
L.D.Faddeev, L.A.Takbtajan 

ESSENTIALLY NONLINEAR 
ONE-DIMENSIONAL MODEL' -- - ---- - - ·- - -- --

E2 - 7998 

[31<:J. Yv1T. 3An ! j 

O F THE CLASSICAL FIELD THEORY 



E2 - 7998 

L.D.Faddeev, L.A.Takhtajan 

ESSENTIALLY NONLINEAR 
· ONE-DIMENSIONAL MODEL' 

OF THE CLASSICAL FIELD THEORY 



Introduction 

In this note we present a complete description of 
classical solutions of the equation 

U
1 

-U + sin U z: 0 , -oo < X , t < no 
t xx ' (1) 

satisfying the boundary condition 

U ( X , t ) ➔ 0 ( mod 2 77 ) when I x I ➔ 00 • (2) 

In the field-theoretical approach eq. (1), with boundary 
condition (2), describes the chiral field x (x, t ) with the 
group U(l) , where x (x, t) =exp I iu(x ,t) I. 

It turns out that eq. (1)-(2) can be solved through the 
inverse scattering method (for such a method see refs. 11

-
41). 

Equation (1)-(2) is equivalent to the operator equation 

~ .. [·L,M], 
at 

where 

L.. ( 
J 

0 

0 A 
)..!L+ ( 

o dx B 

B 
) , 

0 

-I O d O C 
M=( )-ax:+( ), 

0 I D 0 
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and matrices I, J, A, B , C , D , are constructed from a so
lution u(x ,t) and function w(x ,t)=u (x,t)+u (x,t) in 

X t 
the following way: 

1 0 0 -1 · 0 w 
I=( ) J=( ) A ... !..( ) 

0 1' 1 o' 4 wO' 

(

eiu/2 

B = .1.. 
4 0 

O .)C=2JB, D=2BJ. 
-i u/2 ' e 

The time dependence of the asymptotical characteris
tics of eigenfunctions of the operator 1L have been found 
earlier by us for the case when u(x, t) .obeys eq. (1). 
The present paper is devoted to the study of eq. (1) by 
means of the Hamiltonian formalism, following a scheme 
suggested in ref. / 5/. • · 

Let us first note that one can connect witb eq. (1)-(2) 
the dynamical system with the Lagrangian 

f = -
2
1 · j (u 2 -u2 + 2(cosu-l ))dx .. 
y -oo t X 

Here the system of units h =m =C = 1 is chosen, where 
m is the mass of field u ( x, t ) and the dimensionless 
quantity Y stands for the coupling constant. The total 
energy and momentum of the field are as follows: 

00 2 
P = -1.. f (w2 -2 u w +2 u ·. · , +2(1-cos u))dx, (3) 
0 2y.:.oo X X 

1 00 
2 P = - f (u -u w)dx, (4) 

I y -oo . X X 

and the corresponding symplectic form O looks in the 
following way: 

0= .!.. j (dw(x)A du(x)+ du(x)A d au(x) )dx. (5) 
Y -oo a X · 

We have assumed that one can take u(x) and -} ut (x) 1 as 
generalized coordinates and momenta. Note, that the form 
0 and the Hamiltonian P0 generate eq. (1) by the rules of 
the Hamiltonian mechanics. The aim of the paper is to 

4 

express these quantities through the scattering data for 
the operator 'L . 

