СООБЩЕНИЯ
 ОБЪЕАИНЕННOГO ИНСТИТУТА
 ЯАЕРНЫХ
 ИССАЕАОВАНИЙ

АУБНА
C 323.4
E2 - 7977
D-68

V.Dobrev, G.Mack, V.Petkova,
S.Petrova, I.Todorov

ON CLEBSH-GORDAN EXPANSION
FOR $O(2 h=1,1)$

E2 - 7977

V.Dobrev, G.Mack, ${ }^{2}$ V.Petkova,' S.Petrova,' I.Todorov

ON CLEBSH-GORDAN EXPANSION

FOR $\mathbf{O}(2 \mathrm{~h}=1,1)$

1 Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia.

2 Institut für Theoretische Physik, Universität Bern.

CONTENTS
I. Introduction
A. Physioal motivation
B. A twomparameter family of infinite dimensional representations of the Euclidean conformal group
C. Outline of results
II. Invariant bi-lingar forms Supslementary series of unitaxy representations of $0^{4}(2 h+1,1)$
A. Covariant two-point keynels and their Fourier transforms
B. Expansion in projeotion operators. Positivity and normalization
C. Equivalent representations and Intertwining operetors
D. Wightman positivity
III. Dirgot product expansions_and Clebsh-Gorden_kernels
A. General form of the expansion. Normalization conditions
B. Amputation of soalar lines
C. The Plenoherel formula

APPENDIX A. A summation formula involving ratios of Γ - funotions APPENDIX B. Evaluation of a double sum involving Γ - iunotions. Ref'erenoes .
A. Physioal motivation

The problem of the direot produot deoompasition of two syin 0 unitary representations of the supplementary series of $\mathrm{SO}(2 h-1,2)$ (h-positive integer) arose in the study of a sonformal oovariant model of a self interaoting (quantized) soalar field (sea [M I]). The model originates from the Green function formulation of a (renormalizable) ϕ^{4} theory in aix-dimensions given by Symangitis: [s l] some 13 years ago; the disoussion of conformal covarianou was facilitated by a modifioation of the equation for the propagator invoiving the stress energy tensor [M3]. It is the desire to inoorporate this 6-dimensional model along with the physioal 4.dimensional onse that led us to work from the outset with the
 the advantage that we are able to cheok our formulas for $h=1$ With the known oase of $\mathrm{SO}(3,1)$ (see [N 1]). We are conoerned throughout with the Euolidaan formulation of the theory (see, Bug., [S 2]) in whioh the Lorenta group is replaoed by $S O(2 h)$ and the covarianoe under infiniteaimal oonformal transformations of $\mathrm{SO}(2 \mathrm{~h}, 2) / \mathbb{Z}_{2}$ is extended to global $0^{\uparrow}(2 h+1,1)$ oovarianois (the arrow \uparrow indicates that we do not oonsider transformations whioh change the sign of the $2 \mathrm{~h}+2 \mathrm{id}$ axis).

It is shown in[M 1] that the conformal expansion of the Eucliciean Ereen funotions allows one to diagonalize and solve the infinite set of integral equations for these funotions. As a result one obtains conformal oovariant opergtor product expanalions whioh hape been
suggested in a number of papers (see [F1], [M5] and references therein). It is also related to the problem of duality considered in [PI] .

For background and further references on the conformal group and its applications to quantum field theory the reader may consult the recent reviews [M2],[$[1]$ and [$M 1]$. Some preliminary results of this paper are quoted in Appendix A of [T2].

B. Atwo parameter family ot infinite_dimensional representations of the EuOliagen oonformal group

In order to fix notation and terminology we start with a brief description of a twomparameter family of (irreducible) representations $X=[\ell, C]$ of $O^{f}(2 h+1,1)(E=0,1,2, \ldots ; c$ is an arbitrary complex number). (A complete olassifioation of the unitary irreducible representations of $30(n, l)$ is given in [$\left.\begin{array}{lll}\mathrm{A} & 1\end{array}\right]\left[\begin{array}{ll}0 & 2\end{array}\right]$. In the ouse of $n=2 h+1$ these representations are labelled by one continuous and h dieorete parameters.)

We shall introduce a space C_{X} of infinitely differentiable (symmetric, traoeless)tensor-valued functions

$$
f(x)=f_{\mu_{1} \ldots \mu_{2}}\left(x_{1}, \ldots, x_{2 n}\right) \quad\left(\mu_{1}=1, \ldots, i n\right)
$$

on $\mathbb{R}^{2 h}$, whose behaviour at infinity is dictated by conformal oovariance. In order to reveal the meaning of the latter statement we shall first display the action of the representation \mathcal{X} on \mathcal{C}_{χ}. The Euclidean conformal group of $(2 h+1,1)$ acts transitively on the compactifioation $S^{2 h}$ of $R^{2 h}$. Here $S^{2 h}$ is the unit
sphere in $2 \mathrm{~h}+1$ dimensions related to $\mathbb{R}^{1 / 2}$ through the stereographic proje orion

$$
\begin{align*}
& \hat{\xi}_{\mu}=\frac{2 x_{\mu}}{1+x^{2}}, \mu=1, \ldots, 2 k, \quad x^{2}=x_{1}^{2}+\ldots+x_{24}^{2} \\
& \hat{\xi}_{2 h+1}=\frac{1-x^{2}}{1+x^{2}} \quad\left(\hat{\xi}_{\mu} \hat{\xi}_{\mu}+\hat{\xi}_{2 h+1}^{2}=1\right) \tag{I.I}
\end{align*}
$$

Its action ia generated wo the following transformations in $\mathbb{R}^{2 h}$;
a) translations and Euclidean rotations: $x^{\prime}=a+A x$

$$
a=\left(a_{1}, \ldots, a_{21}\right), \quad n \in O(2 h) ;
$$

b) dilatation $x=\rho x, \rho>0$:
o) conformal inversion

$$
\begin{equation*}
R x=-\frac{x}{x^{2}} \tag{1.2}
\end{equation*}
$$

The special conformal transformations are given by

$$
\begin{equation*}
x=R T_{B} R x=\frac{x-x^{2} b}{1-2 B x+b^{2} x^{2}}, \tag{1.3}
\end{equation*}
$$

where T_{B} is a translation: $\quad T_{B} x=x+B$.
We shall define the representation $x=[\ell, C]$ of the generating transformations a), b), 0) of $0(2 h+1,1)$ in C_{λ} in the following way (of. [TI]) :

$$
\begin{align*}
& {[U(a, \Lambda) f](x)=\Lambda^{Q} f\left(\Lambda^{-1}(x-a)\right)} \tag{I.4}\\
& {[U(\rho) f](x)=\rho^{-h-c} f\left(\frac{x}{\rho}\right)} \tag{I.5}
\end{align*}
$$

$$
\begin{equation*}
[U(R) f](x)=\frac{L(x)^{2}}{\left(x^{2}\right)^{C+h}} f(R x) \tag{I,6}
\end{equation*}
$$

Where

$$
\begin{equation*}
\tau(x)_{\mu \nu}=-\delta_{\mu \nu}+2 \frac{x_{\mu} x_{\nu}}{x^{2}}, \quad x^{2}=1 \tag{I,7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[g^{0 l} f(x)\right]_{\mu_{1}, \ldots \mu_{e}}=B_{\mu_{1} v_{i}} . B_{\mu_{2} \nu_{e}} f_{v_{1} \ldots \nu_{l}}(x) \tag{I,B}
\end{equation*}
$$

($B=\Lambda, 2$.). [The exponent $k+6$ in (1.5) is often denoted by d and ogled (scale) dimension of f i]

Now we are in a position to determine the behaviour at infinity of the tensor functions $f(x) \in C_{2}$. . Conformal covariance implies that if $f \in C_{X}$ then also $U(R) f \in C_{X}$. Using (I.6) and the involution property (I.7) of $\tau(x)$, we find that

$$
\left(1+x^{2}\right)^{A+c} r(x)^{2}[U(R) f](x) \underset{x \rightarrow \infty}{\rightarrow} f(0)
$$

Accordingly, se ball postulate that for any $f(x) \in C_{x}$ there exists a :Pinite (tensorwalued) limit

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\left(1+x^{2}\right)^{1+c} \tau(x)^{02} f(x)=A^{t} \tag{1,9}
\end{equation*}
$$

Wo shall see in sea. II that the representations X, so defined, can be extended (by an appropriate completion of C_{x}) to unitary (irreducible) representations of 0^{\uparrow} ($2 h-l, l$) for the following values of c and l :
c - pure imaginary ($c i j \sigma$), ℓ-arbitrary (frinoipal serifs)

$$
\left.\begin{array}{l}
-h<c<h \quad \ell=0 \quad(h \geqslant 1) \text { and } \\
1-h<c<h-1 \quad \ell=1,2, \ldots \quad(h ; 2) \\
\quad c \neq 0
\end{array}\right\} \text { (supplementary series) } \quad \text { (J.10b) }
$$

(Note that our terminology follows the analogy with the Lorentz group $O^{+}(3,1)$ and differs from the terminology adopted in [XI] [02]).
C. Outline of results

We consider the problem of decomposition of the direct product of two unitary representations of the supplementary series

$$
\begin{equation*}
x_{o t} \otimes x_{o z} ; x_{o a}=\left[0, c_{a}\right], a=1,2 \tag{1.11}
\end{equation*}
$$

Into irreducible unitary representations.
In other words we would if le to expand each.

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right) \in C_{x_{01}} \otimes C_{x_{02}} \tag{1,12}
\end{equation*}
$$

in functions $F_{\lambda}(x)$ transforming cording to the unitary representation X of $0^{\prime}(2 h+1,1)$.

