OБbEAИHEHHbЙ ИНСТИТУТ
ЯAEPHbX ИССへЕАОВАНИЙ
A.Uhlmann

3177/2-74
UNITARILY INVARIANT CONVEX FUNCTIONS
ON THE STATE SPACE OF TYPE I
AND TYPE III VON NEUMANN ALGEBRAS

ААБОРАТОРИЯ
ТЕОРЕТИЧЕСНОЙ ФИЗИНИ

E2 - 7987

A.Uhlmann

UNITARILY INVARIANT CONVEX FUNCTIONS ON THE STATE SPACE OF TYPE I AND TYPE III VON NEUMANN ALGEBRAS

Submitted to Reports on Mathematical Physics

Is ${ }^{1,2,3}$ there has been introduced a partially ordering of finite dimensional density matrices, respectively states over finite type I factors. In this simple case of flinite-dimensional density matrices we have paled the density matrix \mathcal{G} mare mixed* or more ohaotio than σ, if ρ turns out to be a convex linear combination (e mixture in the sense of Gibbs and won Neman) of density matrices C_{i} which are unitarily equivalent to σ. Then and only then the eigenvalues of g are the transform of those of σ by a bistoohastic transformatron.

Besides applications to matrix inequalities, to the definilion of "general equilibrium states" as maximal mixed states of - given compact convex set of states, to Kossakowski's strictly irravarable quantum processes ${ }^{4}$ and to more general evolution processes: 5 re mention explicitly three facts:
a) Git en Gibbs states

$$
\rho(T)=\exp (-\beta H) / S_{p} \exp (-\beta H) .
$$

we have

$$
\rho\left(T_{2}\right)=\rho\left(T_{1}\right) \quad \text { \& } T_{2}>T_{1}>0 \text { or } 0>T_{2}>T_{1} .
$$

b) If a density matrix g an be written as

$$
g=2^{-1} \exp \left\{\lambda_{1} b_{1}+\ldots+\lambda_{n-n} b_{m}\right\}
$$

with the help of certain hermitian matrices by then for overs density matrix o matiafigig

$$
S_{p} \times b_{j} \cdot S_{p} s b_{1}, j \cdot m_{2}, \ldots, m
$$

1t follows from ρ ひく neosssarily $\rho=0$ ．
c）For every set a_{1}, \ldots, a_{m} of positive semidefinite watrices，the sum of whioh equals the identity matrix，we have

$$
\rho \longmapsto \sum S_{p}\left(a_{j} \varphi\right) \cdot\left(S_{p} a_{i}\right)^{-1} \cdot a_{j} .
$$

In these examples -3 means the relation more onaotio＂ （ mare mixed＂）with reapect to the group of all unitary trans－ formations（ see definition 3）．

Wehrl ${ }^{6}$ and Alberti（ unpubllshed）have generalized results of 2,3 to infinite diaenstonal denaity matrices．Alberti 7,8 sucoeeded in constdering the ordering relation in question for poeltiva linear forms of a type I van Neumann algabra with finlte centre in a separable 时lbart spaco．

In this paper meneralize these theoreas to the positive linear forns of oountably deconposable \boldsymbol{F}^{*}－elgebras of type I and III．

For some basio definitions and resulta we refer to the book： of Heumark ${ }^{9}$ ，Dixpiler ${ }^{10}$ and Sakai ${ }^{11}$ ．It is a pleasure to thank P．H．Alberti and G．Lassnor for stimulating disoussions．

2.

Let us consider a C^{*}－algebra A．We denote by $A^{\text {aut }}$ the group of ${ }^{*}$－automorphisas of A ， $A^{\text {U }}$ the group of unttary automorphieas of 4 ， the space of oontinuoue linear forms orar A ， the oone of positive innear forms orer A ．

Fe adopt the following conventions : With $r \in A^{\text {ait }}$ the τ transform of the element $a * A$ is written a^{r} and the transform of a linear form $f \in A^{*}$ is given by $\left.f^{r}\right)(a)=f\left(a^{z}\right)$. The automorphism τ is called a unitary one ff therm is a unitary element $u \in A$ with $a^{2}=u a u^{-1}$. In this case me also denote a^{2} and f^{T} by a^{u} and f^{u}. Int G be a subgroup of $A^{\text {auth }}$. In the remainder of this seotion we express in slightly different ways the situation, that a linear form f is the weak limit of convex linear combinations of the linear forms $g^{z}, \quad \tau \in G$ with a certain other linear form g. To this end we neeafed some definitions.

