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1. I ntr oduction 
In their recent work Callan , Dashen, and Grose have pr oposed 

to consider the Euclidean Yang-Mills vacuum as a magnetizable 
medium in the sense of fourdimensional magnetostatics, respon­
ding to external (classical) •magnetio" fields 111. The sources 
of the latter are thought to be heavy static quarks . In this 
picture the main role is played by instanton solutions 121. 
They ought to dominate the vacuum- to- vacuum amplitude within the 
dilute gas approximation . In other words, the Euclidean vacuum 
time histories are described i n terms of a grand canonical en­
semble for a four- dimens ional gas of dipole-like instantone and 
antiinstantons. It has been suggested 11/ that such a gas can 
undergo a first- order phase transition driven by an external 
Minkowskian electric field, in this sense providing a microsoo­
pic basis for the MIT bag model /3/ , From another point of view, 
instantons turned out to renormalize the coupling constant of 

" the Yang-Mille theory beyond the behaviour dictated by the per­
turba tive ~-function / 4/ . With instanton contributions included 
the P - function interpolates between the perturbative one at 
small coupling and the strong coupling P-function determined 
within Euclidean l attice QCD /5/, The central notion appearing 
in both questions turns out t o be the permeability~ of the in­
s tan ton gas. 

In a recent paper 16/ we reinvestigated the existence of the 

phase transition on the basis of a corrected, soft suppression 
of instantone by an external electric field. This was necessary 
due t o the fact th~t the thermodynamical, "magnetoetrictive• 
mechanism fails to provide strong exponential suppress ion of 
large- size instantons. A first order phase transit ion was ~ever­
thelaas~ shown to exist, even in absence of interactions among 
inetantons . In Ref. /6/ all calculations were baaed on the one­
instanton amplitude according to the Paull-Villars regulariza­
tion scheme, and relatively large coupling constants had to be 
taken into account in order to obtain a significant influence of 
the instanton gas onto the equation of state of the vacuum. In 
this paper we will extend the analysis to other regularization 
eobemea. 



In the preceding paper we studied the influence of instanton 
interactions using di fferent effective field methode. The ansatz 
proposed in Ref . /1/ ( based on Onsager's treatment of strongly 
dielectric media /7/) was found to modify the phase t ransition 
only slightly compared to the noninteracting case . An a priori 
as well possible mean field aneatz (inspired by Weiss' theory of 
ferromagnetism) , however , changed this picture and opened the 
possibility that the first order transition becomes lost . Instead 
of this spontaneous polarization would show up. I n view of this 
ambiguity it seems worthwhile t o treat the instanton interactions 
in a more systematic , i . e., microecopic way , a problem which is 
solved to some extent in this paper. 

We will investigate the grand partition funct ion of the in­
stanton-antiinetanton gas with account of the dipole - dipole in­
teraction. We succeeded to calculate the logarithm of the par­

tition function up to second orde r in the external field ob­
taining in this way the permeability of the interacting instan­
ton gas . We arrived at the approximate formula 

4 ~~/Co r - 1 + ( 1 ) 
, - ( i . ?C. )t. 

where X. denotes the susceptibility of the noninteracting gas . 
This formula exhibits an irregular behaviour of the interacting 
gas to be expected as f ' x. approaches 1. It has to be compared 
with the corresponding expression 

tJ' • 4T~ 'Xo + l1 + (lfT 1
';(0t (2) 

used by Callan, Dashen, and Grose / 1 •4/ and based on the linear 
response to Oneager'a l ocal field exerted onto an instanton in a 
cavity by the continuous medium surrounding it. 

Since we do not know the logarithm of the partition function 
at arbitrary strong external fields , we shall use formula (1) in 
order to introduce an effective field analogous to that used in 
connection with expreeeion (2) and consider again the first order 
phase transition in terms of the equation of state. Compared with 
the noninteracting case the behaviour is qualitatively reproduced 

within small deviations . 
Furthermore, expression (1) for the permeability will be .ap-
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plied to renormalize the coupling constant by instanton effects . 
So far as the interpolation to the strong coupling ~-function is 
concerned , the results obtained in Ref , /4/ remain qualitatively 
unaltered. 

In section 2 the ansatz for the partition function i s wri tten 
down , and some formulae are collected.In section 3 the standard 
method of functional averaging is used to deal with the dipole­
dipole interaction. From the full expression for the permeability 
the approximation (1) is derived . The estimation of the validity 
of the Gaussian approximation for the functional average is re­
legated to the appendix. We apply formula ( 1) to the equation of 
state and the coupling constant renormalization in section 4 and 
conclude in section 5 . 

2. Partition function of the i nteracting instanton gas 
We are going to consider the vacuum-to- vacuum transition 

amplitude for the pure SU(N) Yang-Mills theor y . The Euclidean 
functional integral will be calculated within the quasiclaesical 

approximation by expanding the action around field configurations 
given by superpositions of N+ instantons and N antiins~antons 

(in singular gauge ) 
~.•w. 