. In Section I necessary information from the scattering 
theory is presented for the operator 1L. It should be noted 
that this operator is degenerate so that the main eigen-
value problem · 

,L <I> = ,\ <I> 

reduces to the equation 

dll' 1 2 J -d- + A \JI + - H \JI = ,\ \JI , H =B , 
X ,\ (6) 

where the spectral parameter ,\ appears also in the 
denominator. It is this equation that will be studied 
further. In Section 2 the symplectic form O wiHbe expres
sed in terms of the scattering data. Here, we use the 
technique developed in / 5 ,6/. In Section 3, on the basis of 
the so-called trace identities, the energy P0 and total 
momentum P1 of the field u(x, t) will be expressed 
through the scattering data, and it will be shown that these 
depend only on canonical variables of the type of genera
lized momenta. In the same section we shall present an 
interpretatiQn of the results obtained in terms of particles 
corresponding tcJ1 the field u ( x , t) • 

I. Information from the Scattering Theory 

Let us suppose that 
oo . u(x) 
f ( I W ( X) I + I u x( X) I + I Stn -Y- I) dx < oo • 

-oo 

Then eq. (6) has matrices-solutions F (x, ,\) and G ( x, ,\ ) 
uniquely defined for real ,\ ·-1, O by the conditions 

F(x,,\) ... E(x,,\)+ o(l), x ➔ oo, 

G(x, ,\) .. E(x, ,\ )+o(l), x ➔ -oo, 

where 

(7) 
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E(x,,\) ... (e(x ,,\), e(x, ,\)), e(x, ,\). exp{i(,\- _J_)x I(! ) .. 
16 ,\ [1 

The first column f ( x, ,\ ) of the matrix .. F (x, ,\) and 
the second one 82(x, ,\) · of the matrix G(x, ,\) allow 
analytical continuation to the half-plane Im>.> O and 
have the properties 

. 1 1 
f 1(x,,\)exp l-1i{,\- ITT)x}-( :i ) + o{l), . (B) 

. l l when'IAl ➔oo, 
2- (x, ,\) exp l:i ( ,\ - ----') x } • ( . ) + o(l) , Im,\~ 0. 
~i 16 ,\ -:1 

Analogously, the column f2 (x, ,\) of the matrix F(x,,\) 
and the col~mn g 1 ( x, ,\ ) of. 'G ( x ~ >i. ) .. also allow an ana-. 
lytic continuation to the half-plane Im,\< O. For real 
,\ i£ o· the solutions F(x,.\) and G (x, ,\) are the fun-
damental matrices of eq. (6), therefoi:e there is such 
a matrix T(>.) that · 

F(x, ,\) = 'G(x, ,\ )T(,\). (9) 

· The matrix T (,\) is called the transition matrix of 
eq. (6). Since 

det F ( x, ,\ } .. det 'G ( x, ,\) • - 21i , 

then. 

det T (,\ ) ... 1. (10) 

. Note, that th~ coefficients for ~q. (6) obey the relations 
JA(x) .. A(x}J, JH(x}=H(x}J, 

and as -----
JE(x,,\} =iE(x,>.}J, 

we get that 

JF ( X • ,\ }-iF ( X • ,\ }J • J G ( X • ,\} =i G ( X • ,\ }J , 

6 

.. 

whence, with the help of (9) , we conclude that 
' 

T(,\) .. JT (,\}J-1 , 

or ·(a(,\} -b(,\)) 
T(,\). -

. b (,\} a(,\} 

and the formula (10) takes the form 

I a<>. >I 2 
+ I b < >. >I 2 

... 1. (11) 

Further, we note that the coefficients of eq. (6) and the 
matrix E(x,,\) satisfy the relations --SA(x} =-A(x}S, SH(x ).H(x}S, SE(x ,->.}--,iE( x, ,\} R, 

where (O 1} 
s. . 0 

I l 
R •(l 0), 

0 -1 

whence it follows that 

SF(x, -A}=-:iF(x,>.)R, SG(x, .:>.} --i_G(x, ,\ )R 

and for TC>.} we have ,, 
. -I 

T(>.}-RT(->.}R , (12) 

or 
a(>.).a(-XT, b(>.};_-b(->.). 

