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Introduction

In this note we present a complete description of
classical solutions of the equation

u, —u“+smu=0, —c0 < x,t‘<no . ¢))

satisfying the boundary condition
u(x,t)+0 (mod2 ») when x|+ . (2)

In the field-theoretical approach eq. (1), with boundary
condition (2), describes the chiral field x (x,t) with the
group U(l) , where x (x,t) =exp{iu(x,t)}.

It turns out that eq.  (1)-(2) can be solved through the

inverse scattering method (for sucha method see refs.’ 1-4/ ).
Equation (1)-(2) is equivalent to the operator equation

9L oM,
at
where
J o B
L ( y 4 ¢ ),
0 o dx
SO | d, 0
M= ( Y, .
0 1 &0 p



and matrices 1,],A,B,C,D, are constructed from a so-
lution u(x,t) and function Ww(x,0=u (x,t)+u (x,t) in
the following way:

10 0-1 i 0w
18(0 1)) J=( 1 0)) =T W 0 >
eiu/2 0
=1 C=2]B, D=2B
B 4 0 --1u/ 2/ ] ]

The time dependence of the asymptotical characteris-
tics of eigenfunctions of the operator 'L have been found
earlier by us for the case when u(x,t) .obeys eq. (1).
The present paper is devoted to the study of eq. (1) by
means of the Hamiltonian formahsm followmg a scheme
suggested in ref.

Let us first note that one can connect with eq. (1)-(2)
the dynamical system with the Lagrangian

£ - 7}’_[ (u‘f—-ui +2(cosu—1))dx .

Here the system of units h =m=c =1 js chosen, where

m js the mass of field u(x,t) and the dimensionless.

quantity ¥ stands for the coupling constant. The total
energy and momentum of the field are as follows:

P0 = ?Lfm (w2—2u_xw +2 ui ~ 7y +2(1—cos u))dx, 3
L7 ?—u_wd, | 4)
}’ —00

and the corresponding symplectlc form Q 1looks in the
following way:

au(x)

Q_y—f (dw(x)Adu(x)+du(x)Ad T )dx. )
We have assumed thatone cantake u(x) and 1 u, (x) / as

generalized coordinates and momenta. Note, that the form
Q and the Hamiltonian P, generate eq. (1) by the rules of
the Hamiltonian mechanics. The aim of the paper is to
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express these quantities through the scattering data for
the operator L .

In Section I necessary information from the scattering
theory is presented for the operator L.It should be noted
that this operator is degenerate so that the main eigen-
value problem

Ld=A0
~ reduces to the equation
dv 1 : 2
JT'FAIP —HW:A‘P,H:B , ' (6)

where the spectral parameter A appears also in the

-denominator. It is this equation that will be studied

further. In Section 2 the symplectic form Q will be expres-

sed in terms of the scattering data. Here, we use the

technique developed in/5:6/  In Section 3, on the basis of -
the so-called trace 1dent1t1es, the energy P, and total

momentum P, of the field u(x,t) will be expressed

through the scatterlng data, and it will be shown that these
depend only on canonical varlables of the type of genera-

lized momenta. In the same section we shall present an

interpretatign of the results obtained in terms of particles

corresponding to’the field u(x,t).

I. Information from the Scattering Theory

Let us suppose that _
FUwE) [ +]u(x) ] +|sin 5(2’2|)dx<m.

Then eq. (6) has matrices-solutions F(x, A) and G(x, )
uniquely defined for real: A £ 0 by the conditions
F(x,A)=E(x,A)+ o(1), X +e0 ,
, (7
G(x,A)= E(x,A)+0(1), x 5=

where



E(x,A)=(e(x,A),e(x,A)), e(x,)) ;exp{_i(h- 161/\ )x}([%: ).