Q 

Rt" ( )1.) • L: 
; . i 

D £; " 
r" 

Nt+N 

~(11-x;), "'\'-n 
( >c -X;)'[(l<- )(;)'+ft] •!--- ~; (>t-l<;} 
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considered as a pproximate stationary points. Here 

Jf 0 
r• 

9·" • • t ; .. 9 ~ ; 1ocr ( 4 ) 

(3) 

denotes the dipole moment of the i-th instanton ( £ =+1) or anti­
inetanton ( e =- 1 ) , re epee ti vely. xi' 9 i and arc ar e the usual 
collec t i ve coordinates , the latter matr~x determining the global 
gauge orientation , The ( symbols have been introduced in Ref. 

+ -.. -/8/; 1 .. ,.. •• , f'# • ; .. ".. • .., ; . 

We write the vacuum-to- vacuum amplitude in the f orm of a 
grand canoni cal partition function corre s ponding to the instan­
ton- antiinstanton gae in a four- volume V, 
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~[H,)~,v]•L tJ+~N_ ! Jf J d\ f f. n. (V;) J[tiR;J )( 
"'~.w- 1· 1 V I 

(5) 
f·Q "'-Q 

!eJ><;, 'l; .~) J.l1J> ;.., Hr.., 11;.,f )( e 1 e e 

where the one-loop single- instanton amplitude is given by 181 

fl.lf) • C. -' (f ~N -lC(f) 
suu•> fit )( I e x (tJ • an' 

s 'ft) • 
(6) 

In the partition function has been introduced the classical in­
teraction with the external field H8 v =const., 

r 
~ (Q _ os .. ~ .. .Dr Hq 

r 
r:-Q- 4 fi• 
Hr# • ~ e~..,~~ ~~ 

and, f or later use , a chemical potential Se .. I"e ( Jr ,f, R). 

(7) 

As to the one-instanton amplitude, the effective coupling con­
stant will be taken according to the one- loop approximation for 
the f3 - function, i.e ., 

- ~V "' 1: N clx ' 
HN n ~ 

X{g) " J "' 9A ' (8) 

where A depends on the regularization scheme, as well as the 

factor CSU(N) 1n equ . (6) does, (The dependence of CSU (N) both on 
N and t he regularization scheme adopted will be specified in 
section 4.) 

The integration over instanton sizes 9 will be cut off at 
some ~ c = ~ ( xc) as usual/1/ , Appropriate physical condi tiona to 
determine xc in either case are discussed later, too . 

Prom the partition function will be obtained , e,g , ,the aver-
age instanton density 

< ( n) > d 8.. ?[ H, r •. VJ I 
"t )(, f, "' - o reCx,v, R) ~ .,. 

~ 
or the "magnetization" of the insUI1ton gas 

( 9) 

4• 1 
;;,..: .. 9': .. { ~ t.. 2[H",r1 .v1j 1. 

Hr~ ~±·o J 
For small external field H one expects 

( 1 0) 

HQ Q 
r" ~ 'X Hr., ( 11) 

where ?C is called "susceptibility" of the instanton gas . One 
introduces a microscopic field B 

4 

BQ HQ ' ,.. " r" • ,. .. • lt ii ·•r· IIQ 
H-O f' !"" 

(12) 

including both the external field and the average field of the 
(anti)instanton dipoles . The "permeability" of the instanton 
"medium" i s then given by 

fA • t!•lfT0 1 'X . ( 1}) 

Our main task in this paper is to calculate the permeabil ity 
}A with account of the instanton- antiinstanton interaction, 

schematically indicated i n equ . (5) as Vint ' In general , interac­
tion terms not factorizable within the partition function arise 
on classical and quantum level . Classical interactions stem from 
overlap contributions between different (anti)instantons to the 
action1 interactions on the quantum level appear from multiscat­
ter ing expansions of multiinstanton deter minants and due to the 
f act that the field configurations to expand about are not t r ue 
minima of the a ction . Moreover , there are corrections coming fr om 
the J acobian with respect to all collective coordinates. This has 
been extensively studied by Levine and Yaffe /9/ . They have clas­
sified all interaction terms with respect to their dependence on 
the distance between ( ant i ) i nstantons , expressable in terms of 

~i q j/(xi- xj) 2 , and have shown that there are no contributions 
falling lese rapidly than ~ f 9 2/(xi - xj) 4 , typical e . g ., for the 
classical dipole- dipole interaction, Therefore we will concen­
trate upon the dipole- dipole interaction , 

J "ta - a 
vi'" "'- si ... ,..- i ~ cJ~~ R,.,.r~-X;) CJ!f Rir (:rxi) . ( 14 ) .. , 

