth acale a, to be renormalized multiplicatively by instantons of smaller size, according to

$$
\begin{equation*}
g^{2}(a)=g_{\text {Hf }}^{2}(a) \mu(a) \tag{49}
\end{equation*}
$$

Here μ (a) is the permeability of the vacum effected by ingtantons having size $\rho<\rho_{C}$, where the cutoff ρ_{c} colncides with a within a fecter of order 1. $\mathrm{g}_{\mathrm{Lp}}^{2}(\mathrm{a})$ is defined by the perturbative, running coupling constant at one-loop level

$$
x(a)=\frac{8 r^{2}}{g_{H F}^{2}(a)}=\frac{41 N}{3} \ln \frac{1}{0 \Lambda} .
$$

This idea has been suggested by relating the effective action associated to a lattice of apacing a,
to the constrained continum functional integral, being saturated mainly by instantons baving $\rho<\rho_{c} \approx a$. With a permeability μ calculated taking into account instanton interactions, it

Pig. 2: $D=D(E)$ in the case of dimendional regularization $\left(\mathrm{C}_{\mathrm{SU}(2)}^{\mathrm{D}}=27.965\right)$ without interactions; curve I : $x_{c}=15.0$, curve II : $x_{c}=17.5$, curve III: $\boldsymbol{x}_{\mathrm{c}}=\mathbf{2 0} \mathbf{0}$.
seems worth to consider to what extent this influences the behaviour of $g(a)$ and of the β-punction,

$$
\begin{equation*}
=\frac{\beta(g)}{g}=\left.\frac{\partial \ln g(a)}{\partial \ln a}\right|_{a=a(g)} \tag{51}
\end{equation*}
$$

Before comparing this with the strong coupling Euclidean lattice resulte $/ 5 /$, one has to adopt a coupling constant definition according to the lattice regularization echeme $/ 4 /$, for which $\Lambda^{\mathrm{PV}} / \Lambda^{\mathrm{L}}=6.6$ and (for $\mathrm{N}=3$) $\mathrm{c}_{\mathrm{SU}(3)}^{\mathrm{L}} / \mathrm{o}_{\mathrm{SU}}^{\mathrm{PV}}(3)=1.04 \cdot 10^{9}$.

Fig. 4 repreeents the instanton effects on the β-function, compared both with the one-loop perturbative one (curve I) and the atrong coupling β-function for Euclidean lattice theory $/ 5 /$ (Curve II). Shown are the different way to define the permeabllity as a function of the dilute gas susceptibility. As far as the interpolation between the weak coupling and strong coupling behaviour is concerned occurring within the range $g=1 \ldots 2$, the

Fig. 3: $D=D(B)$ in the case of dimensional regularization $\left(C_{S U(2)}^{D}=27.965\right)$ for $x_{c}=17.5$;
curve I : instanton ges without interactions,
curves II,III: interaction treated by an effective field acc. to aqu. (1) and (2), resp.

Fig. 4: β-function modified by instanton effects compared with the one-loop behaviour (curve I) and the string coupling result (carve II);
curve III: instanton gas without interactions,
curve IV: interactions dealt with according to equ. (2), curve V : interactions dealt with according to equ. (1).
different $\mu\left(X_{0}\right)$ do not differ appreciably. Within the transition region to the strong coupling regime, the latter being certainly deacribed reliably by other than instanton physics, the both ways to include instenton interactions do not differ essentially from the free instanton ges. Therefore, the audden rise of $g(a)$ according to formuls (1) as $\pi^{2} x_{0} \rightarrow 1$ lles outside the range of interest of Fig. 4*

5. Summary

In this paper we have dealt with the ingtanton-antinstanton (dipole-dipole) interaction from a microbcopic point of view,i.e., atarting from the partition fanetion of the irteracting (antf) instanton gas. The approach as a whole is based on the semiclagajcal approximetion expanding around (anti)instantcn superpoaitions, not being true solutions of the field equations $9 /$. Thía philosophy is complementary to the nowadays developing technique for dense inetanton gases based on exact (anti)self-dual solutions ${ }^{111 \text {. }}$