The first column f(x,A) of the matrix = F(x,A) and
the second one ga(x,A) of the matrix G(x,A) allow
analytical continuation to the half—plane ImA> 0 and
have the properties

fl(x,)s)exp{—li(/\— T)x} =( ; )+ 0(1)
_ 1 whep TA] »eo
g, (x, A) exp Li(X - T‘S'—A')xi-(__:i )+0o(1), ?mAZO-

(®)

~ Analogously, the column f3(x,A) of the matrix F(x,))

and the column g,(x,A) of G(x,A) . alsoallow anana-_

lytic continuation to the half-plane ImA< 0. For real
A £ 0 the solutions F(x,A) " and.G(x,A) are the fun-
damental matrices of eq. (6), therefor;e there is such
a matrix T(A) that

F(x,A)=G(x,\)T(A). @)

' The matrix T(A) is called the transition matrix of
eq. (6).rsmce

det.F(x,)c) =det'G(x,)c)-—‘211,
then:
det T(A\)=1. ' (10)

. Note, that the coefficients for eq. (6) obey the relations
JA(x)= =A(x)], JH(x)=H(X)]J,

and as
JE(x, /\) =iE(x,A)] ,
we get that
JF(x,0)=iF(x,0)], JG(x,))=iG(x,1)],

whence, with the help of (9) , we conclude that
T =JTM ],

oor . (am —b(A))
' T(Ar)= —_—
} \b()  a(r)

and the formula (10) takes the form
a1 + (b = 1. (11)

Further, we note that the coefficients of eq. (6) and the
matrix E(x,A) satisfy the relations

SA(x) =—A(x)S, SH(x)=H(x)S, SE(x,-A)=—iE(x,A)R,
where

) ()

whence it follows that

Sf(x, -A)=—iF(x,A)R, SG(x,=-A) =—iG(x,A)R

and for . T(A) we have
P

T(A\)=RT(-)R™, | | (12)

or

a(A)=a(=1), b(A)==b(=2r).
Here | | ‘
. _
a(d) =~ = det(£1(x,1), gy (x,N)). (13)
From the formula (13) it follows that the function a(A)
may be analytically continued to the half-plane ImA> 0

and

a(d)=1+ 0(1) , when.lz\il-m Jmax 0. (14)



Now we shall assume that the function a(A) has no
zeros on the real axis. Then, from (14) we conclude that
in the half-plane ImA> 0 the function a( A) canhave
only a finite number of zeros ¢;,j=1,..,N ; which

will further be considered to be single zeros for more -

simple and clear presentation of the formulae derived.
From (13) it follows that

f(xg) bgz(x€))]=1 Nl

and on the basis of the formula (7) we conclude that zeros
of the function a(A) are eigenvalues of the operator L .
Making use of the relation (12) we-find that the numbers

¢; and also b;,j=1,..,N ; are all located symmetri-
cally with respect to the imaginary axis.

The scattering data for the operator L by our defini-

tion will be the followmg set
S= {r(:\),gj ,m, ,j =1, N},
where
BT S PRSI
a(x)’ i ua(§ )

It should be noted that a(/\) and b(/\) are completely
restored from the scattering data. Indeed, the following
formulae '

. 2 2
1+|,|2 _ lal #b] _ 1

la)? |a|?
N ’ 2 ,\-4
i 1 = W(l+jea)]) i
a(t\)-eXP{ 2n;i_°fo » X\’ da’ }]_I]I A_Z ’
i

ImA> 0;: | : as5)

a(A) = flima(A+ide), b(A)=a(Ar)r(A), Im/\ 0.
€0

are valid.

Now.a few words on the inverse problem. Its solution
is based on a system of integral equations of the Gelfand-
Levitan-Marchenko type. We present here only the final
formulation, without derivation, which rests on the exis-
tence of triangle representations for the solutions F(x,A)
and G(x,r) (the so-called transformation operators) and
on the theorem of expansion over eigenfunctions of the
operator L.

Let s; :and s be the scattering data for the matri-
ces A (xz) H (X) and A,(x) , Hy(x) respectively,

(x - the solution of eq. (6), with the

' coeff1c1ents Al (X) , Hi (x) obeying condition (7).