Here 

1 a ( ,\} • -
2
i det (f. 1 ( x , ,\} , g2 ( x , ,\}) • (13) 

From the formula (13) it follows that the function a(,\} 
may be analytically continued to the half-plane Im.\> O 
and 

a(,\) ... 1 + o(l), when l>.l ➔ oo ,lmA•~ 0. (14) 

1 



Now we shall assume that the function a(.\) has no 
zeros oil the real axis. Then, from (14) we conclude that 
in the half-plane Im.\> O the function a_(.\) canhave 
only a finite number of zeros (, i , j = 1 , ... , N ; which 
will further be considered to be single zeros for more · 
simple and clear presentation of the formulae derived. 
Frain (13) it follows that 

f
1
(x,(,. ) ... b.g

2
(x, (,. ), j ... 1, ... ,N; 

l J l 

and on the basis of the formula (7) we conclude that zeros 
of the function a(.\) are eigenvalues of the operator ,L . 
Making use of the relation (12) we-find that the numbers 
, i and also bi , j ... 1, ... , N ; are all located symmetri

cally with respect to the imaginary ,axis. 
The scattering data for the operator 'L by our defini

tion will be the following set 

S = Ir(.\),(,. , m. , 1· =l, ... ,N l . 
J J , 

where 
hn, b · r (,\) =~, m .,. _l 
a(.\) i 1ia((,,) 

J 
It should be noted that a (A) and b(.\) are completely 
restored from the scattering data. Indeed, the following 
formulae 

8 

2 I 12 2 1 + I r I = . a + !b ! 
I al2 

- 1 --
1 al2

' 

a(.\ ) .. exp{ _l_ J' fn( 1 +lr(.\')1
2

) , N .\-(,. 
211:i --oo A-A, d.\ I.TI __ J 

J=l A-~
J 

Im.\> O;,. (15) , 

a(,\)= fim a(.\+ :id, b(,\) .. a(,\ )r(.\ ), Im,\= 0. 
f_J. 0 

·.f 
) 

~' 

are valid. 
Now. a few words on the inverse problem. Its solution 

is based on a system of integral equations of the Gelfand
Levitan-Marchenko type. We present here only the final 
formulation, without derivation, which rests on the exis
tence of triangle representations for the solutions F ( x, .\ ) 
and G(x,.\) (the so-called transformation operators) and 
on . the theorem of expansion over eigenfunctions of the 
operator 'L. 

Let s1 : and s 2 be the scattering data for the matri
ces A1 {x? , H1{x) and A2 (x) , H2 (x) respectively, 
and G I) ( x, .\ ) - the solution of eq. (6), with the 
coefficients A 1 (x) , H 1 (x) obeying condition (7). 

Let us construct the kernels ~ e ( x, y ) , e ... 1,2 ,3 

1 oo (r2{,\)-r1 (,\)) (I) r (I) 

~ f ( X ' y) = :r;--~ [ ,\ f-J g 2 ( X ',\ ) g 2 ( y ' ,\ ) -

(r2 (.\)-r1 (.\)) (I) (x, A/ g<O (y ,,\)] d,\+ 
.:.. f I gl I 

,\ -

N2 

+.!.._I [ .1 ., m~2)g(I)(x,(,(2))r (I) 
2 J=l ((,~2'l-1 J 2 j 82 

J 

(2) 
( y ,(,. 

J 

!__ -( 2) ( I) - (2) r (I ) - (2) 
((:<2~ f- I m j g I ( X ,(, j - ) 8 I ( y • (, j ) ] -

J 

)-

(16) 

N1 
- .l.. I [ 1 m<O 80>( (,0) { O> ( ,,,co 

2 j = I (/1) f -I j 2 X ' j g 2 Y • <:, j )-

J 

L_ - ( I) (I) -(I) r (I) -(1) 

ctti>l-1mi 81 <x,(,j > 81 <r.<:j >l 
j 
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where r g is the row-vector transposed to the column-
vector g 
· · Consider now the . equation system for the kernels 