In this eense everything here is completely within the range of the dilute ges approximation, where infrared divergencies force us to introduce a cutoff $\rho_{\mathrm{C}}\left(x_{c}\right)$. The quasiclassical approximation requires, strictly speaking, that the distances between (anti)instantons somehow tend to infinity with the coupling congtant $g \rightarrow 0$. This could be glaranteed, e.g., by g "hard core" in the partition function, however, this has not been done in this paper. We have summed a certain set of grapha representing instanton interactions, which corresponas to an expansion in powera of
$\pi^{2} x$. For vanibhing external field $H=0$ it reaembles the ring approximation for the Coulomb ges, and for H中O, it includes collective effects of the externally polarized medium onto eny given ingtanton. Formally, this partial sum 18 obtained from the Gausaian approximetion of the functional integral used to linearize the dipole-dipole interaction. Instead of imposing a sharp cutoff in the coordinate space ($\left.\left|x_{i}-x_{f}\right| \geqslant d_{c}\right)$ within the ring graphs we have cut off the corresponding k-integrals at $\mathrm{k}_{\mathrm{c}}=\frac{1}{d}=0\left(\frac{1}{9}\right)$ and obtained estimates of the contribution of the ring grapha to the dengity and susceptibility of the instanton gas.

We have not calculated the partition function for erbitrary large external fields H but only up to second order in H. This is sufficient for computing the permeability μ of the instanton gas. We obtained μ within an accaracy of a fov percent as a function of the dilute gas suaceptibility χ_{0} (formula (1)), which differs from expresaion (2) used in Refs. /1,4/. On the bam sis of equ. (1) one confirms that, at least as long as $T^{2} X_{0}<1$, there is no"apontaneous magnetization", a poasibility we could not exclude in Ref./6/.

We have atudied the equation of state $D=D(E)$, in the case of SO(2), for both the Pauli-Villars and dimensional regularization. To this aim we used an effective field method corresponding to either dependence $\mu\left(x_{0}\right)$. However, within the inatability region of the equation of state between the dilute and dense phase the "dilute gas suaceptibility" X_{0} ($\mathrm{D}^{\text {eff }}$) ie relatively small. Thae, concerning the instability as auch and the critical field strength, the different expressions for $\mu\left(X_{0}\right)$ do not cause any essential differences.

We have also considered the effect of the different $\mu\left(X_{0}\right)$ onto the renormalization of the coupling constant by instantion
effects, equ. (49), as suggested in Bef. /4/. Unlike the other conaidered relations, equ. (1) results in a very strong rise of $g(a)$ as $\pi^{2} x_{0}(a)$ approaches unity, i,e., at rather well defined distance a. Instantons are eaid to provide a "bridge"Prom waik to strong coupling $/ 4 /$, well illustrsted by the behaviour of the β function. In this context instarton calculations should be rellable only in the intermediate region, to be replaced by strong coupling methods at larger lengtha. Therefore one may perhepg conclude not to attribute too much significance to the way, how instanton interactions are taken into account.

Acknowledgements

Te are grataiul to Prof. D. V. Shirkov for his kind interest In this work and acknowledge useful diecussions with D. I.Kazakov.

Appendix

We investigate the validity of the Gaussian approximation for the functional integral (17), in tha case of vanishing external field $H=0$, that consiats in neglecting higher ordsr terms in the exponent of the integrand:

$$
\begin{aligned}
& z=z_{0}(\operatorname{det} \hat{\square})^{-\frac{1}{2}} \int \delta h_{H} \exp \left\{-\frac{1}{2} h_{H}^{\top} \cdot\left(\hat{\square}^{-1}+\hat{X}\right) \cdot h_{M}+\right. \\
&\left.+\frac{1}{3!} \sum_{2} \int d^{4} x \int \frac{d}{\xi} n_{\theta}(f) \int[d R]\left(-\frac{i}{\sqrt{2}} \int \tilde{H}(y-x) h_{2}(y) d^{4} y\right)^{3}+\ldots\right\} .
\end{aligned}
$$