Let us construct the kernels ¥,(x,y) ,¢=1,2,3
‘ 1 = ("2(/\)—1'1 ™) 1
Fpon= o T8, .0 65 (5, 0)-

(rp W1y (A))

g (x, )" g™ (y, 1)1 dns

N
N .
+—1_ 22 [_‘_1____._ (2) (l)( 4 )r ) 2
2 J (2)ﬂ gz (y’é-l )_
(4J )
(16)
1 =(2) (v, 5@
- —(25€—lmj 8 »(x,gjv ) (l)( 4(2))]—
(§j
N ,
-1 21 [—L o) C(” N (1) , o

]

- 1 r;(l) (l) (x le) )f (1)(y’§_j(l) M s

(A -1 8y
i



where r is the row-vector transposed to the column- -

vector g
Consider now the equatlon system for the kernels
l()4l,y) and K o ( X,¥)

Ky G, y)+ Fy (L )+ LK (x,u) g (u,y)du +
+;K2(X, u)’f;2 (ll, Y)du =0’ ) . (17)
K, (. p)B} (%) B () + F,x,9) + Ky ) Fyluy)dus

x .
+f K2 ()4:,u)3-‘3 (u,y)du=0, when x>y,

where
[ ]

K, (x,y)=K,(x,y)=0 ;, when x<y.

This system is ‘_uniquely solvable, and

‘Az(x)—Al (x)=Kl(x,x)_] —_]Kl (Ax,x), 18)

JK, (x,%) —H,(2)K, (x,X)H] " (x)] +Hy()~H (x)=0.

At SI=O’H1(X)=T16"‘I’ ‘ (x,A)=E(x, A) system
(17) -allows us to restore the coeffiients of the operator
'L from the scattering data s, .

To conclude this section we note that using the methods
developed in /7/ it can be shown that to make the func-
tions 1-e "® and w(x) rapidly decreasing
when |[x]|-»~ together with all their derivatives, it is

1o

L e oy

dw(x) =

necessary and suiflclent that the function r () have
this same property.

2. The Form in Terms of Scattering Data

Here we obtain an expression for the form Q in new
coordinates using the transformation formulae for diffe-
rential forms under change of coordinates. From (16),
(17) and (18) we find the following expressions for infini-
te-dimensional analogs of the differentials, i.e.,for the
variations du(x) and dw(x)

=) N - 3 K .
du@ =~ Lo [gle, M) dr )~ - 3 (glxdy ddmm g d )L, ),
17 =0 E =1 ’ ‘

where

g(x C)_ B2 (x 4)322 (x§)

¢

and

. 00 N ]
2L [FM) dr R+ S (¢ M v L),

7T - =00

where .
24 2
. f(X,§)=8 (x!c)—g (x g)-

Let us now insert these expressions mto the definition
(5) of Q@ . Then we obtain

o 00 N

0= [ £ AGL I de(drdus 3 [ B,(A )dr()Adm dh+

-—00 == 00

N o N
+5 L€ (dr()Adg, d/\ijil D, dmy Admg +

+
L,

T M2

E d¢ AdZ, + 3 E dm A dm,
1 4 i & Tpm by L



where -

A()t,;u)—2 > f g, M2 f(x,p)—~g " (x, 1) —Rf(x,2)—g" (xh)) x
T =

xg(X,/-l)]dx,

and B,(\) . , (), Dy, Ep LBy are

expressed analogouel'.ly All the mtegrals entermg into
definition of these coefficients, should be understood in the
sense of the theory of distributions. It turns out that all
the coefficients can be expressed only in terms of scatter-
ing data. Let us demonstrate the corresponding calcula-
tions by the example of A(A,p)

From eq. (6) it can easily be found that

de—i\l"(x,)\),‘l'(x,p)}f(% - -f—)(‘l’l (x,)\)‘l’l(x,y)ﬁ

-—iu(x)