Ki< x , y) and K.
2 

( x, y) · · 

x· 

· K1 (x , y) + S:1 ( x , y ) + J K1 ( x , u ) ~ ( u, y) du + 
' --. -.oo 

X 

+f K2 (x,u)5 (u,y)du =0, (17) 
.-co ·• . 2 

• X . ·' 

K (x, y)B~
1 

(x) B~
1 

( y) + i 2 (x ,y) +f K1 (x,u)J /u,y)du+ 
2 . -oo 

X 

+ f K2 ( x , u) S: 
3 

( u , y) du = O , when x > y , 
-oo 

where 
• 

K1(x,y).K2 (x,y) ... O, when x<y 

This system is _uniquely solvable, and 

A2(x)-A1 (x)=K1 (x,x)J -JK1 (x,x), 
(18) 

. -1 . 
J K 2 ( x , x) - H 2( x) K2 ( x , x) H '1 ( x )J + H2 (x )-H 1 (x) = 0 . 

1 (I) 
At s 1 = O , H 1 ( x) "' - I , G ( x, ,\ ) =E ( x, ,\ ) system 

16 
(17) · allows us to restore the coeffiients of the operator 
1L from the scattering data s 2 • 

To conclude this section we note that using the methods 
developed in / 7</> it can _b_e shown that to make the func-

i u . lions 1 - e x and w ( x) rapidly decreasing 
when Ix I ➔ oo together with all their derivatives, it is 

10 

I 

-~ 
i 
~ 
·, 

necessary and sufficient that the function r {,\) have 
this same property. 

2. The Form O in Terms of Scattering Data 

Here we obtain an expression for the form O in new 
coordinates using the transformation formulae for diffe
rential forms under change of coordinates. From (16), 
(17) and (18) we find the following expressions for infini
te-dimensional analogs of the differentials, i.e. ,for the 
variations du(x) and dw(x) 

1 oo . 2 N . . • . 
d u(x) = - -. - f g(x, ,\) dr (,\) d-\- ·'.'=""". I (g(x,(i ) dm i +m ig(x,(j )d(i ), 

111 -oo 1 1=1 

where 

( ,>-)- 812 (x,()s22 (x,(). 
gx,<:.- ( ' 

and 
2,i oo N • 

dw(x)=-· ff(x,,\)dr(,\)d,\+4i I(f(x,( )dm.+m.f(x,(.)d(. ), 
TT -oo . i"" I J l J l l 

where . 
2" 2 f(x,O=g (x,()-g (x,(). 
22 · 12 

Let us now insert these expressions into the definition 
(5) of n . Then we obtain 

0000 N oo 

n = f f A(,\ ,µ)dr(,\)A dr(µ)d,\dµ + I J B .(,\ )dr(,\)Adm .dA+ 
-oo -oo j=l -oo l l 

N oo N 
+ ~ f Cj (,\)dr (,\) A d(i d,\-t I De dmi A dme + 

j;;;} -oo l'., j=l j 

N N 
+ I Ee d( Ad( e + I Fe dm J A dme 
e, J=I J J e ,J=I J 

II 



where 
00 . 

A(>.,µ )=-1-J [g(x,>.)(2 f(x ,µ )-g' (x, µ))-(2f (x,>.)-g '(x,>.)) x 
211 2y :...oo · 

x g(x,µ)]dx, 

and B. (>.) . , Ci (>.) , Df i , Eei ,Fei are 
expresJsed analogously. All the integrals, entering into 
definition of these coefficients, should be understood in the 
sense of the theory of distributions. It turns out that all 
the coefficients can be expressed only in terms of scatter
ing data. Let us demonstrate the corresponding calcula
tions by the example of A ( >. , µ ) 

From eq. (6) it can easily be found that 

! {'P (x, >.),'I' (x, µ) I { ( ~ - f X 'I' 1 (x, >.) 'I' 1 (x, µ ) +. 