We estimate the error, implied by this approximation, comparing the asglected terms (with $\overbrace{i} E_{\left(y_{i}\right)}$ replaced by their Geussian averages) with $\ln Z$, as obtained in the Gaussian approximation. Ths lowest order nonvanishing contribution, e.g., $1 s$

$$
\begin{align*}
& \left.\Delta\left(\frac{1}{v} h_{n} z\right)=\frac{1}{4!} \sum_{\ell} \int \frac{d g}{g} n_{0}(\underline{l}\} \int[d R]\left(\frac{i}{\sqrt{2}}\right)^{4} \int_{i}^{T} d^{4} y_{i} \dot{H}\left(y_{i}-x\right)<\prod_{i} h^{\varepsilon}\left(y_{i}\right)\right\rangle \\
& \left.=\frac{3}{96} \sum_{\varepsilon}^{1} \int \frac{d g}{s} n_{0}(g) \int[d R]\left\{\sum_{n=0}^{\infty} \int \frac{d^{4} k}{(2 \pi)^{4}} \underset{H}{\varepsilon}(-k) \int\left(\square x^{-\varepsilon} \square x^{+\varepsilon}\right)^{n} \square x^{-c} \square\right](\omega) \pi(k)\right\}^{\varepsilon} . \tag{A2}
\end{align*}
$$

Performing the calculation in the same way as shown in section 3 we get finally
$\Delta\left(\frac{1}{v} \ln z\right) \leqslant g \cdot 2^{-12}\left(N^{2}-1\right) \frac{k(0)}{d_{c}^{8}}\left(\frac{\sigma^{2} x_{0}}{1-\left(\pi^{2} x_{0}\right)^{2}}\right)^{2}=a\left(\rho_{c}, d_{c}\right)$.
This expression should be much less than $\frac{1}{\nabla} \ln 2(A=0)$, i.e., according to equ. (35)
$\frac{a\left(\rho_{0}, d_{c}\right)}{\frac{1}{v} \ln z(H=0)}=\frac{g \cdot 2^{-12}\left(N^{2}-1\right) \frac{k(0)}{\rho_{c}^{4}}\left(\frac{\pi^{2} x_{0}}{1-\left(\pi^{2} x_{0}\right)^{2}}\right)^{2}\left(\frac{\rho}{d_{c}}\right)^{8}}{2 \int \frac{d q}{\rho} n_{0}(\rho) \rho_{0}^{4}-\frac{3\left(N^{2}-1\right)}{64 \sigma^{2}} \ln \left(1-\left(\pi^{2} x_{0}\right)^{2}\right)\left(\frac{\rho_{c}}{d_{c}}\right)^{4}} \ll 1$ (A4)
The Table shows to what extent this is fulfilled in the different cases studied.

References

1. Callan C., Dashen R., Gross D. Pbya. Rev., 1978, D17, p. 2717; Phye. Rev., 1979, D19, p. 1826.
2. Belavin A, et al. Phys. Letters, 1975, 59B, p. 85.
3. Chodos A. et al. Phys. Hev., 1974, D9, p.3471.
4. Callan C., Dashen R., Gross D. Instantons as a Bridge Between Weak and Strong Coupling in QCD. Preprint, Princeton, 1979.
5. Kogut J., Pearson R., Shigemitau J. Phyb. Rev. Letters, 1979, 43, D. 484.
6. Ilgenfritz E.-M., Kazakov D.I., Müller-Preusaker M. Phya. Lettere, 1979, 87B, p.242; JINR, E2-12628, Dubna, 1979.
7. Onbeger L. J. Amer. Cham. Soc., 1936, 58, p. 1486.
8. 't Hooft G. Phye. Rev., 1976, D14, p.3432; Phys. Rev., 197e, D1e, p.2199, erratum.
9. Levine H., Yaffe L.G. Phys. Rev., 1979, D19, p. 1225.
10. Bernard O. Phye. Rev., 1979, D19, p. 3013.
11. cf. e.g. Berg B. DESY, 79/58, Hamburg, 1979.
