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1. Introduction

To explain the experimental data on the pion form
factor 'F_(t) already for ¢ > 1 GeVZ/l/ one must
somehow take into account the inelastic contributions.
There are developed several indirect methods/2+3/ how
to do it. But all of them are model-dependent and their
correctness can be verified only through the comparison
of obtained formulas with the existing experimental data.
So, with an appearance of new experimental data the theo-
retical problem faces us of an extension of F"(t) to still
higher energies. Moreover, although at present we have
experimental information about the pion form factor up
to t = 9.0 GeVZ, the data for values of 2.5 GeV2<t<
< 9.0 GevVZ cannot be (without some theoretical and
model-dependent assum})ﬁons) unambiguously identified
as being pionic events’*>/ and we can doubtless confide
only in the data for t < 2.5 GeV2. For that reason, even
if some explicit formula of F_ (1) 1is consistent with the
existing experimental data in some restricted region of
t we are not allowed to believe very much in its pre-
dictable ability values of t .

In this paper we would like to demonstrate the method
of prediction of the time-like region form factor tail
which is independent of the afore-mentioned methods of
the inclusion of inelastic contributions. More concretely,
combining the real and imaginary parts of F"( t) from
resonant region (which are given by explicit formulas
obtained by the dispersion method) with sum rules derived
for them we interpolate in a definite sense the pion form
factor between the elastic and asympiotic reglons.



Because, owing to the previous method, |E (t)] isnow
known along the whole cut (in some reasonal:?)le approxi-
mation, of course) the upper bound for the space-like
region values of F (t) and the support for existence of
form factor zeros from the so-called modulus representa-
tion are obtained.

Finally, the space-like region behaviour of F,(t) is
predicted using the unsubtracted dispersion relation and
combined knowledge of Im F, (t) from the explicit for-
mula valid in resonant region and from sum rules.

2. Behaviour of the Real and Imaginary Parts of Form
Factor in Resonant Region

It is well known that the electromagnetic pion form
factor can be written in the following phase representa-
tion (for more details see ref. // )

F_ (=P (Oexpl L] Mdt'}, eh)

Ty t'(t'—t)
where P, (t) (normalized to P (0) =1 ) is an a.bitrary
polynomial and its degree can be determined only by some
physical requirements. Commonly, it is taken not to
destroy the asymptotic behaviour of F,_ () assumed in
deriving (1). So, in our case E (t) takes the following
concrete form

P ()=1+A-t, : @

where A is an unknown constant which can be determined
only through the comparison of l:r(t) with experimental
data.

To obtain the explicit form of F_(t) from(1)we shall
choose some concrete parametrization for a:g'F"(t)
There are some instructions how to do it. Namely, in
elastic region argF_(t) is identical with the isovector P -
wave 7 7 scattering phase shift § } and therefore our
parametrization must possess all its basic properties.

One can see immediately that the following form



1 (1+q%)(q2~q2%)+iaq ?
2i (1+¢2)(q%2—-q2)-iaq3
has correct threshold and also (due to the p -meson)
resonant behaviour. q = yt—4 isthec.m. momentum,
q = \/mP§—4 and a 15 a constant which, following the
rgqu ement

arg E_(¢) =

3

m, [
m2 —¢
lﬁm2 —_— a1, (4)

:—-mp 1glarg Fﬂ ()}
can be expressed through p -mesonparameters (m L)
by means of the following relation

3/2
a-i-e-(1+.;12)- (%)

P
Now inserting (3) into (1) and calculating the integral
by means of the theory of residues we obtain the following
explicit form of the pion form factor
(i+q )i+qy)i+qy)

»

(9—q;)

F (t)= P (1) 1 -

A (9+9,)q+q, Ng+q,) i-q)

where q, (i=l,..,4) are the positions of the branch points

of {he integrand in (1) and they are roots of the numerator

of the logarithm in (3). The connection betweenq and
the p -meson parameters looks as follows

—— q. =

W=——T———""=' % — -
V7, ~V5 Vi, —E VT, E
. i 7
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where z, (v=1...,3) are solutions of the cubic equation
2 2 2
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and the signs of \/— in (7) are taken to satisfy the
following condition

V7 VEVE = - gq—z- ®

P
The best tit of the existing experimentaldata in space-
like and time-like regions simultaneously by our formula