For $\left|c_{1}\right|+\left|c_{2}\right| \leq h \quad$ the aireot product (I.2l) is expanded in representations $\quad \lambda=[l, c=i \sigma]$ of the principal series (of. [MI] and Appendix a to [MII) :

$$
\begin{equation*}
f\left(x_{1}, \dot{x}_{2}\right)=f d x \int d x \cdot\left(x_{1} c_{1}, x_{2} c_{2} ; x \tilde{x}\right) F_{i}(x) \tag{1.13}
\end{equation*}
$$

Here \tilde{x} is the representati on dual to $\chi=[l, c], x$:
$x)$ For $h \equiv 1$ the representation $[\ell, 0](A>0)$ should be 1dentifled with the irreducible representation $[l, c] \oplus[l,-c]$. of the full Lorentz group.

$$
\begin{align*}
& x=[l, c] \Rightarrow \tilde{x}=[l,-\dot{c}] \tag{1.14}\\
& f d x=\sum_{l=0}^{\infty} \int_{-i \infty}^{n i \infty} \frac{d c}{2 \tilde{\pi}_{l}^{i}} \rho_{l}(\sigma)=\sum_{l=0}^{\infty} \int_{-\infty}^{\infty} \frac{d \sigma}{2 \tilde{\pi}} \rho_{c}(\sigma) \tag{x.15}
\end{align*}
$$

where

$$
\begin{equation*}
\rho_{l}(\sigma)=\frac{2(l+h-1)!}{(2 \pi)^{i} l!}\left|\frac{\Gamma(h-1+i \sigma)}{2 \Gamma(i \sigma)}\right|^{2}\left[\sigma^{2}+(h+l-1)^{2}\right] \tag{I,16}
\end{equation*}
$$

Is the Planoherel madame (af [H2]); finally, $V\left(x_{1}, c_{1}, x_{1}, c_{2}, x x^{\prime}\right)$ are the Clebsh-Gordan kernels.

We start in Sob. II by defining an invariant bi-linaar form of the type

$$
\begin{equation*}
(f, g)_{2}=\int d x_{1} \int d x_{2} f\left(x_{1}\right) G_{2}\left(x_{1}-x_{2}\right) g\left(x_{2}\right) \tag{1.17}
\end{equation*}
$$

on $\zeta_{x} \times C_{x}$.
The 2-point function G_{2} and the kernels V are determined uniquely (up to a o natant factor) Ir om oomiomal invariance. In writing : down explicit expressions for the Green functions G_{2} and the kernels V it is convenient to use technique of homogeneous polynomials (see, e.gep[T3] [01] [Ki]) instead of multiple tens or indices. We write.

$$
\begin{align*}
& V\left(x_{1} c_{1}, x_{2} c_{2} ; x \tilde{x}_{z}\right)=\frac{1}{\sqrt{l}!} V_{\mu_{1} \ldots \mu_{c}}\left(x_{1} c_{1}, x_{2} c_{2}, x \tilde{x}\right) z^{\mu_{1}} \ldots z^{\mu_{e}} \\
& \equiv V\left(x_{1} c_{1}, x_{2} c_{2}, x \tilde{x}\right) \frac{z^{*}}{\sqrt{\ell!}}, \tag{1.18}\\
& G_{i}\left(x_{1}-x_{2} ; z_{1}, z_{2}\right)=\frac{1}{l!} z_{1}^{\otimes l} G_{z}\left(x_{1}-x_{2}\right) z_{2}^{\otimes l} . \tag{1.19}\\
& =\frac{1}{l!} z_{1}^{\mu} \cdots z_{1}^{\mu_{E}} C_{z}^{z}\left(x_{1}-x_{2}\right)_{\mu_{1}, \mu_{2} x_{1} \ldots v_{l}} z_{2}^{\nu_{1}} \ldots z_{2}^{v_{1}},
\end{align*}
$$

where \quad, $z_{1} z_{2}$ are (complex) leotropio vectors:

$$
\begin{equation*}
z^{*}=z_{1}^{2}+\ldots+z_{\alpha h}^{2}=0 \tag{.}
\end{equation*}
$$

It is easily seen, for inatanaf, that the homogeneous polynomial (Y .18) is in one-to-ono correspondence with the symmetric traceless tensors $V_{\mu_{1}} \mu_{l} \quad$. Indeed, each polynomial function $f i z$) on the done (1.20) own be extended in a unique way to a harmonic polynomial in $S \in \mathbb{C}^{-\alpha h}$ by setting

$$
\begin{gathered}
f(S)=\frac{2^{t} y^{\prime} \Gamma\left(2 h_{1}+\ell-2\right)}{\Gamma(2 h+2 i-2)}\left(5^{2} i_{2}^{2}\right)^{L_{2}} \rho_{\ell}^{\left(h-\xi_{2}, h-j_{2}\right)}\left(\frac{5 \partial_{2}}{\sqrt{5^{2} \partial_{2}^{2}}}\right) f(z) \\
\left(\Delta_{S} f(S)=0\right)
\end{gathered}
$$

where $\mathcal{P}_{l}^{\left(\cdots, \mu^{(N)}\right.}(t)$ is the Jacobi polynomial satisfying the differ rential equation

$$
\left[(1-t) \frac{d^{2}}{d t^{2}}+\left[\beta^{\alpha-\alpha-(\alpha+\beta+2) t}\right] \frac{d}{d t}+i(i+\alpha+\beta+1)\right] \rho_{e}^{(\alpha, \beta)}(t)=0
$$

and the nommilzation condition

$$
\frac{d^{l}}{d t^{l}} P_{l}^{(\alpha, \beta)}(t)=\frac{\Gamma(x+\beta+2 t+1)}{i^{i}((x+\beta+t+1)}
$$

Then the imerse formula to (I.18) is

$$
V_{\mu,} \mu_{c}(\cdots \quad . i \bar{x}) \div \frac{1}{\sqrt{E!}} \frac{\partial}{\partial 5_{\mu}} \cdot \frac{\partial}{\partial 5_{\mu}} V(\ldots \quad x \tilde{x} \zeta)
$$

The oontraotion of two tensors \dot{f} and y can be written in terms of the polynomials (1.21) as
$f_{\mu_{1}} \quad \mu_{g} g_{\mu_{1}} \quad \mu_{1}=f\left(\dot{c}_{z}\right) g(z)=g\left(\hat{c}_{2}\right) f(z)$.

Further, in Sec. II we study the implications of the positivity oondition G_{q} and establish the unitarity of the representations of the supplementary series (I.10b) . The method used-the so($2 h-1)_{p}$ expansion of $\vec{G}_{\tilde{\lambda}}(\rho)$ allows also to find restriotions on C for Midkowski space positivity condition of the corresponding Wightman functions. One has to use different normalization oonventions for the two alternative interpretations of $G_{2}:$ first, when G_{z} is regarded as the kernel of a $0(2 h+1,1)$ invariant bi-linear form; seoond, when it is considered as analytic contiruamtion to the Euolidean region of the τ - function of two tensor fields. In the first case, the adopted convention [see Eqs. (II. 24) (II.25) below] implies

$$
\begin{equation*}
\int d y G_{2}\left(x_{1}-y\right) G_{2}\left(y-x_{1}\right)=d \|\left(x_{1}-x_{2}\right), \tag{I.22}
\end{equation*}
$$

where \mathbb{H} stands for the unit operator in the space of symmetric traceless tensors of rank ℓ. In the second case, the two-point function can be normalized in suoh a way that "ightman positivity 1s satisfied for

$$
\begin{equation*}
l=0, \quad c \geqslant-1 ; \quad l=1,2, \ldots \quad c \geqslant l+h-2 . \tag{I.2}
\end{equation*}
$$

The choice of normalization [given by Eqs. (II.40), (II.41)] guarantees also the validity of a number of other desirable prom perties of the two-point Wightman funotion listed in Seo. II.D.

Sea. III is devoted to the evaluation of the normalization factor A_{l} of the invariant 3-point function V (III.4), which plays the role of a Clebsh-Gordan kernel. The nomalization of V is determined by requiring a symmetry property with respect to "amputation of external legs" [Bis. (III, 7-8) and from the Planoherel formula, which implies that Eq - (I.13) an be inverted in the form (III.12).
II. Invariant bi-linear forms, Supplementary series of unitary representation o of $0^{\prime}(2 h+1,1)$
A. covariant two -point kernels and their fourier transforms
cording to (I.19) we are looking for a function $G\left(x_{1}, x_{2} ; z_{1}, z_{2}\right)$ which is a homogeneous polynomial in each of the isotropic 2h-vectors Z_{1} and Z_{2} of degree l and transforms covariantmy under the representation $\lambda=[\ell, C]$ of $0^{\mathcal{A}}(2 h+1,1)$. In other words we require that
$G\left(A x_{1}+a, A x_{2}+a ; A z_{1}, \lambda z_{2}\right)=G\left(x_{1}, x_{2} ; z_{1}, z_{2}\right)$ for $A \in O(\lambda A), a=\left(a_{1}, \cdots, a_{2 k}\right)$;
$\rho^{2(1+c)} G\left(\rho x_{1}, \rho x_{2} ; z_{1}, z_{2}\right)=G\left(x_{1}, x_{2} ; z_{1}, z_{2}\right)$ for $\rho>0$;
$\frac{1}{\left(x_{1}^{2} x_{2}^{2}\right)^{2+c}} G\left(R x_{1}, R x_{2} ; \quad \tau\left(x_{1}\right) z_{1}, \tau\left(x_{2}\right) z_{2}\right)=G\left(x_{1}, x_{2} ; z_{1}, c_{2}\right), \quad$ (II, 3) where the conformal inversion R and its vector representation $\tau(x)$ are defined by (I.2) and (I,7).

The general form of G, satisfying the above condition is

$$
\begin{equation*}
G=G_{2}\left(x_{1 i}, z_{1}, z_{2}\right)=\frac{n(\lambda)}{(2 \pi)^{k}}\left(\frac{2}{x_{1 / 2}^{2}}\right)^{\lambda r c} \frac{1}{e_{1}^{\prime}}\left(-z_{1}, \tau\left(\lambda_{12}\right) z_{2}\right)^{t^{\prime \prime}} . \tag{II.4}
\end{equation*}
$$

where

$$
x_{12}=x_{1}-x_{2} \cdot-z_{1} \tau_{\left(x_{1}\right)} z_{2}=z_{1} z_{2}-L\left(\frac{z_{1} x_{1} /\left(x_{12} z_{2}\right)}{x_{1}}\right.
$$

and $n(2)$ is a normailzation constant. The Euclidean and dilatecion zavarianoe of (II.4) are obvious, The verification of its R-invarianoe (ice. of property (II.3)) is based od the identity

$$
\begin{equation*}
r\left(x_{1}\right) \tau\left(R x_{1}-R x_{2}\right) \tau\left(x_{2}\right)=\tau\left(x_{1}-x_{2}\right) \tag{II.6}
\end{equation*}
$$

The homogeneity property of G_{z} with respect to x_{12} is a consequence of dilataicion invariance alone; the tensor structure of G_{2} is fixed by R-invariance (of.[II]).