Definition 1: A subset X of A is called a G-set, if and only if 1) X is weakly olosed
2) X is a convex set (with respect of the real linear structure of A)
3) X is animarinati: $1=e$, if $f \in X$ and $t \in G$ it follows $f^{T} \in X$.

Te remark that the intersection of an arbitrary number of Gussets is again a Coset. Every continuous linear form is containned in at least one Greet.
Definition 2: Lot X be a G-set. A G-function Y on X is a realmraluad function

$$
f \rightarrow Y(f),-\infty<Y(f) \leqslant+\infty
$$

defined on X satisfying the following conditions:

1) Y is weakly uppormaontinuous, 1, f., for orery-reel λ

$$
\{f \in X \mid \Psi(f) \leq \lambda\}
$$

is a weakly closed set.
2) Ψ is a oomrex function on x, ie., far $0 \leqslant p \notin 1$

$$
\Psi(p f+(1-p) g) \in p \Psi(f)+(1-p) \Psi(g)
$$

j) $\Psi 16$ G-idreariant:

$$
\Psi(f)=Y\left(f^{\tau}\right), \quad \tau \in G
$$

If $X \geqslant Y$ denote $G-B e t s$, the restriction on Y of every G-funation on X is a G-funotion on Y. Jet us now consider a special family of Gurunctions on A.
Lyman. For every $a * A$ the function

$$
\begin{equation*}
\Phi(f, a, G) \cdot \operatorname{mor}_{r \in G} \operatorname{Re} f\left(a^{\tau}\right) \tag{1}
\end{equation*}
$$

is a G function on A^{*}.
For the proof we only have to note that the supremos of a set of continuous funotionals is upper-continuous and oonvex. The invariance 18 a trivial consequence of (I) as well. The function (1) is bounded br $\|f\| \cdot\|\|$ and convex in the argument $a \in A$ too. These functions are therefore norm-continuous both on A and on A^{*}.
Theorem 1: The following three conditions for two elements gif $\& A^{*}$ are mutually equivalent.
(i) If X is a G mat and $g \in X$, then $f \in X$ too.
(ii)If X is a Gusset containing f and g then we hare for every G function Y on X the inequality

$$
\Psi(f) \leq \Psi(g)
$$

(iii) For every a A the inequality

$$
\Phi(f, a, G) \leq \Phi(g, a, G)
$$

is valid.
Let us first remark that the theorem is rather at the surface. Indeed, it really does not depend on the C^{*} - oharacter of A (see ${ }^{5}$) and the more it does not even depend on the multiplacative structure oi A. To prove theorem I me note, that the step (ii) $\rightarrow(111)$ is covered by leman 1 . Now, let (1) be valid and denote by Ψ a G-function on X. The $\operatorname{set}\left\{\bar{D}_{r} X \mid \Psi(\tilde{f})=\Psi(g)\right\}$ is a beset containing g and hence f. This proves (ii) frons (1). Let us now assume proposition (iii) to be valid. Then $g \in X$ and $f \ell X$ for a a-set X will give a contradiction: There exist a
 frying $\varphi(h) \leq 1+\varphi(f)$ for all $h \in X$ (asur). Furnter, $\Psi(h)=\sup \varphi\left(h^{v}\right)$ is a q-iunotion on A^{*} With $\Psi(g) \leqslant 1+\Psi\left(\psi^{*}\right)$ thus contradicting the inequality (11). Now $\varphi_{1}(h)=\varphi(h)-i \varphi(i h)$ is a complex linear form on A with R. Y, φ. Beau se 4. is weakly oontinuous there is an element a A A with $Y_{4}(h)=h(a)$ and therefore Ψ is of the form (1).