3. Functional averaging method for the partition function of 
the interacting instanton gae 
We rewrite the interaction factor exp Vint in equ, (5) in 

the form of a functional integral 

S 
• Q - Q 

exp( - i 2 d~ H,. (~-l<;) D~ 1?. (~-xsl -= 
\j r J)A 

"-~) :f. s ( "' ( dci 0 ~ 0 ~ 11 e"P - i 

5 

( • 'j " ) e"p - it R,.{ !J • Rt1 
( 1 5) 

, I " -• ,_ ; I , ) 
11.11 • a · 1111 - ~ '\. • .," • 



wh~ we used the matrix notation 

R " 11 ( ~ ~: (~-~ ;)) 
~ IJ. <:r~i) 
d ar 

+ ) 
~" ( l 

~H • ( ~ (: ) 

0 " ( ~ ~) !J~ 8(~-~·) ooQ' t;.; 

( 16) 

Space integration and summation over Lorentz and colour indices 
rore understood . Then we are able to sum up the noninteracting par­
tition function with fluctuating external fields h± under the 
sign of functional averaging and obtain instead of equ . (5) 

~ = ( cl~l o ·•) i J 8~H e.xp {- i ~: • !]·•. ~tt + (17) 

~ t J l • ~o • t q 
.. }d~d~rll.(f) Src~ iJ 2: e><p[rt•·Hl.D VH., -3: Jd) R"c,-Jc) ~ (,J 

o 9 C· ! ,. r w. r r ] · 

Ne integrate by expanding t he exponent up to second order in h± 

where 

t'" to(dttu-•){ Jo~ 11 up {-~ ~: . (o"'•iH11 -J:. ~k }(1+~{t,3ij, 
( 18) 

2 ... CJ<P f fd~l f11to(rl f[ciK] z exp[ rt q~.rt.: H; .. J ( 19) 
£•t 

represents the partition function f or the noninteracting gas, 
and where i and J

11 
denote 

• Oc' 

7: "' ( :x r~· C':l·'j') ·~~ ~~ (~J) 
Jr t~) 

(20) " ) - t:aQ' 

r-rr {':!-~ ') 
J~. ( 

with 

t ""'' • fd c r t ~ 1 1 ( Q t • 'X, .. , ·(l-':1') • ~ -{ no(fl J(cj ~J e>.p JEH.'it J) H d~lr ~~~-.k)Jf,:.l{x) (21) 

jQ t'll · JJ~ r1. trl iftSR)c~pff.n.t~J iiJ Jq~l(i' c l-)() 
,. ,t f .. r ( 22) 
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Some of these expressions have only a formal meaning, but t here 
remain only welldefined quantitiee,when they are arranged as 
indicated. Notice that for vanishing external field H=O we 
have Ja(y )=O , since ~0 r j[ctRJ R ... & (23) 

In this ca se the correction term O( h3) in formula ( 18) is in fact 
of order O(h4). In the appendix we estimate its magnitude to 
check the validity of the Gaussian approxilll8tion for Z [ H=O] • 
(This check ie sufficient also for H near zero which is needed to 
define the permeability . ) 

The Gaussian approximation of the functional integral ( 18) is 
.. ~ 1 

immediately known . We expand the determinant of ( 1 + 0 1.- ) - and 
the operator itself and obtain 

e>o 1·1 " .. "' ") ( ">. l·t)" T "' "' " "' ) t·t.hP(L: _> Tr(rv~)r>.p 2:-I,· (O·~)·o·J, .<24) 
... 1 ,l., ... ~ :t 

" ... Spelling out the matrix structure of D and ~ and introducing 
Fourier t ransforms we arrive a t 

t • i. e'ICpf~i ~ sd·~ ~'f'l[i '•"':1( 1t) i~Qt , .... f~~Q.; iQ.:G•(~zJ}x 
... . (nJ 1"</'. ~'•I' r-f•' r.:. r- 'J 

.. exp 1 ~ z Jcl"11 'ft'H' .. ~[i"c-wi"~:<.,rx~·· ..... i'~"- ia_..q' ja'c~11+ t ~ -o CUI~ r l'f· ,.;,. r~r... ,. ... r ' r' 1 

. ( i:i - i, i ) J. (25) 

The first exponential (due to the determinant) can be visualized 
as a sum of ring graphs containing instantons and antiinstantone 
in alternating sequence, where as the eeoond one 1a re-
presented by alternating chains with •currents• J at the ends. 