Using the integral formula

$$
\begin{align*}
& \frac{\Gamma(d)}{(2 x)^{h}} \int\left(\frac{2}{x^{2}}\right)^{d} e^{-c p x} d x=\frac{1}{(2 \pi)^{h}} \int_{0}^{\infty} d x x^{d-1} \int_{0}^{\infty} d x e^{-\frac{x x^{2}-2 p x}{2}}= \\
& =\int_{0}^{\infty} d x \alpha^{d-h-1} e^{-\frac{1}{2 x} p^{2}}=\Gamma(h-d)\left(\frac{2}{p}\right)^{h-c d} \tag{II.7}
\end{align*}
$$

(valid for $d<h$) we obtain the following expression for the Fourier transform of (II.4):

$$
\begin{align*}
& \bar{G}_{2}\left(p ; z_{1}, z_{2}\right)=\int G_{z}\left(x ; z_{1}, z_{2}\right) e^{i p x} d x \\
& =\frac{n(2)}{(2 \pi)^{h}} \sum_{k=0}^{\sum_{k}^{2}} \frac{\left(z_{1} z_{2}\right)^{2-\kappa}}{(2-\kappa)!} \frac{\left[\left(z_{1} \partial_{1}\right)\left(z_{2} \partial_{R}\right)\right]^{\kappa}}{k!} \int\left(\frac{z}{x^{2}}\right)^{h r c r k} e^{-i p-1} d x \\
& =\frac{n(2)}{\Gamma(c+h+l) \Gamma(c+h-1)}\left(\frac{p^{2}}{2}\right)^{c} \sum_{k=0}^{\frac{Q}{\lambda}} \frac{\Gamma\left(c^{2}-k-c\right) \Gamma(h+k+c-1)}{\kappa^{\prime}!(l-k)!}\left[\frac{\left(\rho_{\alpha_{1}}\right)\left(\rho a_{2}\right)}{\frac{1}{2} p^{2}}\right]^{d-k}\left(z_{1}, a_{2}\right)^{k} \tag{1I,8}\\
& =n(z) \frac{(-1)^{i} \Gamma(c)}{\Gamma(c+h+i)}\left[\frac{\left(p z_{1}\right)\left(p z_{2}\right)}{\frac{1}{2} p^{2}}\right]^{l}\left(\frac{1}{2} p^{2}\right)^{c} p_{e}^{(c-l, h-2)}(\omega), \\
& \text { where }
\end{align*}
$$

$$
\begin{equation*}
\omega=\cos \theta=1-\frac{p^{2}\left(z_{1} z_{2}\right)}{\left(p z_{1}\right)\left(p z_{2}\right)} \tag{III}
\end{equation*}
$$

and we here used the following expansion formula for the Jaaab1 polynomial

$$
(-i)^{l} \rho_{E}^{(i-L, h-2)}(u)=\frac{1}{\Gamma(i) \Gamma(c+h-1)} \sum_{k=0}^{k} \frac{\Gamma(l-k-c) \Gamma(h+k+c-1)}{k!(l-k)!}\left(\frac{1-\alpha)}{2}\right)^{k},
$$

[For comparing different representations of $P_{e}^{(-\beta)}$ the identity

$$
\sin \pi x \Gamma(x) \Gamma(1-x)=\pi
$$

is useful. It implies, in particular, that

$$
\left.(-1)^{c} \frac{\Gamma(l-k-c)}{\Gamma(-c)}=(-1)^{k} \frac{\Gamma(c+1)}{\Gamma(c+k-l+1)}\right]
$$

Note that θ in (II.9) is the angle between the vector $\dot{E}_{\text {, }}$ and z_{2} in the rest frame of p (in Minkowski space). For real C we an assume that the space C_{X} (see Sec. I.B) oonsists of real-valued functions. Then, the bi-ilnear form (I.17), defined by $G_{\bar{z}}$ is real and symmetric. Its p-apace picture

$$
\begin{equation*}
(f, g)_{2}=\int \bar{f}(p) \tilde{G}_{\tilde{\imath}}(p) \tilde{g}(p)(d p), \quad(d p)=\frac{d^{2} \lambda^{2} p}{(2 \pi)^{1 / h}} \tag{II.IC}
\end{equation*}
$$

gould be regarded as a hermitian form on the set of Fourier
transforms $\widetilde{C_{X}}$. To be sure, the reality of $f(x)$ implies that $\tilde{F}(p)=\tilde{f}(-p), \quad$ and $\quad \tilde{C_{x}}\left(=\mathcal{F} C_{\lambda}\right)$ has to be oonaidared as a vector space over the reals.
B. Expansion in projection operators. Positivity and normalization

This representation X belongs to the supplementary series of unitary representations of 0 f $(2 h+1,1)$ af the Hermitian form (II.10) is positive-definite and thus defines an invariant scalar product. The operators U (I.4-6) moved be unitary in the (real) Hilbert space \mathscr{H}_{2} obtained from C_{2} by oompletin with respe ot to the scalar product (I.17) [or (II.10)].

For fixed p the kernel $\vec{G}_{z}(\beta)$ is anoperator in the finite dimensional space $\mathscr{G}_{2 h}^{\ell}$ of $\operatorname{so(2h)}$-irreducible (symmetric, trace less) tensors of rank ℓ. A straightforward way to investigate the restrictions on X imposed by positivity is to expand \tilde{G} in projection operators $\Pi^{l s}(\rho)$ defined as follows. $\Pi^{l s}(\rho)$ project onto the subspaces $\mathscr{F}_{2 h-1}^{s}(p)$ of $\mathscr{G}_{2 h}^{-Z}$ irreducible with respect to the stability subgroup $S O(2 h-1)_{p} \subset S O(2 h)$ of the rotor p. Note that the dimensions of the space $\mathcal{G}_{2 R}^{e}$ and of 1 ts subspaces $g_{2 h-1}^{-5}(s=0, ?, \ldots, 1)$ are given by

$$
\begin{align*}
& \operatorname{dim} G_{2 h}^{l}=\frac{(2 h+l-3)!}{l!(2 h-2)!}(2 h+2 l-2)=\sum_{s=0}^{2} \operatorname{dem} \mathcal{T}_{2 h-1}^{s} \\
& \operatorname{dim} g_{2 h-1}^{5}=T_{2} / 7^{l s}=\frac{(2 h+5-4)!}{(2 h-3)!5!}(2 h+2 s-3) \tag{II.II}
\end{align*}
$$

In 4-dimensional spacetime ($1 . \mathrm{en}_{\mathrm{i}}$ for $\mathrm{Ch}=4$) the number S plays the role of spin. In terms of such an expansion positivity of \tilde{G} is expressed as positivity of the soalar coerfioients to 7^{8}

Let

$$
\begin{equation*}
S_{\mu \nu}^{(a)}=-i\left(z_{a \mu} \frac{\partial}{\partial z_{a \nu}}-z_{a v} \frac{\partial}{\partial z_{u \mu}}\right) \quad, a=i, 2 \tag{II.12}
\end{equation*}
$$

be the (hermitian) generators of the index part of $2 h-r o t a t i o n s$, Then the functions

$$
\begin{equation*}
\Pi^{d s}\left(p ; z_{1}, z_{3}\right)=\frac{1}{l l_{1}^{i}} z_{1}^{Q^{l}} \Pi^{l s}(p) z_{2}^{Q l} \tag{II.13}
\end{equation*}
$$

oar be found up to a normalization factor as solutions of the equation

$$
\begin{equation*}
\left[\frac{1}{2} S_{\mu \nu}^{(a)} S_{\mu \nu}^{(a)}-S_{o \mu}^{(a)} S_{\gamma \nu}^{(a)} \frac{p_{\mu} \rho_{\nu}}{p^{2}}\right] \Pi^{l s}=s(s+2 h-3) \Pi^{(s} \tag{II.14}
\end{equation*}
$$

(valid for both $a=1$ and $a=2-C f,[T 3]$). The result is

$$
\begin{equation*}
\Pi^{e_{s}}\left(p, z_{i}, z_{2}\right)=\eta_{\varepsilon s}(-1)^{s}\left[\frac{\left(p z_{1}\right)\left(p p_{2}\right)}{\frac{1}{2} p^{2}}\right]^{2} P_{j}^{(h-2, h-2)}(i) \tag{11.15}
\end{equation*}
$$

The normalization constant $A_{\ell S}$ is determined from the condition that $\Pi^{l_{s}}$ are (orthogonal) projectors

$$
\begin{equation*}
\left.\Pi_{(p)}^{l s}\right\rangle_{(p)}^{l_{s}}=\delta_{s s}, \Pi^{l s}(p) \tag{II.16}
\end{equation*}
$$

In order to evaluate $A_{C_{S}}$ we use the completeness relation

$$
\begin{equation*}
\sum_{s=0}^{\ell} \Pi^{l s}(p)=11 \tag{II,17}
\end{equation*}
$$

According to (II.15) its Z - pioture expression is

$$
\begin{equation*}
\sum_{s=0}^{Q}(-1)^{s} A_{e s} p_{s}^{(h-2, h-2)}(\omega)=\frac{1}{l!}\left(\frac{1-\omega)}{2}\right)^{C} \tag{II.18}
\end{equation*}
$$