Definition 3: $L_{\theta} t$ gif be two continuous linear forms over 4. We beg that f is more e-ohaotio" (more affixed") than E and write

$$
g<f \mathrm{rel} . G
$$

If and only if they satisfy the three equivalent conditions of theorm 1.

This is e transitive relation, $g<f, f<h$ implies $g<h$. If $g<f$ as well as $f<4$, we write $g \sim f$ rel G. The relation - \sim rel. G^{a} provides us with equivalence olasses $\left\{f f_{0}\right.$ and the relation $\langle\quad$ IEl.GN provides us with a semiordering of these equivalence classes.

The set

$$
\begin{equation*}
\{\{\mid g<\{\text { rel } G\} \tag{2}
\end{equation*}
$$

is the manliest G-5et containing g; it ia the Gusset generated by $g^{\text {a }}$. Because the norm is not changed by - automorphisms and the noil ia at most decreasing by performing comer linear combination and weak limits, the norm of ores el ament of (2) is $2 f$ os than the nom of g. If, therefore, A contains an Identity, the frost generated thy g is weakly oompeot. In this case, by standard teobaiques, wo see that ovary east X contains
 A linear functional f is said to be "maximally G-ohaotio", it there is a minimal onset Y with $f \in Y$. Obviously, in this cast, Y is the f-set generated by f_{1} If s functional f is a G-ixeariant one, then f is maximally Gmohotio. (The oomycise statement is wrong, in general .
mamore af Let Ψ be a Gfunotion on the weakly compact Gest X. Denote by 9 the sot of all pas re (a, λ), $a \in \mathcal{A}, \lambda$ real number such, that

$$
\begin{equation*}
\Psi(f)=\Phi(f, a, 6)+\lambda \quad \text { all } f \in X \tag{3}
\end{equation*}
$$

Than

$$
\begin{equation*}
y\left[y=5 y_{p}[\theta\{1,0, G)+\lambda]\right. \tag{4}
\end{equation*}
$$

The proof ta waged on a theorem of Mokobodalit (bes le), acoording to which Ψ is the oupremum of tho set of those affine functional ψ on X math $\Psi>\varphi$ on X which can be extended to affine continuous funotionals on whole 1 . There exists at 4 and a real λ with $R e f(a)+\lambda=\varphi(a)$ on X (sea the proof of theorem 1). Now $\Psi(f)>x+\operatorname{Re} f^{T}(a)$ all $r \in G$ and $f \in X$ and we only have to tale the supremun wi th respect of the elimeats of G. Next we remain that from $g=g^{*}, g<f$ It follows fo f^{*}. Further, if s ts a G-set of hermitian functionals, we mas restrict ourselves to the hermitian elements $a \in A$ in the proofs of thooresis 1 and 2:

Corollary s Lat $9=9^{4}$. Than theorem 1 remains true if wa restrict ourselves in (iii) to all hermitian of A. If the g -sent X consists of hermitian functions only, then theorem 2 remains true if we take instead of S its subset (a, λ) with hermitian $a<A$.

3.

Lat us now consider a \boldsymbol{W}^{*} - algebra y and ito group $G=M^{\mu}$ of unitary atomorphign (- following usual oustoms, we write M^{*} for A in the case of \boldsymbol{T}^{*} malgobrai). As usual we wite $p \sim 9$ resp. $p 49$ for two projectors of M^{*} ff there is an element $v \in M$ with $p=v v^{*}$ and $q=v * v$ rasp. $q \geq v^{*} v$ Thus the relations " $\sim, 4$ " are defined as usual for prajeatars of M white we use the symbols for al aments $f, g M^{*}$ as A. dicated by our definition 3 .