Chaine with different J+,J - at their e nds vanish iden­
tically and are therefore omitted in equ.(25) . The Fourier trans­
f or me of { , S have the form 

5 ( € .. ) to r"' 
fcliJ CJ<P J, + UJ> H tl R,. l~) R,..l~t) 

( 21 ') 

l t-' r • 
It 1.-fr' (II. ) a - ~ j i .... Cr/ 

t., 
1;. J ( It) ,. , s ~ s ( , ~--ii 1 ~.(t) [ctRJ ~ ft + tt2ll i1) I( Rr t~> .fz'f}~Ott) 

( 22 ') 
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where the Fourier transformed (anti)instanton s olution is 

t l A 

kRQlltJalft'1D~It f(lfs) (26) )'- I'. • 

.. 
with t • k..,/1-l 
We notice that F(x) is 
F(x -co)=O . 

and F(><) • ~ (-t-; Kl(x>)· (27) 
monotonically falling from F(0)=1 to 

To calcula te the permeability r we expand lnZ up to second 
order in H. Then, due to the form of k2 j at H,.Q, 

£ I I ~t" 'X;;. (It) H~o • 1 .. Xe fSt ,lot) 0oQ' ( ~)''- ~~) ( 28 ) 

with 
~ r 

A f J £ 'X (I It} • - ..! l'l,{JJ x(JJ !~ e f 1{1tr) 
£ ( I ~~~ 1 • f I 

(29) 

both the ring and the chain terms will be strongly simplified. 
We will not go into the somewhat lengthy, but straightforward 
calculations . Only the following properties of R-integration 
should be mentioned : 

J£dRJ • 1 , "~ "'a' -1 !' S[d R} R R • -, - a.,", 0'~11 • 
H · 1 

j[dR] R oeq R8" I('' .. ~ ( •PT r""t 
lol(~·4) 1 • 

(30 ) 

where f•~T denotes the struc t ure constants of SU(N) -Lie algebra . 
( We are interested here only in the cases N:2 1 3. ) Using the i den­
tities fulfilled by the1 symbols (see Ref . /8/ ) and fixing 

S X .. rt {J} we get the following contri buti one for ; "' i! . 
With 1,0,) . 'Xe(J,,It· &) (compare equ . (29)) , 

A 1 r 1 ,-, f dr ~(t) ;::-, - 1 "'' ) v l., 't• rt H • L - .... <tJ t t ! ~ T1 x (r ;H (k ~elf 01 > 
• £ r ~ c t c r" I"" ,.~ 

is the noninteracting part corresponding to the "free" permeabil-
ity p • -t+ lta1 Xo { -x . .. 'X.*(oJ). t 
Because of the O (k) function in the exproaeion(22') for kJ( k ) 

the k- integration over cha in contributions ie reduced to an angu­
lar average around k=O , simplified further due to the structwre 

2 , I ( 28) of k X H=O : 

a 

( ~ Q.. Hr H]) - !.. ~ ,~x l!) HQ {H q -t:H.) r' X/t.) r;t X.(t_) (32) 
v t , , o..uu 2 £ £ ' r~ r• r" -1 - i~.x.CTtJ i' 'X-{5.) , 

contributing to the perceability ( 1) . The r ing graphs give fin!lll;, 

{ ~ t.. 2 r r-t. iilt.'3' .. ,, .. ,& f d~t R3 
[- 3( ,i•:.1) e., ( -1- i

1X,/r.,JtJ ,~ x.rt.~P + 

[ 
It , .. 'X-(h,lo!> + (33) 

-+' r ~ 31 l<±trt. lt) ~- t .. -x. fr .... ) ,L-x_(t ."' 

,..., ~ ... ' .. r.1 -x.n. · ~t) H' (HQ +: H0
) 

)
2. ~ • f -;- S1 t <rt, ") c -~'x.ct.,lt)i'"'X_(t,~ ] r r~ rt . 

Here, in addition to formula (29), the following definitions have 

been used 

Kt(It .~l • ,..~,. f f noW xt<rl ,' F
1
(ltrJ e r* 

S1ttrt,lrt)• + f~ 11o(t>xics>!' Ft.(ltr)/i 
., -1 f 

(34) 

( 34') 

Later K( r ) and Sl. ( r ) will denote these integrals for k=O . 
In order to ensure the convergence of the sum of chain as 

well as ring terms, one has to require 1i2. "X.< 1 . This condition , 
if it i s not automatically satisfied , defines the lowest xc for 
either regularization scheffie employed to define the ins t anton 
amplitude. It turns out to be somewhat more restrictive than tbe 

usually applied diluteness criterion (compare the •rable) . Jn the 
appendix will be seen that for the Gaussian approximation to be 
valid, l-(11 2 X. 0 ) 2 must be not too small. However ,l'

2x0 =0 .95 
will be an acceptable value. 