(6) (leaving m, s l"p ,A as free parameters) gives

mp=778 * 4 MeV
l"P =152 * 4 MeV

A =0.0027 = 0.0003 [~2] (10)

and graphically is shown in fig. 1.
Then aumerically, using the values of parameters
given by (10), from (7) we get

ql = —:iO.%0504 [‘l]
q,, =~2.565913 +i0.289811 [x]

q,=+i1.048006 (1]

q, =+2.565913 +i0.289811 (u]. Qan

The behaviour of the real and imaginary parts of the
pion form factor (resulted from (6)) is given by the expres-
sions

P ()R 2 .9 2
ReF" (t) = 1 ( ) lq4 (2ﬂ1ﬁ2+31 Ba_ZﬁzBa_az _ﬁz)q -

-B,8, (af + B: A3 (2a)

ImF_(t) = _P.lﬁ)_R_.{(Bl _Zﬁz_ﬁa)q:" -
6 D(q)



-l(af+B3XB, -8 )+28,8,8, 14}, (12b)
where

1+8)

R= — (1482 L2
B TR

D{(q)=1[(q2 +aj +Bz) 2a q][(q +a; +62 +2¢q q](q +5 )
and for the sake of simplicity we have used the redefinition
B, =—lmq]
e, =—Req2 =Req,

By = lmq2 = Imq,

33= ln'|q5l .
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g. 1. Theoretical predictions for |F, (t)|2 by means
of (6) with (10) in resonant regicn.



,The pion charge radius calculated by means of (6)
with (10) takes the value

<2¥% _ 068+ 0.01F. (13)

Here we would like to mote that we did not take into
account p-o» interference in our considerations because
in such a way, as it was used to fit the ORSAY-data /6/
it is inconsistent with reaiity condition

F*(0) =F,_(t*). (14)

' However, we believe that this neglect of p-w mixing in
our scheme has no an extraordinary effect for our eventual
results in which we are interested in this paper further.

3. Prediction of Time-Like Region Form Factor Tail

Taking into account theoretical /7-%/ and also experi-
mental /5/  (at least in a finite energy interval) indica-
tions that

f!!im F, (1)-0 : (15)
one can write for F(t) the unsubtracted dispersion re-
lation

ImF, (t")
E (t)..l. f ~dt’ ase)
from which the following sum rules can be obtained
1-L f ._I'.H.F'"_(t_)d:‘, (17a)
LA [ 4 )
ImF_(t°)
o0 7 ;
Se8 ,,if —g— &t (1)
t

Further, from (15) one can see immediately that the



real and imaginary parts of the pion form factor have the
following asymptotic behaviour

tim | M ReF ()} < «, (18a)

1~ 00

. N
im |t ImF ()] < =, (18b)
t» o
where in priaciple M can be different from N (then the
asymptotic behavxour of F (t) isdeterminedby means of
that which takes the smaller value) and both of them are
positive.
Next, the real andimaginaryparisof F_(t) for t>t,
are represented by the following formulas

ReF (1) = ReF_ (t‘:)(%)',vI (19a)
ImF_(¢)=InF_ (tc)(—:&)pj (19b)

where constants ReF_(1;) and ImF (t) equalexpres-
sions (12a,b) taken at t=1t_, respectively,and t_,M ,
N are unknown parameters.

Of course, in principle, one could choose more compli-
cated forms for the real and imaginary parts of E (t)
that (19a,b). However, as it will be seen later, an the
existing data for t>t_ can be described already by the
(12b) with (17a,b) we get two equations for the determina-
tion of t, and N from which we obtain numerically

t =3600[,21  N=624. (20)

To predict the tail |F_(1)| we are in need of ReF, (1)
also. For that reason we must determine the parameter
M in (19a). Applying the Cauchy theorem to the function

EO one can get the following sum rule for ReF, (1)

tVi—=d .
Vi= 7 “ReF (t)d, 1 @

4 vy O—-4



from which, using (12a), (19a) and taking t., already
given by (20) we obtain the equation for M . Numerically,
we get

M=1.10. _ 22)

By means of (19a,b), (20) and (22) one can express the
time-like region form factor tail in the following defini-
tive form

1/2
I, ©1=t1-2695 (38210 12,53 500 X0524% a3
tfrom which it is straightforward to see that the pion form

factor has 1/t —behaviour for t -+~ , The comparison
of (23) with experimental data is shown in fig. 2.