We now assume $p_{2}<p_{1}$ and $p_{4} \sim p_{2}$ for two projectors of
 Repeating the arguments of proposition 2.2 .4 of 11 we see that the p_{j} form a decreasing sequence of projections and

$$
p_{4}=r+\sum q_{i} \quad \text { with } \quad q_{i}=p_{i}-p_{i+1}
$$

and the weak limit r of the p_{j}. Hence we have

$$
\sum f\left(g_{i}\right)<\infty
$$

for every positive linear functional $f . \bar{p}_{i}=\sum_{i=j} q_{i}$
gives us $\bar{p}_{3} \sim p_{2}$, However, $q_{1} \sim\left(p_{4}-p_{1}\right)$ and $p_{3}+q_{1}=p_{4}$. Therefore there exist unitary elements u_{i} commuting with β_{1} and r and transforming P_{2} into P_{j} and q_{1} into Fj^{j}. Tailing into nooount that every continuous linear functional is a linear combination of positive ones, we obtain:

Lemme 2: If $q<p$ and $q \sim p$ for two projections of a $M^{\dagger}-$ algebra, we can find unitary elements u_{i} of w whom commute with P and satisfy

$$
\begin{equation*}
\Sigma\left|f(p)-f\left(q^{(u)}\right)\right|<\infty \text {, all } f \in M^{+} . \tag{5}
\end{equation*}
$$

 mutually orthogonal central projections with sum z, we have

$$
\begin{equation*}
\Phi(f, a z, M)=\sum \Phi(f, a y, M u) \tag{6}
\end{equation*}
$$

Which is to be seen from the fact, that

$$
u=\sum z_{j} u_{j}+(e-2)
$$

With unitary u_{l} is unitary again.
Further, if ache M has a speotrum, consisting of a finite number of paints only, we may choose the abovementioned central projectors z_{l} in such a way that the following assertion is true for every $z_{i} a \quad$ for the given element $a \in M:$ if $\lambda \neq 0$ is an eigenvalue of the element $z_{i} a$ and p the associated projector, the central support of p equals z_{i}. Using equation (6), reminding that every hermitian element is the nom limit of elements with finite discrete spectrum and beoause the functions Φ are norm-continuous, we come to the conclusion:

Lemp.3: We have $g<f$ rel. M^{u} for two hermitian continaous functional of M if and only if

$$
\Phi\left(f, a, M^{u}\right) \leqslant \Phi(g, a, M)
$$

for all hermitian elements aE M satisfying the comidrinna (i): a hes finite discrete spectrum, ie, speotral deoomposition

$$
\begin{equation*}
a=\lambda_{1} p_{1}+\cdots+\lambda_{m} \rho_{m}, \quad \lambda_{j}=0 \tag{7}
\end{equation*}
$$

(ii): the projections p_{4}, \cdots, P_{m} of (7) have the sane central artier $c=c\left(p_{j}\right)$.
Ye now rewrite (7) in the following manner: Define the projectors and numbers s

$$
\begin{align*}
& q_{2}=p_{1}+p_{2}+\ldots+P_{*} \tag{8}\\
& \mu_{3}=A_{2}-\lambda_{5+1} ; \quad \lambda_{m+1}=0
\end{align*}
$$

It 13

$$
\begin{equation*}
a=\mu+9, \cdots+\mu m q m \tag{9}
\end{equation*}
$$

 III and H^{*} its cone of positive linear fo mss Every fe M^{+}is maximally $\mathbf{M}^{*} \rightarrow$ ohaotio and $g \boldsymbol{5}^{5}$ rel A^{*} is equivalent to $g(z)=f(z)$ for all zeE, Z being the centra of M_{a}

The first assertion of this theorem 15 a gonsequenot of the
 the propositions (i) and (11) of Lemme 3. Since M is of typo III and countably decomposable, every projection P, of (7) is aquiral ont to its central osier o. The ane ie true for the
 $\mu_{j} \geq 0$ and therefore

$$
\Phi\left(f, a, M^{4}\right) \geq \sum_{\mu_{j}} f\left(q_{j}{ }^{\alpha}\right) .
$$