-iu(x) 
e 

+16>.µ '1'2(x,>.)'P2(x,µ)). (19) 

d A iu ( x) 

-d-{'l'(x,>.),'l'(x,µ)I =(-•- ~ )( e6 'l'l(x,>.)'1'2(x,µ)+ 
X 2 µ I\ 1 Aµ 

+'1'2 (x,>.)'1'2(x,µ)); 

where 'l'(x, ( ) is the solution of eq. (6) with>-=( and 

{'l'(x,>.), 'I' (x,µ)I = '1'1 (x,>.)'1'2(x,µ) - 'l'ix,>.)'1'1 (x, µ)' 
1 . >. · µ •. 

{'l'(x-,>.), 'I' (x,µ) I = '1'1 (x,>.)'1'2(x,µ) - 'l'2(x,>.)W1 (x,µ) 
2 µ >. 

Now having the relation 

12 

' -i 

{ 

r 
l 
I, 

\ 

t
,, 
( 

, 

I' 

l 

f 
l 
'I I, 

'•i ;, 

d l .... tu(x) 2 lu(x) 2 ~'I' 1 (x, >.) '1'2 (x, >. )) + - ( e 'I' 2 (x, >.)-e '1'1 (x, >. )) .. 
dx 16 >. . 

. ( 2 2 = A \JI 2(x,>.)- 'I' ~ X ,A)), 
. 1 

which follows from eq. (6), and taking into account for
mulae (19), we obtain for A(>.,µ) 

1 00 >. µ -l d 
A(>.,µ)= -- f ( -µ - T ) cfx ({ g

2 
(x, >. ), g /x,µ) 1

1 
x 

2771' - 00 

{g (x,>.),g (x,µ) I )dx. 
2 2 2 

Further, we employ formula (7), the identity 1 + I a:i4 -lb 1
4
= 

= 2 I a I 2 , resulting from (11), and the known relation of 
the theory of generalized functions: 

ixN 
fim p e. =i118 (x) 
N➔oo X 

and arrive at the finite ~xpression for A(>.,µ ) 

2 . 4 1 
A(>.,µ)-. 2 ~a(µ)! o(>.+µ)+~ P 2 2 a(.\}a(µ);b(->.)b(-µ), 

177 µy ., 17 y ,\ -µ (20) 

where the symbol P stands for principal value of ..l 
X 

d 
.1 

an \2 2· 
I\-µ 

For other coefficints we have 

B j(>.)=0, Fe. = O 
J 

C. (>.)= !_L a(,\)b(->.) (21) 

J irry ( ~ _).2 
J 

. ' 13 



Ee, 
I 

16 
y ( (: -( 2 ) (1- Be . ) , 

j I 

8 De = - ---''--- ae , 
j yme 'e j 

e ,j=l, ... ,N. 

(21) 

I 

From (20), (21) we find the following expression for O ·] 
in terms of the scattering data: f~ 

-1 

O =J- J la(,\)! 
2 

dr(-,\) Adr(,\ )d,\+ - 4- ~ fj a(,\)ae:) ~-:)h(-t1)x 
.trry -oo ,\ 77 2y -oo ,\ - µ 

N 6 oo 

x dr(>.)Adr(µ)d,\dµ- I .L f a(~b(....,\~ dr(,\)Adt;:j d,\ + 
j=I lrry -oo ,\ , -( 

j 

N 16 N 8 
+ I 2" ~. d(j Ad'e -I --dmfAd(e, 
e;1=1 r<(e-<.J.> . &1 r~·'e 

where we .should take into account that the quantities 
in this expression are not independent but obey the relations 

a(-A)=a(i\), b(-,\) = -b(i\), r(-,\) = -r(,\) and 

-
'• =-(j =:iKJ, /CJ >0,mj =-ffij j = l , ... ,n 1 ; and 

( k =-(k+l=,\ k , Re,\k ,Jm,\k >0, rnk= -iiik+l a~ k=l, ... ,n2 

and n 1 + 2n 2 =N. 