The k-integrals in equ. (33 ) are convergent . Nevertheless, we 
decide to •regularize" them by cuttine off at k '!!;,.. 0( !. ) . This c '-'C , , 

procedure is equivalent to smoothing the interaction term {14) at 
small distances I xi - xj I ~ d

0 
• Such an assllt:lption seemst

0

us justi­
fyable as long as there is yet a principal lack of knowledge how 
to deal with the problem of dense instanton configurations . The 
estimation of the correction term O( h4) to the Gaussian approxi­
mation for z r H=O] shows that this approximati on becomes better 

the smaller k
0 

is chosen ( cf. the Table ) . 
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Table 

r:w::erical val;.;es for different quar.-:.i tie:J defin~C. in 
tt1is :~-aper . For c ·::.p!l.rlaor, t!:ey are src·:m for tv.o re­
~ularizati cn schemes S}ilied in the c~lculatio~ of the 
one-instanton aoplituJe (see Re fs. / 1,4,8/) . xc and ~c 
ure deter~~ined by the r equirement 1i 2 ?( 0 ~ . 95 (which 
iu a..1tomatically satisfied in the lauli-Villartl case 
even for xc=O ) . 

-, ~ 
Pauli-V1llars dimensional 
regularization regulari za tion 

2 3 2 3 R 
CSU(N) . 0 1626 1 . 518·10- 3 27 . 96 105 , 8 
XC . 001 , 001 17 . 1 25 . 5 

fo(xc) . 52 . 98 • 1? . 28 

f(xc) 6.4·10- 2 8 . 9 · 10- 2 2 . 2·10-2 4.6·10-2 
equ . (37) •(r:vjcJ.)" •{q!vjd.)~ • ( 'i:v/<4)'1 •( 'I~Jfl..)~ 

2 
'ii 'X o . 88 , 86 . 94 . 95 

rC'X 0 l 15. 9 14.0 35 . 7 39 . 2 
equ , (1) 

A 'X 2 . 3·10-2 3.1·10-2 8 . 4 ·10-3 1. 3 ·10-2 

equ.(39) • ( 9r:'/c~.t •({''/~)~ •{ S'~v/4 )~ •(t."'fd,)~ 

Q(9.,d.) 4 . 2·10- 4 1. 7·10- 3 1. 3 ·10- 4 8 . 2 ·10- 4 
.!. e., HW•c] • (f~·/c:~.l' •(9t'/d.)1 • ( Pt'1/d, )1 •( t.'./d. l' v 
equ . (A4) 

With the cutoff introduced the k-integrals can be estimated 
from above by putting F(k 1 ) -1 . 

i t.,?[f.li]' ~ J~'lo('/}erft)_ Z(N'·1) t.,[_,·(ll't(t))') T• + 
v t ''~ il ... 

[ 
T

1 -x fiJ h' -r ·xw -4 

+ -1- (lf'"XIt)J' + ~ K(J) -t- (l''X{Vt rJ,'f + 

10 

.f ,, 

j 

~ 

l 'f ~ ( r 
1 

X {I) ) ' .., ] H ~ 
+ ;u; Sl. (r) -1- (t • r:mt ~ + &(Hl) 

(35) 

( J(r ) a ~.lr). !_!r)). 

Consider first tie case of vanishing external field . Accordi~g to 
equ . (9) the mean density of instantons and antiinstantone is 
obtained 

3 (f)" ;;t :r. 1 
<>1ft )) Or n o(f} { ~ + 3i. >({f) cJ, 1-{TI''X.t (36) 

To estimate the effect of interactions onto the de!Jui ty we calcu­
late the fractional occupied space- time volume 

'· (tr.} • So/<ncv>> fr'~ • f.tr.)(1iA{(t,V 
0 

'· c. , \ f "' ~ ,... f "'• 9 ~ t 1 n.Cr} r ~ ~ ~ n.(f) J((f/ .J' ( 37) 

• • I ""c 
The numerical results Fiven in the Table indicate that the classi-
cal dipole-dipole inters~tion has only an effect of order 

0( 10-
2
)·( ~< )

4 
on the fractional occupied volume. According to 

equa.(11) and ( 13) by differentiating equ . (35) with respect to H 
we obtain the permeability (at ~ =0) 

,. . 
where 

Jf + 4iia 'X,. ( -1 + A 'X.) 
-f-(1(1~)· {38) 

~ 1 - · 31i' Klo) + ..!_ Slco) ~ 
H d..~ n/J cl,~ ., - {Ti'~)~ ( 39) A'X ~ 

To the relative correction 6X contribute only t erms coming from 
the ring expansion of the partition function which are of order 

( ~' )
4 

multiplied by some f ac t ors (see the Tabl e ) , whi ch are 
de 2 

0( 10- ) and 0(1) in the case of Pauli-Villare and dimensional 
regularization , respectively, Adopting the view, that both de and 
tte inetanton density per 4-volume had to be fi xe d independently 

p A pt' ) of the regularization scheme (i .e • • 9c "'~~ f, , we obtain ! or-
m~la (1) within a deviation of aome percent in either oase. 