If wo ohoose a aequanog of unitary elements u_{j} tulellilig the conditions of lemon 2 far the pair of projectors of and then for every j the sequence $\left(f f^{4} j\right), 1=1,2, \ldots$ ooarerges to $f(c)$. Now $\lambda_{1}=\mu_{1}+\mu_{4}+\ldots+\mu_{m}$, thus

$$
\Phi\left(f, m_{2} M^{4}=\lambda_{4} \Phi\left(f, t, M^{4}\right)=f(\epsilon)\right.
$$

However, the rightwhad side of this inequality amnot be smiler than the left hand side trivially. Hence equality hold e and the theorem is proved. Fy the arguments of len g 3 we belly
see that, because of this result, for every aa $\boldsymbol{a}^{\boldsymbol{*}} \mathrm{M}$ there is a unique central element $x=z(a)$ with $f(z)=\Phi(a)$. Together with theorem 2 we thus conclude

2heorgmat let u be countably dacomposible of type III, For every $a=a^{*} \in M$ there is a $x \in(a)$ in the

$$
\begin{equation*}
\Phi\left(f, a, M^{4}\right)=f(z) \tag{10}
\end{equation*}
$$

If X is a M^{μ} - set of M^{+}and X_{Z} the restrictions on Z of its elements, then every upper-oontinuous and convex function F of X_{z} an bs uniquely extended to a M^{μ} - function on X by the prescription

$$
\begin{equation*}
\Psi(f)=F(\bar{f}) \tag{11}
\end{equation*}
$$

Here f denotes the restriction on Z of the linear form f eX $\leq M^{+}$. We now turn to a countably deoompoaible type
 and if Z ia the centre of M, one knows ${ }^{11}$ that M is - - isomorph to $Z \Theta I_{n}$, which may bo identified with M in an obvious way. The elements of the form

$$
\begin{equation*}
a=\sum z_{j} 8 a_{j}, \text { finite sum } \tag{12}
\end{equation*}
$$

with mutually orthogonal central projections z_{j} and eleannta a_{j} E In having opootra consisting of finitely many point e only, provide us acth nora-donse subset of the at of horatian elements of M. Hence $y^{-1} /$ rel. M^{4} for two elements of
M^{+}ifs condition (111) of theorem 1 is true for all elements of the for (12). With unitary $u_{j} \in I_{n}$ the element

$$
u=\sum z_{j} 0 u_{j}+\left(e-\sum z_{j}\right) \otimes 1_{n}
$$

is unitary in M and gives, applied to (12),

$$
a^{\mu}=\sum z_{j} 0 a_{j}^{\mu_{j}}
$$

On the other hand, avery unitas y automorphism of μ may be represented in this way for a given element of the form 42). Therefore, th th the notation above and $f \in M^{+}$, we hare

$$
\begin{gather*}
\Phi\left(f, a, M^{n}\right)=\sum \Phi\left(f_{j}, a_{j}, I_{n}^{n}\right) \tag{13}\\
f_{j}(a)=f\left(x_{j} \infty a\right), \quad a \in I_{n}
\end{gather*}
$$

 and $a_{j}=\sum j j_{j}$ jg as indiontad by (7), (B) and (9). We may assume (eventually after adding a multiple of the identity) that $a \geq 0$ and $\lambda_{j,} \geq \lambda_{j} \geq \ldots \geq 0$. Since $\mu_{j i} m 0$ wa are allowed to apply a result of Alberti ${ }^{7}$ showing that

 that overs type I we algebra is the alreot sum of f-agebras of
type I ，we can sumarize the arguments above as follows：
Theorem＿5：Let M be a countably decomposible w－algebra of type I ．The In ear functional if is more M^{4} mitotic than the positive linear farm g if and only if （1）$f(x)=g(x)$ for all central element of （2）$\Phi\left(f, p, M^{u}\right) \leq \Phi\left(g, p, M^{u}\right)$ for all projection operators $p \in M$ ，which may be represented as a finite sum of mutually orthogonal abelian projectors．

We see further by（13）to（15），that for every $a \geq 0$ of the form $\mathbb{Q}), \Phi\left(f, a, M^{u}\right)$ is a positive linear combination of functions of the form $\Phi\left(f, p, M^{\mu}\right), \quad P$ being a projector． If P is an infinite sum of mutweliy orthogonal abelian projectors having the same central support a ，then $\phi\left(f, p, M^{\mu}\right)=f(z)$ Combining indie with theorem 2 we get