Where ω is given by (II.9). We multiply both sides by $\left(1-\omega^{i}\right)^{k \cdot h}$ and integrate of er ω in the interval $[-1,1]$, using the orthonormalization property

$$
\begin{equation*}
\left.\int_{-1}^{1}\left(1-w^{2}\right)^{k-2} P_{j}^{(k-2, A-2)}(w) P_{s^{i}}^{(h-2, h-2)}(w) d w\right)=\frac{\delta_{5 j} 2^{2 h-5}[(h+!-2)!]^{2}}{s!(2 h+2 s-3)(2 h+5-4)!} \tag{II.19}
\end{equation*}
$$

and the int ogral formal (sea, 0.g. , [G3] Eq. 7.391.4)

$$
\frac{1}{2^{l} l!} \int_{-1}^{1}(1-w)^{l+h-\lambda}(1+w)^{h-2} \rho_{s}^{(h-2, h-2)}(w) d w=\frac{(-1)^{3} 2^{2 h-s}(l+h-2)!(h+s-2)!}{s!(l-s)!(2 h+l+s-3)!} \text { (I I-20) }
$$

The result is

$$
\begin{equation*}
A_{l s}=\frac{(2 h+2 s-3)(h+l-2)!(2 h+s-4)!}{(l-s)!(h+s-2)!(2 h+l+s-3)!} \tag{II.21}
\end{equation*}
$$

In order to expand the right-hand side of (II,B) in the projection kernels (II.15) we use the formula

$$
P_{t}^{(c-l, h-2)}(\omega)=\frac{(l+h-2)!}{\Gamma(c+h-1) r(c-h-l+2)} \sum_{s=0}^{c} \frac{(2 s+2 h-3)(5+2 h-4)!\Gamma(c+h+s-1) l(c h-s+2)}{(l-s)!(s+l+2 h-3)!(h-2+s)!} p_{s}^{(h-2, A-2)}
$$

Combining (II.15), (II.21) with (II.22) we find

$$
\begin{align*}
& {\left.\left[\frac{\left(p z_{1}\right)\left(p z_{2}\right)}{-\frac{1}{2} p^{2}}\right]^{l} P_{\ell}^{(c-l, h-2)}(\omega)\right) } \\
= & \sum_{s=0}^{2}(-1)^{l-s} \frac{\Gamma(c+h+s-1) \Gamma(c-h-s+2)}{\Gamma(c+h-1) \Gamma(c-h-l+2)} \Pi^{l s}\left(p ; z_{n}, z_{2}\right) . \tag{II.23}
\end{align*}
$$

We shall fix the normalization constant, $n(i)$ in such a way that tine coefficient to $\prod^{l o}(\rho)$ in the g innexpension of \tilde{G}_{z} to be just $\left(\frac{E^{2}}{2}\right)^{\text {i }}$:

$$
\begin{equation*}
\left.\widetilde{G}_{2}(p)=\left[\Pi^{l 0}(p)+x_{l 1}(c) 7^{l l}(p)+\ldots+\alpha_{2 p}(c)!\right]_{1}^{i l}(p)\right]\left(\frac{p^{2}}{2}\right)^{c} \tag{II.24}
\end{equation*}
$$

This gives

$$
\begin{equation*}
n(x)=\frac{(-1)^{l} \Gamma(c+h+l) \Gamma(c-h-l+2)}{\Gamma(-c) \Gamma(c-h+2)}=\frac{\Gamma(c+h+\hat{c}) \Gamma(h-c-1)}{\Gamma(c) \Gamma(l+h-c-1)} . \tag{III.25}
\end{equation*}
$$

We shall discuss the advantage (and peculiarities) of this choice in the next subseistion. With such a normalization we obtain

$$
\begin{align*}
& \alpha_{c}(c) \equiv \alpha_{5}(c)=(-1)^{s} \frac{\Gamma(c+h+s-1) \Gamma(c-h-5+2)}{\Gamma(c+h-1) \Gamma(c-h+2)} \tag{II.26}\\
& =\frac{\Gamma(c+h+3-1) \Gamma(h-1-c)}{\Gamma(h+5-1-i) \Gamma(h-1+c)}=\frac{(c+h-1) \ldots(c+h+5-2)}{(h-c-1) \ldots(h+s-c-2)} .
\end{align*}
$$

The scalar distribution $\left(\frac{\phi^{2}}{2}\right)^{c}$. is a positive measure on the apace of fast decreasing functions of p for all $c>-h$ However, the soalar product $(f, g)_{i}$ [see (I.17)] a en be x) We note that with this normalization the Planoherel measure (I.16) is given by

$$
\rho_{L}(\theta)=\frac{(l+h-1)!}{Q\left(2 \pi / h Q_{!}\right.} n(\lambda) n(\hat{x})
$$

transformed to its p-space form (see (II.10) with $\chi \not \underset{\sim}{\boldsymbol{z}}$) without recourse to analytic regularization only for ceO [since Eq. ($I: i .7$) (with $d=h+c$) can be derivedusine ordinary convergent integrals only in that domain\} . ~ C o m b i n i n g ~ t h i s ~ w i t h ~ (II.24) (II.26) we see that $\left.G_{2} / x_{1} \cdot x_{2}\right)$ is a positive distribution in $C_{2} \times C_{2}$ for

$$
\begin{array}{lll}
-h<c<0 & \text { in } & !=0 \tag{11.27}\\
-(h-1)<c<0 & \text { if } & \ell \geqslant 1, h>1
\end{array}
$$

We shall see in the next subsection, that the scalar product $(f, j / k$ defined for $c>0$ via analytio regularization (of. [GI]) is positive also in the wider region (I .lob).
C. Equivalent representations and intertwining operators

Similarly to the special case of the Lorentz group obtained for $h=1$ (see [G2]). the representations

$$
\begin{equation*}
x=[l, c] \quad \text { and } \quad \bar{\lambda}=[l,-c] \tag{II.28}
\end{equation*}
$$

are equivalent. The intertwining operators for these representations are integral operators with kernels $G_{\lambda}\left(\lambda_{12}\right)$ and $G_{\lambda}\left(\lambda_{1 i}\right)$.
We have

$$
\begin{align*}
& \qquad U_{2} G_{2}=G_{2} i I_{\tilde{\lambda}}, \quad G_{z} U_{2}=U_{\tilde{i}} G_{\Sigma} \tag{II.29}\\
& G_{2} G_{2}=11 \tag{II.30}\\
& \text { or oxplio1t1y } \\
& \int G_{2}\left(x_{1}-y ; z_{1}, \lambda_{2}\right) G_{2}\left(y-x_{2}, z, z_{2}\right) d y=\delta\left(x_{1}-x_{2}\right) \frac{\left(z_{1} z_{2}\right)}{\varepsilon_{1}}{ }_{l}^{\ell} \tag{II.31}
\end{align*}
$$

The last equation is obviously a consequence of (II.24) because of (II.16) and the property

$$
\begin{equation*}
\alpha_{5}(c) \alpha_{s}(-c)=1 \tag{II.32}
\end{equation*}
$$

Which follows from (II.26). (That is one reason for our ohotoe of normalization o) We leave it to the reader to verify that if, for ing tania, $f_{z}(x) \in C_{z}$ then

$$
\int C_{x}(x-y) f_{x}(y) d y \in C_{z}
$$

In the previous subsection we have established the unitarily of the representation \tilde{x} for negative c, satisfying (I.10b). It follows from the equivalence of X and \bar{X} that the repression taction λ is also unitary for such c. Hence, \tilde{X} (or χ) is unitary for both positive and negative C in the domain (I.10b).

The ooeffiolents $\alpha_{s}(c)(I I .26)$ become zero or infinite for $S \geqslant 1$ and integer c such that $|c| \geqslant h-1$. We oould have reversed the plsoos of zeros and infinities by a different ohoioe of normalization, With our ohoice G_{F} is well defined for all positive C and that is precisely what we need in the physical applioations (cf. [ND$]$] and [$\mathrm{I2}]$).

The integer points with $|c| \geqslant h+l$ correspond to reducible, but non-deoomposable representations of $0^{(4}(2 h+1,1)$. To see that, we consider first the case of a representation $\tilde{X}_{l_{n}}=\left[l,-c_{C l n_{n}}\right]$ with $C_{l n}=h+l+n$. In this ouse $C_{\tilde{x}_{e n}}$ contains a finite dimensional invariant subspace: the space $E_{l_{n}}$ of all polynomials of degree $2(n+l)=\mathcal{L}\left(C_{n}-h\right)$ (or less). But $E_{l_{n}}$ does not have an invariant complement in $C_{\tilde{D}_{m}}$. The factor space $C_{\tilde{x}_{e n}} / E_{f x}$
is isomorphic to an infinite dimensional invariant subspace $F_{i n}$ of $C_{\lambda_{i n}}$ that consists of all tensor functions $f(x) \in \mathcal{C}_{V_{i n}}$ which satisfy the condition

$$
\begin{equation*}
\int f(x) P_{k}(x) d x=0 \quad \text { fox } k \leq 2(n+t) \tag{II.33}
\end{equation*}
$$

where $P_{k}(x)$ is an arbitrary polynomial of x of degree k. According to (II.24) (II.25) the momentum space Green function $\tilde{\epsilon}_{z_{\text {in }}}(f)$ is a homogeneous polynomial in p of degree $a(\zeta+\pi+h)$. Therefor o $G_{z_{i n}}$ acts as a differential operation on $\dot{C}_{\mathcal{E}_{n}}$ which annihilates the finite dimensional invariant subspace $E_{l_{7}}$. In this case the representations $\chi_{i n}$ and $\tilde{z}_{l n}$ are not equivalent. The map $G_{z_{i n}} ; \dot{C}_{\sum_{i n}} \rightarrow C_{z_{d x}}$ only establishes equivalence between the irreducible representations realized in $C_{i=1} / \mathcal{E}_{\ell_{4}}$ and $F_{\ell_{n}} \subset C_{\chi_{\eta_{n}}}$.
D.Wightmen positivity

Functions with the properties of \vec{G}_{z} (for real c) arise not only in studying imearlant bilinear forms, but also in considering analytic continuation of Wightman functions

$$
\begin{equation*}
\left.W\left(x_{1}-x_{2} ; z_{1}, z_{2}\right)=\leqslant O\left(x_{1}, z_{1}\right) O\left(x_{2}, z_{2}\right)\right\rangle_{0} \tag{II.34}
\end{equation*}
$$