Up to order H
2 

we get the density of i netantone and anti­
inetantone (neglecting terms corresponding to A 'X) 

(n(s>l) .. n.C'iJ[t+1,.(\')(~)~~ t •:r .... + 1+IJ''X.)' ;;t Jl'fl)t~H'] 
lt "< If ~ (i'XJ ( {- (ftl:.)~1 N ~If 

II 



(40) 
:.. "tt)[l•l. ~rsi(+j~(J.A·~J -. ;t.e .. : :((fJ,~it~.]. 

~ ~8 "• I vlt• ,. ·of 

Here the effects of reaction of the surrounding instanton medium 
and the external field (mediated by the medium) are separately 
exh.i..bited , 

4, Coneeguencee for the phase transition and coupling constant 

renormalization 
So far we have not calculated the partition function for ar­

bitrary external fiel ds . Nevertheless, we use the approximate 
expression for the permeability f , derived for small external 

fields, in order to diseuse again the phase transition problem in 
terms of an effective field approach, ( We restrict ourselves 
here to the case of SU(2) as in Ref. /6/ . ) Ne specialize to 
electric type fields , including Nick rotation from ~inko~skian 
fields E,D to -uclidean ones 

H • • 0. J' q) J - ,J>, • { t sD 
~ ~ 

11. . ; 1: - ; ca3 cf., 1' (41) 
~ 

_o. 
i E: • \ 8" 3 8 .. 3 E. ,. .,.. -

We define an effective field Deff such that it should determine 
the polarization as in the noninteracting case 161 

4 -.~ ? .. It ii' ~d~/4f) a tf(~~ ) 

where, with J .. +ii'(f:f~Cf~ l> e(f , 

,D{ I>~) • ~~I ~ "·{'1) L ( Sil'l ~ - CI>J t) 
:r• f 91r) r J . 

The susceptibility 'X (Deff) will be defined ae 
0 

4-t'V ( t!/f) ... </}til) 
u ,... I> D~ • 

(42) 

(43) 

(44) 

Then the permeability fL ( Deff) will be determined via f ( XJ. Deft)}. 

according to our formula (1), to expression (2) ae well a s to 
the interaction-free permeability 

J.A • 1 + 41il. X 
I 0 0 I 

(45) 

12 

for comparison. ·,·;e obtain both 
4ii' PfD~) 

1> • 
f'(lJ •If ) -1 

and 

E .. r ( D eH) D ' 

i . e . ,the equation of state E(D) in either case . 

(46) 

(47) 

:ie have studied the corresponding equation of state E(D), inves­
tigating (i) the dependence on the regularization scheme used to 
define the one-instanton amplitude , and (ii) the effect of includ­
ing the instanton interaction in either way. Although we have 
per formed these calculations only for SU(2) we notice her e the 

/4 10/ dependence of CSU(N ) on N and the r egularization scheme (R) ' 

it- 'D e 3 R - 1-"~ ( 1\?v) 1.it' 
c ,l4cll> = Ii" t~o~- •>!(N-x.J! Att . ( 4a> 

(It has been used in calculating the numerical values ofthe rable) . 
)\ R is the scale parameter of the one - loop running coupling con­

stant )(ll (f) "' /~-fN/3) £.. ( ~/sl\ r~), defined within R (PV refers to 
the Pauli-Vi llare scheme ) . 

Cons ider first the case of PV regularization . As alr eady 
noted in Ref ,/6/ , the usual dilute gas criterion f o0cc.) <1 

f ails to pr ovide any restriction beyond Xc ~ 0 , Also the {gener­
ally more r estrictive) conditi on necessary for convergence 
ot (2 4 ) ' il .. ?C. ex.>< 1' 

does not s pecify xc any further . Thus xccan be put zero . 
In Fig.1 the equation of state B(D) ie s hown !or the effec­

tive f i eld approach baaed on the formulae (45) , (1) , and (2) , 
r espe ctively . Qualitatively , the behaviour obtained in the non-

interacting case (I) is reproduced in both ways of including the 
interaction; curve II , however , does more resemble the noninter­
acting ca se than curve III does . This is not surprising , since 
! or the cor r e sponding dependence ~0 (Deff) - in the transition 

region - the permea bili ties f' ( X 0 ) i n either case do not di ffer 
appr eci a bly. 