14. 

By use of the considerati?s~~J quite similar to the cor-
responding ones of papers , it can be shown that the 
set of variables: 

p (,\) = - - 8 - fnla(,\) I, ¢ (,\) =-arg b(,\ >, ,\·> o; 
rry ,\ 

Pe = t fu K e , q e= 8 en I c e I , e = 1 , ... ; n 1 ; 

4 4 
~ k = r en I,\ kl , 11 k = r en Id kl , 

16 · 
0 k = arg ,\ k , ¢ k = - y arg d k , k = l , ... , n 2 ; 

Ce= ID£ a (1iK eL d k = ID k a(,\ k ). 

is canonical, i.e., the form O in these variables has the 
form 

0= j dp (,\)A dcp (,\ )<!f + i dpe Adqe + n:f (d ~kAd71 k+d0l d¢k ). 
0 £=1 k=l 

In virtue of the above remark these quantities form the 
complete set of the canonical variables. ~ 

Thus, we have expressed via the scattering data a 
certain set of variables canonical for the form O . In the 
next section it will be established .that these variables 
pla:y the role of variables of the type action-angle for the 
Hamiltonian P

O 
and total momentum P1 • 

3. Trace Identities 

We will _suppose that 1--e iu(x) and w(x). are 
functions of the Schwarz type .. Then for en a(,\) · the 

15 



following asymptoµ_cal expansions 

fn a,( A) = I C n , Im A > 0 , I A I ➔ 00 , 

n=l An 
(22) 

"" n 
fn a ( A) = I c_n A , Im A-> 0 , I A I ➔ 0 

n=0 
(23) 

are valid. The coefficients c·n are given by the formulae 

1 "" 2n 2 . N 1 2n+l _2n+l 
C 2 +l = -

2 
.· f A fn( 1 +lr(A)I )cL\-I --((J. -(. ), 

n " 1 - "" j=l 2 n + 1 J 

C -0 2n+2 - , n =01 ' , ... (24) 

1 "" -2n-2 2 N l -2n-l 
C 2 f - -2. f A fn( l+lr(A)I )dA-I -((. -

- n- 77.1 _ 00 j=l 2n+l J 

( a.2n-1) 
- j ' C 2 2 = 0, n=O,l, .... 

- n-

(25) 

and the number Co is fixed by the choice of branch of 
the logarithm in (23). These formulae can readily be de
rived using (15) and the relations (12). On the other hand, 
the coefficients for the expansion of fn a( A ) in powers 
of A can be found with the help of eq. (6). The equalities 
thus obtained are called the trace identities. 

First let us note that for Im A > 0 the following 
relations 

fn f 11 ( X,A) = fn a( A)+ iCA- -61 )x+O(l) X ➔ -oo 
1 A . 

£nf ( x,A) =iCA- - 1-)x + <(1) x ➔ oo 
11 16A 

(26) 

hold, which opportunely fix also the logarithmic branch 
in (23). Next, we introduce the function 

16 

r' 

a (x,A) =-dd en £11 ( x ,A)- 1iCA - _l -), 
x 16 A 

. then 

en a (A)= - J a (x, A) dx . 
-oo (27) 

This equality, having been derived for lmA:> 0, due to 
smoothness may be extended onto the real axis, also. On 
the other hand, for the function 

· f ( A) 
w ( x , A ) = 21 x, -i 

fll(X,A) 

from eq. (6) one can easily obtain that 
I 

\ 1 -iu i -iu 
a =I\W - --e w- -· -{e -1}-q 

16 A 16A ' 
(28) 

and the function w (x, A ) 
Rikatti type: 

satisfies the equation of the 

. . 1 -iu 2 i -iu 
w = - 21 Aw + -- 3e w -Aw 2 + - e w +2 q w + 

x 16A BA 
. ~~ 

+2qi + _.:!_ sinu 
BA 

and decreases as x ➔ oo. Here q(x) = ¼- w{x) . Using 
the .. differential equation (29) we see that w (x, A) and, 
consequently, a (x, A ) allow the asymptotical expansions 