(or τ - functions) to Euclidean points (for which $x_{c}=i z_{2 h}$) in a conformal insersant quantum field theory (in the sense of [M4] [MI]). Here $O(x, z)$ ia a (local) tensor field

$$
\begin{equation*}
O(x, z)=\frac{1}{\sqrt{l!}} O_{\mu_{1} \cdot \mu_{e}}(x) z^{\mu_{1}} z^{\mu_{4}} \equiv O(x) \frac{z^{0}}{\sqrt{l!}} . \tag{II.35}
\end{equation*}
$$

Wightman positivity for the tro-point function implies that

$$
\begin{equation*}
\tilde{w}(p ; z, \bar{z}) \geqslant 0 \tag{II.36}
\end{equation*}
$$

in Minkonski space:
The Fourier transform of the Fightman function an be obtained from $\tilde{G}_{2}(\varphi)$ (II.B) by the following procedure. First of all, using (II, R) and (II.2才) we find the following expression for the M-spaoe τ - function

$$
\begin{equation*}
\tau_{x}(p,)=\frac{n_{w}(x) \Gamma(-c)}{\Gamma(c+h+l)}\left(\frac{1}{2} p^{c}-i 0\right)^{c-l} \sum_{s=0}^{i} \frac{\Gamma(c+h+s-1) \Gamma(c-h-s+2)}{\Gamma(c+h-1) \Gamma(c-h+l+2)}\left(\frac{l-s}{}\left(\frac{p}{2}\right)^{l} \Pi^{p s}(p)\right. \tag{II.37}
\end{equation*}
$$

($p^{2}=p^{2}-p_{c}^{2}$) (We are writing $n_{u r}(x)$ instead of $n(x)$, Binoe we have to use a different normalization in the new interpretationon of the 2-poizit function,) Then the p-spaoe Wightman function is given by

$$
\begin{align*}
& \tilde{\omega}(p)=-i \theta\left(p_{0}\right)\left[\tau_{x}(p)-\bar{\tau}_{x}(p)\right] \\
= & -\frac{2 \sin \pi(c-l) n_{l+}(l) \Gamma(-c)}{\Gamma(c+h+l) \Gamma(c+h-1) \Gamma(c-h+l+2)} \theta\left(p_{0}\right)\left(-\frac{1}{2} p^{d}\right)^{c-l} \sum_{s=0}^{\ell} \Gamma(c+h+s-1) \Gamma(c-h-s+2)(-1)^{-s}\left(\frac{1}{s} p^{2}\right)^{l} \Pi^{p_{s}}(p), \tag{II.3B}
\end{align*}
$$

where $\quad t_{f}^{\lambda} \equiv \theta(t) t^{\lambda}$ (of. [01$]$) ; in deriving the last equality wo have used the identity

$$
\begin{equation*}
(Q+i 0)^{\lambda}-(Q-i 0)^{\lambda}=2 i \sin \pi \lambda(-Q)_{+}^{\lambda} \tag{II.39}
\end{equation*}
$$

In this ouse wo shall use the normalisation

$$
\begin{align*}
& n_{\omega}(x)=2^{c}(c+h+l-1) \frac{\Gamma(c+h-1) \Gamma(c-h+l+2)}{\Gamma(c-h-l+2)} \\
& =2^{c} \frac{\Gamma(c+h-1) \Gamma(-c) \Gamma(c-h+2) \Gamma(c-h+l+2)}{\Gamma(c+h+l-1) \Gamma^{2}(c-h-l+2)} n(2)(-1)^{l} \tag{Ix.40}
\end{align*}
$$

Which gives

$$
\vec{w}(p)=\frac{2 \pi \theta\left(p_{0}\right)}{\Gamma(c+1)}\left(-p^{2}\right)^{c-\varepsilon} \sum_{s=0}^{\ell} \frac{\Gamma\left(c+h^{2}+s-1\right) \Gamma(c-h-b+\lambda)}{\Gamma(c+h+l-l) i^{-1}(c-h-c-2)} \quad(-)^{2}\left(p-j^{i} / i^{i}(p)(I I-41)\right.
$$

In order to establish when the right-hand side of (II.41) is positive, we notice that the operator

$$
(-1)^{3}\left(p^{2}\right)^{l} 17^{b s}(p)
$$

is positive, stine, a0001 ding to (II.15) (II.21)

$$
\begin{equation*}
\left.\left(p^{2}\right)^{\ell}(-1)^{s} \prod^{i s}\left(p_{1}, \bar{z}\right)=A_{i s}\left[2 / p_{z}\right)^{2}\right]^{i} p_{s}^{(\lambda \cdot 2, \dot{A} \cdot 1)}(w)=i \tag{II.42}
\end{equation*}
$$

for $\omega=1-\frac{p^{2} \Sigma \bar{E}}{\left|p^{z}\right|^{2}} \geqslant 1 \quad$ The last inequality fo. : !)
 Therefore, $\overline{\boldsymbol{u}}(p)$ is positive for
$\iota \geqslant-1$ if $l=0: c \geqslant h+l-2$ for $l=i, 2, \ldots$.
This result was obtained by different methods also in [R2] and [F2].
Our ohotoe of normalization (II.40) ensures the following additional properties of $\tilde{w}(\rho)$.
(i) For $l=0, i=-1 \quad(I I .41)$ goes into the conventional expression for the two-point function of a free zero-mass field
(ii) For canonical dimensions

$$
\begin{equation*}
c=l+h-2 \quad(6>0) \tag{II.44}
\end{equation*}
$$

We recover the two-point functions of conserved (tensor) currents (while the expression (II.26) for $\alpha_{l}(4)$ is going to infinity for such aC).
III. Direct product expansions and Clebsh-Gordan kernels d. General form of the expenstun, Hoxmaligation oanditions

We consider now the direct product space C^{\prime} in $_{0} C_{Z_{0 \alpha}}$ ($\lambda_{c_{i}}=\left[c_{i}, c_{a}\right]$) of infinitely smooth functions $f\left(x_{i}, x_{i}\right)$ satisfying the asymptotic conditions

$$
\begin{equation*}
\lim _{i_{d}=0,0}\left(x_{a}^{*}\right)^{i+c_{i}} f_{1}\left(x_{i}, x_{2}\right)=f_{a}\left(a_{2}\right) \in C_{2_{06}} \tag{III,I}
\end{equation*}
$$

where (a \&) stands for $(1,2)$ or $(2,2)$. For i_{a} in mango (I.10b) we an expand $f\left(x, x_{3}\right)$ in irreducible (unitary) representations of $0^{+}(2 h+1,1)$ as follows

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=f d x \int d x l^{\prime}\left(x_{1} c_{1}, x_{2} c_{2}, x \hat{x}^{2}\right) F_{2}(x)+D \cdot T \tag{III.2}
\end{equation*}
$$

whore D.T. indicates (possible) discrete terms and the summation and integration is spread over: the principal series of unitary representations (see (I.15) (I.16)).

The conformal Fourier transform" $\quad F_{f}(x)$ satisfies the symmetry condition

$$
\begin{equation*}
F_{i}(x)=\int G_{i}(x-y) F_{2}(y) d y . \tag{III.3}
\end{equation*}
$$

Conformal invariance implies that the ClebshmGordan kernel is given by

$$
\begin{aligned}
& V\left(x_{1} c_{1}, x_{2} c_{i} ; x_{i} y_{i}, z\right)
\end{aligned}
$$

(af. [TI] See. IV.2C) . Here we have used the definition (I. 20) and the following notation:

$$
\begin{gather*}
c_{ \pm}=\frac{1}{2}\left(c_{1} \pm c_{2}\right), \quad x_{2}=[l, 2 \delta-h] \tag{III.5}\\
\lambda_{\mu}=2 \frac{\left(x_{13}\right)_{\mu}}{x_{1 j}^{2}}-2 \frac{\left(x_{23}\right)_{\mu}}{x_{2 S}^{2}} . \tag{III.6}
\end{gather*}
$$

The normalization constant N_{C} will be fixed by the follow wing conditions:

$$
\begin{align*}
& \int d x_{i}^{\prime} V\left(x_{1}^{\prime} c_{1}, x_{2} c_{2} ; x_{1} 2\right) G_{-c_{1}}\left(x_{1}-x_{1}\right)=V\left(x_{1}-c_{1}, x_{2} c_{2} ; x_{3} x\right) ; \tag{III.7a}\\
& \int d x_{2}^{\prime} V\left(x_{1} c_{1}, x_{2}^{\prime} c_{2} ; x_{3} x\right) G_{-c_{2}}\left(x_{2}^{\prime}-x_{2}\right)=V\left(x_{1} c_{1}, x_{2}-c_{2} ; x_{3} x\right) ; \tag{III.Tb}\\
& \text { (} G_{c} \text { is a shorthand for } G_{[0, c]} \text {); } \\
& \int d x_{3}^{\prime} V\left(x_{1} c_{1}, x_{2} c_{2} ; x_{3}^{\prime} x\right) G_{\tilde{z}}\left(x_{3}-x_{3}\right)=V\left(x_{1} c_{1}, x_{2} c_{2} ; x_{3} \overrightarrow{z^{\prime}}\right) ; \tag{IIIB}\\
& \frac{1}{2} \int d x_{1} \int d x_{2} V\left(x_{1}-c_{1}, x_{2}-c_{2} ; x_{3} x\right) \otimes V\left(x_{1} c_{1}, x_{2} c_{2} ; x_{3}^{\prime} \bar{x}^{\prime}\right) \\
& =\frac{1}{2}\left[1 \delta\left(x, x^{\prime}\right)+G_{x} \delta^{\prime}\left(x, x^{\prime}\right)\right] \text {, } \tag{III.9}
\end{align*}
$$

where

$$
\begin{equation*}
\delta^{\prime}\left(x, x^{\prime}\right)=\frac{\delta_{B e^{\prime}}}{\rho_{e}\left(\sigma^{\prime}\right)} \delta^{\prime}\left(\sigma^{\prime}-\sigma^{\prime}\right) 2 \pi \tag{III,I0}
\end{equation*}
$$

($f_{e}(c)$ is the Planoherel measure (1.16)) and the unit operator is defined in the (x, z)-picture as follows

$$
\begin{equation*}
\frac{1}{e!} 2^{\alpha^{l}} \| z^{\alpha^{\prime}}=\tilde{O}\left(x_{3}-x_{3}^{\prime}\right) \frac{(\underline{z})^{i}}{2!} \tag{III.II}
\end{equation*}
$$

Eq. (IIT.9) along with the symmetry property (III.J) implies that the expansion (III.2) an be inverted and the conformal Fourier transform of $f\left(x_{1}, x_{2}\right)$ is given by

$$
F_{x}(x)=\int d x_{1} \int d x_{2} V^{\prime}\left(x_{i}-\epsilon_{1}, x_{2}-c_{2} ; x \lambda\right) f\left(x_{5}, x_{2}\right)
$$

We shall see in what follows that conditions (III.7) and (III.9) are sufficient to determine the normalization oonstant Λ_{ℓ}^{\prime}. Eq. (III.B) then can be derived as a consequence.
D. Amputation of scalar ines

We start with the exploitation of the symmetry property (III.7).