. ,
+.16_A_#__ly2(x,)t)‘142"(x,;t)), ' 19)

_A__'_ _}i)( eAiu(x)
© A

—1'6—-r ‘pl (x,A)‘Pz(x,p )+

d
—d—x—ilp(’,")*).:q'(xv#)}z =(

Py (M), (x,a);

where ¥(x, { ) is the solution of eq. (6) with A;C and
¥, (x A )¥(x,p) _ Yox,A) Y (x, p)
A p ’

WM () (X, ()
i . - A . R

l‘I’(x,)\),‘I’(X,y)ll =

{T(WJJ’W(X:F”2=

Now having the relation

12

'Ao,y)-—l——taw a(wn

d 1 ~fu(x) 9 du(x) 4
—'d-;‘-(‘pl (X,)\)lpz (x’)‘.»+i-6_)\-(e ‘Pz (x»).")fe lI_’l (X,A))=

= A (tp:(x,h)-‘l'f\ X,M)),

which follows from eq. (6), and taking into account for-
mulae (19), we obtain for A(A,x)

A, p)=

2n % - #

FOA B 4 (g g )] x

(s, (x,x),g‘(x,y)x )dx .

Further we employ formula (7), the identity 1+|a| —]b]
=2]al? resulting from (11), and the known relation of
the theory of generalized functions:
ixN
fim ? -£
N—»oo X

_='.i175 (x)

‘and arrive at the finite expression for A(\,p)

g’—r—r B(A)a(l‘)b(-k) b(-n),

(20)
‘where the symbol P stands for principal value of —x- ',
and m

For other coefficints we have

Bi()\)=0, AFRi =0

16 a(A)b(=A) . | @D
Ci(h)—.iny glzji ’

13



(21)

. 8 .
D =__—————8 , E,]=1,...,N.
4 l ym, CE 4 i ,
From (20), (21) we find the following expression for Q
in terms of the scattering data:

2 |a(")| dr(-x) Adr(n)dar 4 9 7 200 B by
lny_oo : ”2}, oo )\2 2

N s
xdr)Adr(drdp- 3 16 20 dr(MAdg dA+
j= llny —o00 /\ C

16 ‘ N g

N
o+ X N -d{, Ad{, - = dm A d¢

where we .should take into account that the quantities |

in this expression are not independent but obey the relations

a(=A)=a(A), b(-1) = =B(\), r(-A)=-r(3) and
»C}a_(l:;ixj, X >0,ml =—m, ‘j=1,...,n1 ;gnd
<y "‘Em’"k » ReA

X ,]mz\k >0, ’mk ==m a? k=1,...,n

4

By use of the considerati ))ns quite similar to the cor-
responding ones of papers , it can be shown that the
set of variables:

CpM = =8 _tmla()], ¢ (N =—argb(r), A>0;
Ty A 7 A ) -

1 .
pe=y—eﬂKe ,ge=8 enlce | ) e=11"')nl»'~

4 4
‘fk =7eﬂl)‘k|’ 77k=7£“|dklv
0, =arg)\k,'¢k=-1§—argdk , k;I,...,nz;
cﬂ=mﬂé.(liKE')5dk=mké(,A k').

is canonical, i.e.,the form Q in these variables has the
form

Q=0f‘ dp (MAdBA) + 2 dpyAda fi_’l @€ Adn 0,006, )

In virtue of the above remark these quantities form the
complete set of the canonical variables.