Theorem 6：Let M be a countably deocmposible type I䗑 algebra ．Bray $M^{\mu}-\mathbf{f u n c t i o n}$ on a compact M^{μ}－subset of M^{+}is the supremum of functions of the form

$$
f \rightarrow \sum \mu_{j} \Phi\left(f, p_{j} M^{\mu}\right)+f(z)
$$

where $;$ is a oantral element，$\mu>0$ and every P_{j} is a finite sum of mutually of thognal abelian projectors．We may rewrite theorem 5 in a manner which is for $M: l_{\text {on }}$ due to Alder－ ti．Let us denote by K the normmolosed ideal of M generated by its abslian projectors．If f_{k} and f_{2} denote the restrio trons of f onto K and Z ，one sees from theorem 5 that $g-f$ rel M^{μ} if and only if

$$
\begin{equation*}
f z=9 z \tag{16}
\end{equation*}
$$

It is to be seen that the second condition refers to the normal parts and thus the first condition is essentially a condition for the singular parts of the functionals.
In the special case $M=I_{\infty}$ we can express, following Alberti and Wehri, the second condition of (16) in a simple Way: There ara

$$
g_{K}(a)=S_{p}(a-), f_{K}(a)=S_{p}(a \rho)
$$

Then the mentioned equivalent condition is

$$
\sum_{i=i}^{m} \lambda_{i} \leq \sum_{i=1}^{m} \mu_{i}, \quad m=1,2,3, \ldots
$$

where $\lambda_{1} \geqslant \lambda_{1} * \ldots$ resp. $\mu_{4} \pm \mu_{a} \in . .$. denote the eigenvalues of $\}$ resp. 6 . Manly, by a theorman of fy Fan

$$
\lambda_{1}+\lambda_{2}+\ldots+\lambda_{m}+\sup f\left(p^{\mu}\right), \quad \operatorname{dim} p=m
$$

It is an open question, to obtain similar theorems for algebras of type II. It seems naturally to suggest that the following conjectures are true for general $W^{\text {a }}$ - algebras: conjecture 1: For positive f the function $\phi\left(\mathcal{F}, P, M^{m}\right)$ depends only on the equtralenoe glass of the projector p. Conjecture 2: g ia more $\boldsymbol{H}^{(4}$ ahaotio than f for two positive liner forms of M if and only if for all projections p

$$
\Phi\left(1, r, M^{4}\right) \geq \Phi\left(q, r, M^{\prime \prime}\right) .
$$

I. A.Uhlmann, Wiss.Z.KMO, Loipzig, MiR 20, 633, 1971.
2. A, Uhlmann, Wiss.3.KHO, Leipzig, MNR 2l, 421, 1972.
3. A, Uhlmann, Wiss.Z.KHU Le1pa1g; MNR 22, 139, 1973.
4. A. Kossakomaky, Fep.Meth. Phys. 3, 247 (1972).
5. G.Lassner, G.A.Las日ner, preprint E2-7537, Dubne, 1973.
6. A,Wehrl, predrint, Wien, 19; ©
7. P. M. Alberti, proprint KHU-HRP-7305 , Leipzig, 1973.
8. Alberti P.M. Thesis, Leipzig 1973.
9. K, A. Heumark, Normiorte Algebren, VEB Yerlag Wisaensch. Berlin 1959.
20.J. Dixaler, Les $C^{* *}$ Hgebres ot leurs representations, Gauthiers -Fillars, Paris, 1964
11.S.Salcal, $C^{*}-$ algabras and W^{*} - aIgebras, Springer-Verlag, NI-Heddelberg:-B,rlin, 1970 .
12. P. A.Meyer, Probability and Potentials, Maledell Publishing Compeny, Masaaqussetts, foronto , London 1966. Fusalan translation Mir*, Mosoow, 2973.

Recoived by Publishing Department

 on May 27, 1974.