The caloulation is based on the integral formula

$$
\begin{aligned}
& =\int_{0}^{\infty} \frac{d \alpha_{1}}{\alpha_{2}} \int_{0}^{\infty} \frac{d \alpha_{2}}{\alpha_{2}} \int_{0}^{\infty} \frac{d \alpha_{3}}{\alpha_{3}} \frac{\alpha_{1}^{\alpha_{1}} \cdot x_{2}^{i_{2}} x_{j}^{s_{1}}}{\left(k_{1} \alpha_{1}+k_{2} x_{2}+k_{3} \alpha_{3}\right)} \exp \left\{-\frac{\alpha_{1} \alpha_{2} \cdot x_{12}^{2}+\alpha_{1} \alpha_{3} \alpha_{13}+\alpha_{j} x_{3} 2_{2}}{2\left(k_{1} \alpha_{1}+k_{2} x_{2}+k_{1} \alpha_{3}\right)}\right\} \\
& \left(k_{i} \geqslant 0, \quad \sum k_{i}>0\right)
\end{aligned}
$$

(see [DL$]$ [S 3]) and on the identity
where $\vec{J}_{j}\left(\overrightarrow{d_{3}}\right)$ differentiates with respect to x_{3} to the left (to the right). Using the first equation (III.14) and (III.13) we find

$$
\begin{aligned}
& \int d x_{2}^{\prime} V\left(x_{1} c_{1}, x_{2}^{\prime} c_{2} ; x_{3} x_{2}\right) G_{-c_{2}}\left(x_{2}^{\prime}-x_{2}\right) \\
& =\frac{N_{e}\left(c_{+}, c_{-}, \delta\right)}{\sqrt{l_{1}^{\prime}(2 \bar{j})}} \sum_{k=0}^{\ell}(-1)^{k}\left(\frac{l}{k}\right) \frac{\Gamma\left(\delta-c_{+}-\frac{2}{2}\right) \Gamma\left(h-\delta+c_{-}+\frac{e}{2}\right)}{\Gamma\left(h+c_{+}-\delta+\frac{l}{2}\right) \Gamma\left(\delta-c_{-}-\frac{l}{2}+k\right)} \cdot \frac{i}{x}^{h-\sigma+c_{-}-\frac{l}{2}} \\
& \times\left(\frac{2}{x_{i 3}^{5}}\right)^{\sqrt{c} c_{-}-\frac{l}{2}}\left(\frac{2 z x_{i 3}}{x_{i j}^{2}}\right)^{l-k}\left(z \frac{\lambda}{c_{3}}\right)^{k}\left(\frac{2}{x_{i j}^{5}}\right)^{c_{*}}\left(\frac{2}{x_{23}^{2}}\right)^{\delta-c_{+}-\frac{l}{2}} \\
& =\frac{N_{\ell}\left(c_{1}, c_{1}, \delta\right) \Gamma\left(h-\delta+c_{-}-\frac{\ell}{2}\right)}{\sqrt{\ell!}(2 \bar{\ell})^{k} \Gamma\left(c_{2}\right) \Gamma\left(h+c_{-}-\delta+\frac{i}{2}\right)}\left(\frac{2}{x_{k}}\right)^{\lambda-\delta+c_{-}-\frac{\ell}{2}} \sum_{k=0}^{\ell}(-1)^{k}\binom{\ell}{k} \frac{1}{\Gamma\left(\delta-c_{-}-\frac{\ell}{2}+k\right)} \cdot \\
& \Delta \sum_{j=0}^{k}\binom{k}{j} \frac{\left(z x_{i 3}\right)^{\ell j}\left(z x_{23}\right)^{j} \Gamma\left(c_{2}+k-j\right) \Gamma\left(\delta-c_{+}-\frac{l}{2}+j\right)}{\left(\frac{1}{2} x_{13}\right)^{\delta+c_{1}+\frac{l}{2}-j}\left(\frac{1}{2} x_{23}^{2}\right)^{\delta-c_{4}-\frac{l}{2}+j}}:
\end{aligned}
$$

Changing the order of summation and using the sum rule

$$
\begin{equation*}
\left.\sum_{k=j}^{\ell}(-1)^{k}\binom{\ell}{k}\binom{k}{j} \frac{\Gamma(\alpha+k)}{\Gamma(\beta+k)}=(-1)\right)^{j}(j) \frac{\Gamma(\beta-\alpha+l-j) i(\alpha+j)}{\Gamma(\beta+\ell) \Gamma(\beta-\alpha)} \tag{III.15}
\end{equation*}
$$

(see Appendix A) for $x=c_{2}-j ; \beta=\delta_{-} c_{-}-\frac{\ell}{2}$
we obtain

$$
\begin{aligned}
& \int d x_{2}^{\prime} V\left(x, c_{1}, x_{2}^{\prime} c_{2} ; x_{3} \lambda z\right) G_{-c_{2}}\left(x_{2}^{\prime}-x_{2}\right)
\end{aligned}
$$

Applying the obvious symmetry property

$$
\begin{equation*}
V\left(x_{i}, c_{1}, x_{2} c_{i}, x_{j} \chi_{z}\right)=(-1)^{l} \frac{N_{l}\left(c_{r}, c_{-}, \delta\right)}{N_{c}\left(c_{i},-c_{1}, \delta\right)} V\left(x_{2} c_{2}, x_{1} c_{1} ; x_{3} x_{z}\right) \tag{III.17}
\end{equation*}
$$

we dan derive from (III.16) another relation of that type, involving integration over the first argument of V (say x_{i}^{\prime}). Combining these two equations and comparing with (III.7) we obtain

$$
\begin{equation*}
\frac{N_{L}\left(c_{+}, c_{-1}, \delta\right)}{N_{c}\left(-c_{1},-c_{-}, \delta\right)}=\frac{\Gamma\left(h_{1}+c_{+}-\delta+\frac{Q}{2}\right) \Gamma\left(\delta+c_{+}+\frac{2}{2}\right)}{\Gamma\left(h_{1}-c_{+}-\delta+\frac{2}{2}\right) \Gamma\left(\delta-c_{+}+\frac{Q}{2}\right)} . \tag{III.18}
\end{equation*}
$$

C. The Plangherel formula

In order to give a preoise meaning of the singular equation (III.9) we start with the following regularization of the lefthand side:

$$
\begin{align*}
& \times \int d x_{1} \dot{k l} x_{2} V\left(x_{1}-i_{1}, x_{2}-i_{2} ; x_{3} x_{z}\right) V\left(x_{1} c_{1}-2 \varepsilon, x_{2} c_{2} ; x_{3}^{\prime} \dot{\chi}^{\prime} z^{\prime}\right) \tag{III.I9}
\end{align*}
$$

and shall go to the limit $\varepsilon \rightarrow r 0$ only after smearing with an analytio test function of $\mathcal{J i}^{-i}$.

Setting

$$
\begin{equation*}
x_{i}-x_{3}^{\prime}=x_{i, 3} \quad i=1,2,3 \tag{III.20}
\end{equation*}
$$

and performing the integration in (III.19) over x_{2} we obtain:

Here we have used again (III.14) and (III.13). Further, we apply the binomial formula:

$$
\begin{aligned}
& =\sum_{j=0}^{k} \sum_{j=0}^{k^{\prime}}\binom{k}{j}(k) \frac{\Gamma\left(h-\delta-c_{-}+\frac{l}{2}+k^{\prime} \cdot j\right) \Gamma\left(\sigma^{\prime}+c_{-}+k^{\prime}+k-j-\varepsilon\right)}{\Gamma\left(h-\delta-c_{-}+\frac{l}{2}\right)-\left(\sigma^{\left.r^{\prime}+c_{-}+\frac{l^{\prime}}{2}-\varepsilon\right)}\right.},
\end{aligned}
$$

then change the order of summation in k and j, and in $k '$ and $j^{\prime \prime}$, and use twice the sum rule (III.15) with $\alpha=\delta^{\prime}+c_{-}+\frac{e^{\prime \prime}}{2}-j-\varepsilon$ $\beta=r^{r}+c_{-}-\frac{l}{2} \quad\left(\right.$ and $\quad \alpha^{\prime}=h-\delta_{-}-c_{-}+\frac{l}{2}-j^{\prime}, \beta^{\prime}=h-\sigma^{\prime}-c_{-}-\frac{l^{\prime}}{i}+\dot{+}$

$$
\begin{aligned}
& \text { The result is }
\end{aligned}
$$

where

$$
\begin{align*}
& =\int \frac{d p}{(2 \pi)^{2 h}}\left(\frac{2}{p^{2}}\right)^{2 \varepsilon} e^{c p x_{3,}}=\frac{\Gamma(h-\alpha \varepsilon)}{(2 \pi)^{h} \Gamma(2 \varepsilon)\left(\frac{\left.x, j j^{2}\right)}{2}\right)-2 \varepsilon}(\underset{\varepsilon \rightarrow 10}{\longrightarrow} \delta(x)) . \tag{III.22}
\end{align*}
$$