Thus, we have expressed via the scattermg data a
certain set of variables canonical for theform Q@ .In the
next section it will be established that these variables
play the role of variables of the type action-angle for the
Hamiltonian Po and total momentum P,

3. Trace Identities
We will suppose that 1— el“(’) and w(x)  are
functions of the Schwarz type.. Then for fn a(A) - the

15



following asymptoti_cal expansions

[A] oo, (22)

fha(A) =23 S—'l-, ImA>0,
n=1 AR

fna()) = °z°0 C_ A", ImA>0, |A] -0 , (23)
n=

are valid. The coefficients C'll are given by the formulaé

1 2 . N 2n+]1 _2n+l
Conu = 777 _fmx Y (1 ) [dk '151 ¢ ¢ )
- (24)
2n+2 » A _0’1 ’
—2a-T = 3, _fw A En(1+|r(m )d)‘_zl (g _
a2n--1 25
é‘j )) —2n-2 = 0, n =0,1, eoes ( )

and the number Co is fixed by the choice of branch of
the logarithm in (23). These formulae can readily be de-
rived using (15) and the relations (12). On the other hand,
the coefficients for the expansion of fma()) in powers
of A can be found with the help of eq. (6). The equalities
thus obtained are called the trace identities.
First let us note that for ImA>0

relations

Enfll (x,A):Fna(A)+,i(/\—1

the following

1
o )x+f’(1) X =00

(26)

Fly (%2) =i(A- 161A )X +dl) X -

hdld, which opportunely fix also the logarithmic branch
in (23). Next, we introduce the function

S

xA) = zf x,A)—i(A - L),
| o(x,A) nf ( )=t TR )
“then
tha(A)= -_fw o (x,A)dx . @7)
. This equality, having been derived for ImX>0, due to

smoothness may be extended onto the real axis, also. On

the other hand, for the function
: fo,(x,A)
w(x,\)= 2
f(x,2)
from eq. (6) one can easily obt{ain that
1 e—iw g i
16 A 16A
satisfies the equation of the

o =Aw -

“M_1)-q, (28)

and the function w(x,A)

Rikatti type:
. —iu : 3 .
W= —2ilo + —l-—?,e wl-rw2+l e mW+2'qw +
* 16 A 8A
; (29)
+2qi + -L-sinu
8A

and decreases as X »«. Here q(x)=53w(x) . Using
the differential equation (29) we see 3: t wix,A) and,
consequently, o(x,A) allow theasymptotical expansions

oo f o0
w(x )\)_ 1 2 :)x)l , 0(x,A) = 21 (Szn( ))() IR EEH
) n= 1 n= l n

and

Cw(x,A) = z r N Lo (A) =3 ¢ A", [A]- 0;
=0 0 n=0 n

where the coefficints f ,g V , fn and g,‘, are _given by simp- -

le recurrent relations which are not presented here. We
mention only that

fI =2iq , f2 =2:i(q2-qx+ L sinu), 81=f—qx+-18—(cosu—1),"

8
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i
r =i(e " -1), ™ =—16qei“ +8:iuxeill ,

i ~2i w2 . i i
§-1'2 =€ u+1 +16q e -.4“ xe " —16.luxqelu +16e ! (qu+

+ S Ugy),

Co =— .Lux » ¢ =i(cosu-1) +8iq —21u12(+8uxq+16.1(—qx +

So, we have arrived at the set of relations

oo

@) C, --fg Mds, n=12,.,

C _ZC(x)dx,,n 0,1,.

which are called the trace identities. In particular, turning
to formulae (3), (4) we get

Py = 55 (Cy ~16€, ) L _12.+16)&a(1+lr(>«)| A+
+_1__l§: (L -6 -1 +16¢ ) | (30)
21}/ j=1 5] j Ci i
and ‘
R =%(c +16C )-—-—f (-—--16)en(1+|r(>«)l Yars
1y e
1 Y1 1 A
b (—-+16¢ -—=16¢.), (31)
21}’ Fl 4 Cl i )
R

whence we obtain the following expressions for Py and P,
in terms of the canonical variables:

: oo 1 n
Ry = [ (g5 f20)p0)d s L %(—+16x£ )+

"2 )X ©2)
+ X ¥-k (1 2+l6)’
=l iy 1A
..f(—--—2)«)p(h)d)t+—- 21(—--16x ) +
Y t=l Kpo
' - (33)

A -A '
+F 2k _"(1 = -16).
k=1 .ly "\kl
From .(32), (33) it thus follows that Po and P, depend

‘only on the canonical variables of the type of generalized
‘momenta that justifies our analogy with variables of the

type of action-angle in classical mechanics. The Hamilto-;
mian equations .1n these variables are solved trivially.
The solution is as follows

S —2i+lo -
r(h,t) =€ lﬁh r(/\,o)r

' -—-2|(€.+ L _n
(0=¢,O,m@=c 1 166 m©),

Notice, that we have incidentally establishes the complete
integrability of mechanical systems

n=oo
{9’1211 l ?