4. Existence of Zeros and Upper Bound on Space-Like
Region Form Factor Values

We suppose that the pjon form factor has only a finite
number of zeros. Further, let us consider the new function

)
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Fig. 2. The tail |F (t)] compared with th% existing
experimental data. " denote FRASCATI-data / /



En,F”(t)

Vv t—4

(29)

which is analytic with the same cut as F_(t) and in addi-
tion it has cuts due to the zeros of the form factor. Then
an application of the Cauchy formula to (24) yields the
following well-known modulus representation/10,11/

F_ (1) =B(dexpl YL [ BIBLD &y @5
T4 (rr4) -4
with
[B(t)f< 1. (26)

Then extracting B(f) from (25) we obtain the upper bound
for space-like region values of the pion form factor
(see fig. 3)
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Fig. 3. Upper bound on space-like region values of form

factor from (27) and the predictions of F(t¢) Irom /(16)
with (12b) and (19b). f denote new data from ref. .



(VAo = Wi ()]

T 4 (e=t)yit'~4
and for ¢=0 the following sum rule
2 BIE gy (28)
T4 t'yt"-4
where the equality sign holds if and only if F, (t) has
no zeros.
There is another sum rule for testing of existence of
the form factor zeros

| I-"v (1) |< exp de’} @270

F (¢
o] ( )I
| F Ak (29)
=f —e——dt’>0
2 -
4 (t’-4)3/2

which is also obtained my/ from the modulus representa-
tion (25) by using the identity of the form factor Phase for
4< t< 16 with the n» scattering phase shift 8 andits
threshold behaviour. The equality sign in (29) agaln holds
if and only if F (t) has no zeros in the cut 1t -plane.

Now using the values of |F,(t)] ford<tge, given
by (6) with (10) and for t>t_ using the tail (23), from
(28) and (29) we get

1 = 17092 - 0.9300 =0.78 (30)
1,~ 11284 +0.0016 = 1.13 (2417, (31)
where in the calculation of integral (29) we have used the

dimensionless variable x = to compare our value

with that (2p Iy =0.2) roughly estimated in ret.’"V .
Both results (30) and (31) indicate that the zeros of
the electromagnetic pion form factor do exist.
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5. Prediction of Space-Like Region Behaviour

The space-like regiun bekaviour of the pion form factor
can in principle be predicted from the modulus represen-
tation (25). Before doing so, the number of form factor
zeros and their positions must be found to specify the
explicit form of the function B (1).

Although, by means of the so-called logarithmic residue
and its modified version (taking into account (6) for
4<t<ce and for £>1_ the complex function consisting
of (19a,b) together with the reality condition (14)), we can,
in principle, carry out this non-trivial program, we know
beforehand that results obtained in such a way must not
be identical with those of the real pion form factor and for
that reason we shall not realize it.

There is another simpler way how to do it which also
allows one to verify the correctness of our model to a
certain extent.

We know the behaviour of ImF_(t) for 4 <t<t from
(12b) and for t>t, it is given by (19b) with the values
of parameters (20) determined by means of the sum rules.
Now inserting this combined knowledge about the imaginary
part of the pion form factor into the unsubtracted dispersion
relation (16) we predict the space-like region behaviour
of F (t) as it is shown in fig. 3.

he evident agreement of our predictions with the
existing experimental datz (see fig. 3) confirms that
ImE_(0) given by (12b) and (19b) with (20) is a good
approximation of the imaginary part of the real pion form
factor.

6. Conclusions

In this section we summarize the main results of our
work. Using the phase representation and a reasonable
parametrization of the form factor phase we have found
the explicit formula for F,(t) possessing all the basic
properties and describing the data in {finite time-like
and space-like regions simultaneously. Moreover, from
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this explicit formula we have obtained the behaviour of
the real md imaginary parts of the pion form factor for
t< 3.0 [p? 1 and the value of the pion charge radius.

Further, combining this result with special assumptions
in the asymptotical region and sum rules derived for
ImF, (t) and ReF, (1) we hive predicted the behavi-
ourole Y} for i, T t< poes

By means of the modulus representation we have tested
the existence of form factor zeros,and an uppet bound on
the space-like region values of the form factor has been
found.

Finally, using combined knowledge of ImF,(¢) and
unsubtracted dispersion relation we have predicted the
space-like region behaviour of F,(t) which i5 in a good
agreement with the existing vxperimental data.
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