Because of the distribution character of the limit $\varepsilon \rightarrow \infty$ [as 18 already suggested by E_{q}. (III.9)] we shall first smear the right-hand side of (III. 21) by a suitable test function of the representation label

$$
\begin{equation*}
c^{\prime}=2 \sigma^{\prime}-h \tag{1II,23}
\end{equation*}
$$

Let

$$
\begin{equation*}
2 \delta=h+c, \quad c=i \sigma(\sigma-t e a c) \tag{III.24}
\end{equation*}
$$

and let $f(c)$ be an analytic function in some finite strip

$$
\begin{equation*}
0 \leq R e c^{\prime}<a \tag{III.25}
\end{equation*}
$$

fast decreasing at infinity inside the strip. We shall evaluate the integral

$$
\begin{equation*}
I_{t}^{f}\left(x_{3 j^{\prime}}, r_{1} l\right)=\int_{-\infty}^{\infty} \frac{d c^{\prime}}{4 \pi_{i}} \rho_{i}(-i c) I_{E}\left(x_{3} l \frac{h+c \sigma}{2} z, x_{1}^{\prime} \ell \frac{l+c^{\prime}}{2} z^{\prime}\right) f\left(c^{\prime}\right) \tag{III.26}
\end{equation*}
$$

In the limit $\varepsilon \rightarrow+0$ by closing the contour of integration
In the strip (III.25). (In order to simply ${ }^{\text {(}}$ (y the calculation we have set $\ell^{\prime}=\ell$,) The result is

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow+0} L_{i}^{f}=\frac{1}{2} \rho_{2}(\sigma) \lim _{t \rightarrow+0}\left[f(\omega \sigma) R_{i=i \sigma} \operatorname{Res}_{i} \neq f(-\sigma) I_{c \cdot=-i \sigma} R_{i} I_{i}\right] . \tag{III.27}\\
& \text { For the first residue we obtain from (ITI.2s) (for } \ell^{\prime}=\ell^{\prime} \text {, }
\end{align*}
$$

In writing down the first equality (III.28) we used that for any

$$
\begin{aligned}
& \text { test function } \psi\left(x_{j}\right) \text { : } \\
& \int\left[\left(a_{j}\right)^{i-j}\left(z^{\prime} b_{i}^{\prime}\right)^{i-j} \dot{v}\left(x_{3}\right)\right] i L\left(x_{3}^{\prime}\right)\left[\left(z_{i j}\right)^{j}\left(z^{\prime} \partial_{3}\right)^{j i}\right]\left(\frac{x_{3} j^{\prime}}{2}\right)^{l} d x_{j}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{j+j} \int d\left(x_{3 j}\right) \|\left(x_{j}^{\prime}\right)\left(z d_{3}\right)^{c^{\prime}}\left(z^{\prime} d_{3}\right)^{t}\left(\frac{x_{3 j}^{2}}{2}\right)^{6} d x_{3}^{\prime}
\end{aligned}
$$

(since the terms ocntaining derivatives of $u\left(x_{j}\right)$ vanish); we also applied the identity

$$
\frac{\Gamma(i-i) \Gamma(\varepsilon)}{i\left(\varepsilon+j-i^{\prime} j \Gamma(\varepsilon+j-i)\right.}=(-1)^{j+j^{i} \Gamma\left(1+\left(-j^{i}-\varepsilon\right) \Gamma(1+l-j-\varepsilon)\right.} \frac{\Gamma(1+i-\varepsilon) \Gamma(1-\varepsilon)}{}
$$

Next we take into account that

$$
\begin{equation*}
\sum_{j=0}^{l}(-1)^{L^{\prime} j}\binom{e}{j} \frac{(l-j)^{\prime}}{\Gamma\left(h_{i}+l^{\prime}-j+i \sigma\right)}=\frac{1}{(i \sigma+h+l-1) \Gamma(h+i \sigma-1)} \tag{III.29}
\end{equation*}
$$

(see Appendix A). Inserting it in(III.28) and (III.27) and recalling the notation (III. 20) and the expression for the Planoherel measure (I.16) we obtain:

$$
\begin{equation*}
-p_{i}(\sigma) R_{i S} I_{i=i}=i \sigma<\left(\lambda_{i j i}\right)\left(z z^{i}\right)^{2} \tag{III.30}
\end{equation*}
$$

The orthogonality relation for $l \neq l^{\prime}$ implied by (III.9), (II I.10) an also be verified by a slightly more oomplioated oafovulation along the same lines.

Now we proceed to the evaluation of the second residue term in (III.27). Setting $z^{\prime}=z\left(l^{\prime}=l\right)$ for δ given by (III.E4) and using (II.4) (II.25) we find

$$
\begin{aligned}
& -\lim _{\varepsilon \rightarrow 0} \operatorname{Res}_{c^{\prime}=1 \sigma+2 l} I_{i}\left(x_{j} \ell \delta_{z}, x_{y}^{\prime} l^{\prime} \frac{h+c^{\prime}}{2} z\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times \frac{1}{\Gamma(h+C-j) \Gamma(h+l-j) l}\left[\left(\partial_{3} z\right)^{l-j}\left(z \partial_{3^{\prime}}\right)^{L-j\left(\frac{\ell}{x_{3}^{j}}\right)^{h}}\right]\left(z z_{3}\right)^{j}\left(z \partial_{3}\right)^{j^{\prime}}\left(\frac{2}{x_{3 j}^{2}}\right)^{\mu \delta-h-l}
\end{aligned}
$$

$$
\begin{aligned}
& \times \frac{\Gamma\left(h-\delta-c_{-}+\frac{2}{2}\right) \Gamma\left(h-\delta+c_{-}+\frac{2}{2}\right) \Gamma(h-2 \delta) \Gamma\left(2 h-2 \sigma^{2}+c^{2}-1\right)}{\Gamma\left(\delta-c_{-}+\frac{Q}{2}\right) \Gamma\left(\delta+c_{-}+\frac{l}{2}\right) \Gamma(2 h-2 \delta+l) \Gamma(2 \delta+l) \Gamma(2 h-2 \delta-1)} \times \\
& \times G_{X}\left(x_{3 ;} ; z, z\right) .
\end{aligned}
$$

On the other hand, as is shown in Appendix B,

$$
\begin{align*}
& \sum_{j, j=0}^{l}(-1) j+j^{\prime}\binom{l}{j}\binom{l}{j} \frac{\Gamma(i \sigma-l+j+j)\left(2 l-j-j^{\prime}+h-1\right)!}{\Gamma(i \sigma+j-l) \Gamma\left(i \sigma+j^{j}-l\right)(l-j+h-l)!\left(l-j^{\prime}+h-1\right)!} \\
& =\frac{l!\Gamma(i \sigma+h+l-1)}{(h+l-1)!\Gamma(\sigma \sigma) \Gamma(i \sigma+h-1)} . \tag{IJI.32}
\end{align*}
$$

Inserting (III.32) in (III.31) we obtain

Comparing (III.27) (III.30) (III.33) with the normalization condition (III.9-11) we find that for imaginary $2<-h$

$$
\begin{align*}
& N_{e}^{\prime}\left(-c_{t},-c_{-}, \sigma^{r}\right) M_{c}^{\prime}\left(c_{r}, c_{-}, \dot{A}-c^{r}\right)=1 ; \tag{III.34}\\
& M_{c}^{\prime}\left(-c_{r},-i_{-}, \delta\right) M_{c}^{\prime}\left(c_{i}, c_{-}, \delta\right)=\frac{\Gamma\left(\delta_{-}+\frac{l}{i}\right) \Gamma\left(\delta_{+}+\frac{l}{2}\right)}{\Gamma\left(h-\sigma_{-}-c_{-}+\frac{l}{2}\right) \Gamma\left(h_{2}-\delta_{+}+c_{-}+\frac{l}{2}\right)} \tag{111.35}
\end{align*}
$$

Multiplying Eqs. (III.18) with (III.35) (side by side) we obtain

The sign of the square root can be fixed, requiring that for real dimensions and $-1 \leq c_{2} \leq 0, \quad\left|c_{-}\right|<\delta<l_{1} C_{r}$ the factors A_{C}^{\prime} be positive. Notice that Eq. (III.34) (which was not used in the derivation of (III.36)) is satisfied automatically by this expression.

The authors are grateful to Dr.R.P. Zaikov for acquainting liam with his results prior to publication.

APPEnDIX A
4 a mention formula involving ratios of Γ - functions

Eggs. (III.15) and (III.29) used in Sen. III an both be derived from the following known formula for the value of the hypergeomevirio function $F={ }_{2} F$ at the point $z=1$:

$$
\begin{equation*}
F(a, b ; c ; 1)=\sum_{m=0}^{\infty} \frac{\Gamma(a+m) \Gamma(b+m) \Gamma(c)}{\Gamma(a) \Gamma(b) \Gamma(c+m) m!}=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} \tag{AlI}
\end{equation*}
$$

(see ecg. [oj] Eq. 9.122.1).
In order to reduce Eq. (III.15) to the form (A.1) we set $k-j=m$, $l-j=\pi$ and continue to mon-integer n, writing (III.22) in the form

$$
\begin{equation*}
\sum_{m=0}^{\infty} \frac{\Gamma(m-n) \Gamma(\alpha+j+m)}{\Gamma(-n) m!\Gamma(\beta+j+m)}=\frac{\Gamma(\beta-\alpha+n) \Gamma(\alpha+j)}{\Gamma(\beta+j+n) \Gamma(\beta-\alpha)} \tag{A,2}
\end{equation*}
$$

Here, we have used the identity

$$
\begin{equation*}
(-1)^{m} \frac{\Gamma(n+1)}{\Gamma(n-m+1)}=\frac{\Gamma(m-n)}{\Gamma(-n)} \tag{1.3}
\end{equation*}
$$

- Eq. (III.29) is established. In a similar way.

There exists also a direct elementary proof of Eq. (III.15) and (III.29) which exploits their similarity to the Norton binomial formula.