00 f (x) 00 &i ( x) 
_w(x,A)= I n. , a(X,A)= I---, IAl ➔ oo; 

n= I (2i,\) n n= I (2h) n 

and 
oo n oo n 

w (x , A ) = I r (x) A , a (x, A ) = I ( (x) A , I A I ➔ 0; 
n=0 n n=O n 

where the coefficints f , g , r and ln are given by simp-
. n p n . 

le recurrent relations which are not presented here. We 
mention only that 

f1 =21iq, f2 =2:i(q2-q +Lsinu), g =<(-q +L(cosu-1}, 
x 8 1 x 8 
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11 

. ( iu ) 16 iu . iu 
r O = 11 e - 1 , r 1 = - q e + 8:1 ux e , 

i -2iu 2 iu 2 . iu . iu iu 
-8· '2 = e +1 +16q e -4u e -l61u qe +16e (-q + 

X X X 

+ :~ Uxx), 

l 0 =- !Lux , ( 1 =i(cosu-1) +8iq
2

-2iu 2 +8u q+16i(-q + 2 X X X 

:i ) +zuxx . 

So, we have arrived at the set of relations 
00 

n 
(2i) C = - J g (x)dx, n =1,2, ... , 

n --oo n_ 

00 

C =- J ( (x)dx, n=O,l, ... , -n --oo n 

which are called the trace identities. In particular, turning 
to formulae (3), (4) we get 

1 1 
00 

1 2 
P0 = -

2
. (C _ 1 -16C1 ) = 

4
--- f ( 2 + 16) !'n( 1 +I r{i\)I )d>.+ 

.1 y 1T y --00 ,\ 

l N l - 1 
+ -. - I ( -= - 16 (. - - + 16 ( . ) , 

21 y j=l ( j J ( j J 
(30) 

and 

1 1 
00 

1 
2 

I} =-·.-(C 
1

+16C
1
)=

4
-J (-

2 
-16)!'n(l+lr(i\)I )di\+ 

2ty - 1ry -oo >-.. 

1 N 1 - 1 
+-.-.! <-=-+16(. ---16(j), 

2ty Fl ( j J ( j 
(31) 

II 

whence we obtain the following expressions for P0 and P 1 
in terms of the canonical variables: 

00 1 . . 1 ~ 1 
P0 = f <-+ 2i\ )p(i\)d.\+- l: (-+ 16 Ke)+ 

o 8,\ Y f =l Kf 

n2 ,\ k-X k ( _1 _
2 

+ 16) , 
+ I . . lkl k=l ly k · 

(32) 

00 1. -1~ 1 
P

1 
=f (- -·2,\ )p (,\)<L\+ - }; (- -16Kf) + 
0 8,\ . Y f=l Kf 

- (33) 
~ ,\ ,\ . 

+ l: .!. - k . ( L _; 16) . 
k=l !l y · I'\ ,2 

From (32), (33) it thus follows that Po and P1 depend 
only on the . canonical variables of the type of generalized 
momenta. that Justifies our aualogy with variables of the 
type of action-angle in classical mechanics. The Hamil to~,: 
rUan equations .in these variables are solved trivially. - . . . ~ 

The solution ts as follows: 

-2i(A+-1-) t 
r(i\,t) =e 16 ,\ r(i\,O), 

-21 (( . + _,!_ )t 

(
1

(t)=(.(0), m.(t)=e 1 16(j m (0), 
J J j 

j =1, ... ,N. 