+1 n=w=00



where

I =/ gn(x)dx, n> 0;

— 00

and
I =f ¢ (x)dx, n<0;
n o —n

n =oe .
and the set tla; 41 },-_w is the complete
set of the commuting integrals of motion for thes>e sys-
tems.

Now let us turn back to formulae (32), (33). In terms
of particles related to our dynamical system, these for-
mulae have a rather simple interpretation. Indeed, the
variables p(A) and ¢ (A) for A fixed, compose a pair
of the canonical variables of the type of ’’number of
particle-phase’’, so that p(A) can be interpreted as the

particle density, pA)= (-]-x —-2X) as the momentum and

h(A)= (“L +2'\) (p? (’\)+l) ‘ as the corresponding ener-
gy. In other words, the first terms in right-hand side
of formulae (32), (33) represent the contribution to ener-
gy and momentum from the particles of the mass =1

Just in the same way it can be shown that the second terms

in (32), (33) represent the contribution from the particles .

of the mass 8/y. Now we proceed to the last terms in
(32), (33). Unlike the previous cases, the phase space of °
the corresponding elementary object is four-dimensional,
so that it can be represented as a particle with internal
degree of freedom. Its energy and momentum

h = A=A g ( 1 2’+16),

k

iy [A,l
p, = xRk (1 _16),

are linked by the relation
2 2 2
Chi=p s M,

20

where
M= M(0) ==2-ginf,

Y

i.e., its mass varies from 0 to -l-}g- depending on the
internal state. It is possible to write explicitly the solu-
tions to eqs. (1), (2) which describe the motion of finite
number of the particles of the second and third types. The
equality p (A)=0 corresponds to this situation. Under
this condition the kernels of system of the type (17) appear
to be degenerate and the system can be solved explicitly
(see /8/ ). We write here the final formula v

det (1+V(x,t)) ’
det (1-'V(x,1))

u(x,t)=2ifn
) -1 ) -1
ij(x,t):lmj[éj +¢, 1 exp{—ll[Cj—(ij) +

4, =620 7 Tx =2, +a6¢ )7 161, i k=L,

-

In the particular c‘z'isev,_’when n=1,n,=0

‘ u(x,t) =4 actg (exp | — (x=vt +x )}),

Vi-v?
where ,24
e=signb, v= _1-:}_6-K—2._',‘x0= lln-!m_—\/l—v2 , m=ib.
: 1 +16« 2k ’

For this solution one has

L (u(e,00=u(=2,0)) =¢
27

and this additional characteristic of the second-type
particles can be treated as some sort of charge (see
refs. /9:10/ ), An analogous quantity for the solution with
n; =0 , ng=1 equals zero, so it can be said that
a particle of the third type represents the relativistic

2l



bound state .0of two second-type partiéles with opposite
charges.

Thus, we have shown. that within the classical field
theory our dynamical system can have elementary exci-
tations of the following three types:

1. The neutral particle with mass 1;

2. The charged particle with mass 8/y ;

3. The bound state of two particles of the second
type with’ opposite charges, with mass varying from .
0 to 16/y depending on the internal state. In the standard
approach, based on the perturbation expansmn in the
parameter y , we would find that with the field u(x,t)
there is connected only one sort of parhcles - excitations
of the first type.

At present we are studying the question as to what
extent the obtained results will hold in the quantum
version of the considered model.
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