In the ca se of dimensional regularization , because of the 
D 

large factor c50 ( 2 ), t he dilute gas criterion does restrict 

13 



lli· 1: 

0 
~ 

5 

3 

2 

0 5 ~ 
D=D(E) in the case of Pauli- Villars regularization 

PV ( CSU(2) = 0 . 0 1626 ) for XC = 0 . 0 1; 
curve I: instanton gas without interaction, 
curves II , III: interaction treated by an effective 

field ace. to equ. (1) and (2) , reap . 

xc 2: 15. Within this range relatively large :;r 0 are attainable . 
This is illustrated in Fig. 2 , where the equation of state 
D=D(E), produced by the noninteracting instanton gas , ie shown 
for x

0
=15 , 17.5, and 20 . Within this r ange of coupling constants 

the behaviour of the equation of state may vary drastically. 
By the condition of applicability of our expansion,~·~< ~ . 
x

0 
~ 17.5 is selected. For the latter value we compa.re in Fig . 3 

the equation of state corresponding to both effective field 
methode with the noninterscting caee . The general trend distin­
guishing the three curves ie the eame as in Fig. 1. (Notice also 
that the critical field strength values E in Fig . 3 are of the 

c PV D 
same order of magnitude as in Fig. 1, taking i\ !J\ = 2.76 
into account.) 

Callan, Daohen , and Grose / 4/ have proposed to consider the 
effective coupling constant g2(a) , defined at length scale a , to 
be renormalized multiplicatively by instantona of smaller size, 
according to / 

14 

~ l { q (a) • 91f,(a) fa) . (49) 

Here )"(a) is the permeability of the vacuum effected by instan­
tona having size 'i < 9, , where the cutoff 9 c coincides with a 
within a factor of order 1 . g~( a) is defined by the perturba­
tive, running coupling constant at one-loop level 

flil 
x{o) • - = 

9~f(~) 
MN $..-A-

3 ol\. 

This idea baa been suggested by relating the effective action 

associated to a lattice of spacing a, 

z ~ - l: ,~~' ( ~ u.t?) ~ ~-c:) 
{ ~lcoq .. dttJ iJ 

U(P) • Pe ~~d). 
(50) 

to the constrained continuum functional integral, being satura­
ted mainly by ina tan tone having 'i< f. ~a . With a permeability 

)" calculated taking into account instanton interactions, it 

lli· 2: 

..Q_ 
Ill 

50 

20 

10 

20 '0 60 &0 100 120 ~ 
II 

D=D(E) in the case of dimensional regularization 

( C~U( 2 ) = 27.965 ) without interactions ; 
curve I : x

0
=15.0, curve II : x

0
=17 . 5, 

curve III : xc=20.0. 
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seems worth to consider to what extent this influences the beha­
viour of g(a) and of tbe ~ -function, 

tH,l ---. 
9 

9 g., g(q} 

~ft,Q I <l · Q(9) 
(51 ) 

Before comparing this with the strong coupling Euclidean lattice 
resulte/5/, one has to adopt a coupling constant definition ac­
cording to the lattice regularization scheme / 4/, for which 

PV L ) L /PV 9 A I A = 6 . 6 and (for N=3 Csu(3) Csu(3)= 1.04· 10 • 

Fig . 4 represents tbe instanton effects on the {J -function , 
compared both with the one- loop perturbative one (curve I) and 

the strong coupling~ -function for Euclidean lattice theory /5/ 

(curve II) . Shown are the different ways to define the permeabi­
lity as a function of the dilute gas susceptibility . As far as 
the interpolation between the weak coupling and strong coupling 
behaviour is concerned occurring within the range gc1 •• . 2 , the 

lli· 3: 

~ 
so 

10 

0 10 20 30 '0 so w~ 
D=D(E) in the cas e of dimensional regularization 
( C~U( 2 )= 27. 965 ) for XC = 17.5 ; 

curve I : inetanton gas without interactions, 
curves II , III: interaction treated by an effective 

field ace . to equ. (1) and (2) , reap. 

16 

·,% 

3 

2 

2 5 g 

~. 4: ~-function modified by instanton effects compared with 
the one-loop behaviour (curve I) and the strong coupling 
result (curve II) ; 
curve III: instanton gas without interactions, 
curve IV: interactions dealt with according to equ . 
curve V: interactions dealt with according to equ. 

(2) , 
(1). 

different JA (X 0 ) do not differ appreciably . Hi thin the transi­
tion region to the strong coupling regime, the latter being cer­
tainly described reliably by other than instanton physics, the 
both ways to include instanton interactions do not differ essen-

tially from the free instanton gas. Therefore , the sudden rise 
g(a) according to formula ( 1) as u 2 Xo - 1 lies outside the 
range of interest of Fig . 4. 