Notice, that we have incidentally establishes the complete 
lnt~~rablltty of mechanical systems 

n=oo 
(0,12 I} 

n + n=-00 
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where 
00 

I = f g (x) dx , n > 0 ; 
n n 

-oo 

and 
00 

I = f ( (x)dx, n < 0; 
n -oo -n 

and the set I I 2n + 1 
n = oo 

ln=-oo is the complete 

set of the commuting integrals of motion for these sys
tems. 

Now let us turn back to formulae (32), (33). In terms 
of particles related to our dynamical system, these for
mulae have a rather simple interpretation. Indeed, the 
variables p ( A ) and ¢ ( A) for A fixed, compose a pair 
of the canonical variables of the type of "number of 
particle-phase", so that p (A) can be interpreted as the 

particle density, p (A)= (-1- - 2 A) as the momentum and 
· .SA . 

( ) ( _L 2 ½ 
h A = SA +2A)=(p (A)+l) ' as the corresponding ener- · 
gy. In other words, the first terms in right-hand side 
of formulae (32), (33) represent the contribution to ener-
gy and momentum from the particles of the mass = 1 
Just in the same way it can be shown that the second terms 
in (32), (33) represent the contribution from the particles 
of the mass 8/ y. Now we proceed to the last terms in 
(32), (33). Unlike the previous cases, the phase space of 
the corresponding elementary object is four-dimensional, 
so that it can be represented as a particle with internal 
degree of freedom. Its energy and momentum 

h = A ~ -X k ( _l_ + 16) ' 
k 1y 1Akl2 

p = A ~-A k ( _J_ _ 16 ) , 
k .ly IA 12 

are linked by the rela.~on 
2 2 2 

· h k= pk+ Mk ' 

20 

where 

M = M(0) = J§_ sin 0, 
·y 

i.e., its mass varies from O to &.. 
y 

depending on the 

internal state. It .is possible to write explicitly the solu
tions to eqs. (1), (2) which describe the motion of finite 
number of the particles of the second and third types. The 
equality p (A)=O corresponds to this situation. Under 
this condition the kernels of system of the type (17) appear 
to be degenerate and the system can be solved explicitly 
(see /8 / ). We write here the final formula 

u (x,t) = 2.i £'n det (1 + 'V (x,t)) 
det(I-'V( X, t)} , 

-1 -1 
'V .k(x,t)=.irn.[ (. 

J J J 
+(k] exp{-1i[(_ -(16(.) + 

J J 

-1 -1 
+( k -(16( k) ] x -2i[(j +(16( j) ]t I, j, k =l, ... ,N. 

. 
In the particular c1i.se, when n1 = 1, n 2 = 0 

. l 
u(x,t)=.4a-ctg(exp{ . (x-vt +x 0)1), 

y'I-v 2 . 
where 2 • b 1-16 K 0_ ~ --2 . 
E = sign , v = 

2 
· , · x 

O 
= Lu y'l- v , rn =th . 

1 +16K 2K 
For this solution one has 

1 . 
-(u(oo,t)-u(-oo,t)) =l 

2 77 

and this additional characteristic of the second-type 
particles can be treated as some sort of charge (see 
refs. 19 ,101 ). An analogous quantity for the solution with 
n 1 = 0 , n 2 = 1 equals zero, so it can be said that 
a particle of the third type represents the relativistic 
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bound state ._of two second-type particles with opposite j 
charges. l 

Thus, 'Yle. have shown that within the classical field l 
theory our dynamical system can have elementary exci- . 
tations of the following three types: 1 

1. The neutral particle with mass 1; j 
2. The charged particle with mass 8/ y ; • 

3. The bound state of two particles of the second l 
type with'. opposite charges, with mass varying from · 
0 to 16/y depending on the internal state. In the standard · 
approach, based on the perturbation · expansio_n in the 
parameter y , we would find that with the field u ( x, t ) 
there is connected only one sort of particles - excitations 
of the first type. 

At present we are studying the question as to what 
extent the obtained results will hold in the quantum 
version of the considered model. 
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