5. Summary 

of 

In this paper we have dealt with the inetanton- antiinstanton 
(dipole- dipole) interaction from a microscopic point of view,i.e., 
starting from the partition function of the interacting (anti) 
instanton gas . The approach as a whole is baaed on the semiclassi­
cal approximation expanding around (anti)instan)o? superpositions , 
not being true solutions of the field equations 9 • This philoso­
phy is complementary to the nowadays developing technique for 
dense inetanton gases baaed on exact (anti)eelf-dual eolutions/11 ~ 

17 



In this sense everything here is completely within the range 
of the dilute gas approximation, where infrared diver genc ies 
force us to introduce a cutoff ~c (xc> • The quasiclassical approxi­
mation require s , strictly speaking , that the distances between 
(anti)instantone somehow tend t o infinity wit h the coupling con­
s tant g - o . This could be guaranteed,e , g . ,by a "herd core" in 
the partition function ,however, this has not been done in this 
paper . We have summed a certain set of graphs repre senting instan­
ton interactions, which corresponds to an expansion in powers of 
1rt.i\:. • For vanishing external field H=O it resembles the ring 

appr oximation for the Coulomb gas, and for HfO, it includes col­
lective effects of the externally polarized medium onto any given 
instanton . Formally , this partial sum is obtained from the 
Gaussian approximation of the functional integral used to linea­
rize the dipole-dipole interaction. Instead of impoeine a sharp 
cu toff in the coordinate space ( I xi- xj j~d0) within the ring 
graphs we have cut off the corresponding k- inte gr als at kc=3=o(l ) 
and obtained estimates of the contribution of the ring graph~ to 
the density and susceptibility of the instanton gas . 

We have not calculated the partition function for arbitrary 
large external fields H but only up to second order in H. This 
is sufficient for computing the permeability }A of the instanton 
gas . •:1e obtained )-'- within an accuracy of a f ew percent as a 
function of the dilute gas susceptibility ~0 (for mula ( 1 )) , 

which differs from expression (2) used in Refs . /1,4/. On the ba­
sis of equ . ( 1) one confirms that, a t least as long as Tt 'X

0 
< 1. , 

there is no"spontaneoua magnetization" , a possibility we could not 
exclude in Ref ./6/. 

We have studied the equation of state D=D(E) , in the case of 
SU(2), for both the Paull-Villars and dimensional regularization . 
To this aim we used an effective field me thod corresponding t o 
either dependence~ (~ 0 ) . However , within t he instability region 
of the equation of state between the dilute and dense phase the 
"dilute gas susceptibility" ')( 0(neff) is relatively small . Thus , 

concerning the instability as such and the critical field strengt~ 
the different expressions for JA ( 'X 0 ) do not cause any essential 
differences . 

We have also considered t he effect of the different }A ( ?( 
0

) 
onto the renormalization of the coupling constant by instanton 

II 

effects , equ . (49) , as suggested in Ref . /4/ . Unlike the other 
cons idered relations, equ . (1) results in a verJ strong rise of 
g( a ) as 1i' 2 X(a) approaches unity , i,e ., at r ather well define d 

0 

distance ~£ . Inetantons are said to provide a "bridBe"from weak to 
strong coupling/4

/ , well illustrated by t he behaviour of the~ ­
function . In this context instanton calculations should be reli­
able only in tho intermediate region, to be replaced by strong 
coupling methode at larger lengths . Therefore one may perheps 
conclude not to attribute too much significance to the wuy , how 
instanton interactions are taken into account. 
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Appendix 
We investi gate the validity of the Gaussian approximation for 

the functional integral (17) , in the case of vanishing external 
field H=O, t hat consists in neglecting hi gher order terms in the 
exponent of the integrand: 

e • ~o (ddrlfi fcff1 11 exp{-i e_;.(o"'•x)·ft,_, + (A1) 

+ i; Z S<t~x )c!!n.CrJ~[ci~J(-.Ji Slc~-x}[c~)..t~~)\ .. Z. 
. e ' j 

We estimate the error, implied by this approximation, comparing 
the neglected terme ( with v~(y 1) replaced by their Gaussian 
averages) with ln Z, as obta ined in the Gaussian approximation . 
The lowest or der nonvanishin.g contribution , e . g ., is 

A (~e..~) • f! f J ~ "o<rJ Jra~ll) (~ f s ~ cJ~~; R (~;-ll') ( r ~~r~;J> 
' 

~ d { no .,~ £ Oi -£ ~c " -c £ }.t • a1 i:: J...! l'l.lsJf[ctRJ ~ S --t ~HdaOX O.X) Ol a]CIVR(It} . 
~ t ' ., 00 en ) 

(A2) 

Performing the calculation in the same way as shown in section 3 

we get finally 
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11 IC<o) ( r' -;c. );t 
~(~t..~)~ g.f (N1-1)d:f 1-CT'x.>' a a(sv4). (A') 

1 This expression should be much less than V ln Z(H•O), i . e., 
according to equ. (35) l. • 

2 l<(o) ( '11' 'Xo ) ... ('')8 
q(f,,<i,) .,. 9·~-r (Nt· i ) fF 1-(tr''X.)'- ~ 

Jd 'f 3(~"-1) ( • •; (f'')'t ~ e., ~ (li•o) ~ f11o <rJ f . - ''t i 1 tn 'I- (11 'X.) ;;: 
« 1 . 

(A4) 

The Table shows t o what extent this is fulfHled in the different 
cases studied . 
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