In the above notation, Sq. (III.15) assumes the form

$$
\begin{equation*}
f_{n}(a, b)=\sum_{m=0}^{n}(-1)^{m}\binom{n}{m}(a)_{m}(b+m)_{n-m}=(b-a)_{n} \tag{A,4}
\end{equation*}
$$

where $a=\alpha+j, b=\beta+j \quad(n=l-j \quad$) and

$$
\begin{equation*}
x)_{k}=\frac{\Gamma(x+k)}{\Gamma(x)}=x(x+1) \ldots(x+k-1) \tag{1.5}
\end{equation*}
$$

is the finitemaifference counter part of the power x^{k}.
In order to prove (A.4), we evaluate the finite difference $f_{n}(a, b)-f_{n}(a, b-1)$ using

$$
\begin{equation*}
(x)_{k}-(x-1)_{k}=[x+k-1-(x-1)](x)_{k-1}=k(x)_{k-1} . \tag{1,6}
\end{equation*}
$$

Than, we find the reourrence relation

$$
\begin{equation*}
f_{n}(a, b)-f_{n}(a, b-1)=n f_{n-1}(a, b) \tag{A,7}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
f_{1}(a, b)=b-a . \tag{1,8}
\end{equation*}
$$

In order to $11 x f_{n}(a, b)$ uniquely we have to evaluate it for a particular value of b. For $b=a$ we hare

$$
\begin{equation*}
f_{n}(a, a)=(a)_{n} \sum_{m=0}^{n}(-1)^{m}\binom{n}{m}=(a)_{n}(1-1)^{n}=0 . \tag{1.9}
\end{equation*}
$$

It is easily sem that the only polynomial solution of ($1.7-9$) is given by the right-hand side of (1.4).

Ba. (III. 29) an also be reduced to the form (1.4). Indeed multiplying both sides by $\Gamma(h+i \sigma+l)$ and substituting the summation index $j \rightarrow k=l-j \quad$ we obtain

$$
\begin{equation*}
\left.\sum_{k=0}^{l}(-1)^{k} l_{k}^{l}\right)(d)_{k}(h+i \sigma+k)_{2 k}=(h+i \sigma-1)_{l} \tag{1.10}
\end{equation*}
$$

Which is a qeoiel case of (1.4) (with $a=1, b=h+i \sigma$).

Appendix B. Evaluation of a double sum_inyolving 「-ingotions

We wish to evaluate the expression

$$
\begin{equation*}
S \equiv \sum_{j j=0}^{\ell}(-1)^{j l^{\prime}(\ell)\left(l j^{\prime}\right)} \frac{\Gamma\left(i \sigma-l+j+j l\left(2 l-j-j^{\prime}+h-1\right)!\right.}{\left.\Gamma(i \sigma+j-l) \Gamma\left(i \sigma^{\prime}+j^{\prime}-l\right)(l-j+h-1)!(l-j+h-1)^{\prime}\right)} \tag{B.1}
\end{equation*}
$$

First we make a change of summation variables to $z=\zeta \cdot j, y=\zeta \cdot j$.

$$
\text { Using the familiar identity } \quad \Gamma(x) \Gamma(f-x)=\pi / s / x \pi x
$$

and the definition of the Euler Beta-funotion B we may then rewrite (B.1) as

$$
\begin{align*}
& S^{\prime}=\pi^{-2} \sin ^{2} i \pi \sigma \frac{\Gamma(i \sigma+h+l)}{\Gamma(i \sigma+h-1)^{2}} S^{\prime}, \quad \text { with } \tag{B,2}\\
& S^{\prime}=\sum_{r, c^{i}=0}^{l}\binom{l}{t}\binom{l}{\tau} B(1-i \sigma+\tau, i \sigma+h-1) B(1-i \sigma+\tau, i \sigma+h-1) B(i \sigma+i-i-i, h+i+c)
\end{align*}
$$

We now insert the standard int egral representation of the
B-functions,

$$
B(a, b)=\int_{0}^{1} d x x^{b-1}(1-x)^{a-1}
$$

The result is

$$
\begin{gathered}
S^{\prime}=\sum_{c_{i}=0}^{l}\binom{l}{i}\binom{\ell}{\tau} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} d x d y d z\left\{\frac{z(1-x)}{1-z}\right\}^{\tau}\left\{\frac{z(1-y)}{1-z}\right\}^{t}\{(1-x)(1-y)\}^{-i v} \\
\cdot(x y)^{i \sigma+h-2} z^{h-1}(1-z)^{\iota i}+l-1
\end{gathered}
$$

Both summations can now be performed with the help of the binomial theorem, this gives

$$
S^{\prime}=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} d x d y d z(x y)^{i \sigma+h-2}\{(1-x)(1-y)\}^{i \sigma}(1-z x)^{b}(1-z y)^{l_{z}^{h-1}(1-z)^{i \sigma-l-1}}
$$

The x and y integrations can be perform, each of them produces a Jacobi-polynomial op. [03], formulae 8.962.1 and 9.111.

This gives

$$
S^{\prime}=\left\{\frac{l!\Gamma(1-i \sigma)([(i r+h-1)}{i(h+l)}\right\}^{2} \frac{1}{2} \int_{-1}^{1} d t\left(\frac{(1-t}{2}\right)^{i \sigma-l-1}\left(\frac{1+t}{2}\right)^{h-1}\left\{p_{l}^{(i \sigma-l-1, h-u)}(t)\right\}^{2}
$$

We have introduced $\quad t=2 z-1$ as a new variable of integration. Finally, the t-integration cen also be performed with the help of the standard orthonormality relation of Jaoobimpolynomials, op. [G]j, formula 7.391.1. One obtains

$$
s^{\prime}=\ell!\frac{r(i \sigma) \Gamma(i \sigma+h-1)}{\Gamma(h+i)} \cdot \frac{\Gamma(1-i \sigma)^{2}}{i \sigma+h_{i}+2-1}
$$

This has to be inserted into Eq. (E2). Splitting the sin ${ }^{2}$ into F- functions again, we obtain after some cancellations the Anal result

$$
\begin{equation*}
S=\frac{\ell!}{(h+l-1)!} \frac{\Gamma(i \tau+h+l-l)}{\Gamma(i v) \Gamma(i \sigma+h-l)} \tag{B,3}
\end{equation*}
$$

We remark that result and derivation are equally valid when k is not an int eger. The factorials $(h+l-1)$!, etc., have to be read as Γ - functions in this abase.

Referenocs:

[BI] N. N. Bogolubov, A. A.Logunov, I.T.Todorov. Axiomatio Juantum Field Theory. (Nauka, Mosoow, 1969) (English translation: W. A. Benjamin, Ino., Reading, hass. 1973).
[Dl] M.D'Eramo, L.Peliti end G.Parisi. Nuovo Cim.Lettern, R(1971)878. [F1] S.Ferrara, A.Grillo and R.Gatto, Ann. Phys. (N.Y.), 76,(1973)i61. See also Springer Tracts in Modern Physics, 67 (1973) 1.
[F2] S.Ferrara, R.Gatto and A.Grillo. fositivity restrictions on anomalous dimensions, preprint TH-1.793-GERN (1974).
[G1] I.m.Gel'fand and G.E.Shilov. Generaliced Functions, v.l, (Aoademic Press, N.Y., 1964).
[G2] I.H.Gel'rand, M.I.Graev, N.Ya.Vilentin. Generalized Functions, V. 5 (Academic Press, N. $Y_{i}, 1966^{\circ}$.
[G3] I.S.Gradshteyn and Iokreyzhik. Tablen of Tntegrals, icries and Products (Academio Press, N.Y., 196\%).
[H1] I.Hira1. Proc.Japan Acad., 38 (1962) 258.
[iI2] T. Hiral, Proo.Japan Aoad. 42 (1966) 323.
[K1] J.G.Kuriyan, Nomukunda and E.C.G.Sudarshan. Commun. Math. Phys., 旦 (196B) 2.04.
[inl] Gamack. Group theorctical approach to conformal invarinnt quantum fleld theory In E.R.Caianello (Ed.), Renormalization and invarianoe in quentum field theory, Plenum Press, New York (to be published), see also GoMaok, J.de Phys. 34, fasc.11-12, Cl-99 (1973).
M2] G.Mack and Abdus Salam. Ann.Physa (N.Y.) 53 (1969) 174.
[M3] G.Mack and K.Symanzik. Commun, ilath. Phys., 27 (19i2) 247.
[114] G.Mack and I.Todorov. Phys.Rev., De (1973) 1764.
(M5jA.A.Migual. 4-dimensional soluable models of oonformal ficld theory, preprint, Landau Institute, Chernogolovke (1972).
[M] M.A.Naimark : Truăy Mosoov, Mat 0bš., 10 (1961) 181 Engl.transl.: Am.Math.Soo.Transl., 36 (1964) 189 . DAN SSSR, 130 (1960) 261.
[O1] A.I.Okbak and I.To Todorov, Commun.Math.Phys ., 14 (1968) 271.
「o2] U.Ottoson, Commun.Math.Phys., 8 (1968) 228.
[P1] A.M. Polyakov. Non-Hamiltonian approach to the quantum field theory at small distances, preprint, Landau institute, Chernogolovke (1973).
[RI] W.RUh]. Conformal kinematios, Leotures presented at the Tehran Symposium in Theoretioal Physios, preprint, Univerait甘̈t Triar-Kaisersiautern (1973) and Springer Lecture Notes in Physios (to be published).
[R2] W.Rluhl. Commun.Math.Phys., 30 (1973) 287.
[S1] K.Symaneik. Green funotions method and renormalisation of renormalizable quantum theory. In: Leatures in High Energy Physios, Ed. B.Jaokgič (Zagreb, 1961), pp.485-517.
[S2] K.Symaneik. Euclidean quantum field theory. In; Coral Gables Conference on Fundamental Interaotions at Eigh Energy. Ed. T.Gudehus et al. (Gordon and Breach, N.Y. , 1969), pp. 19-31.
[S3] K.Symanzik. Nuovo Cim.Lottera, 3 (1972) 734.
[21] I.T.Todorov. conforiain invariant quantum field theory whth anomalous dimensions. Preprint IR 1697-CERN, Geneva (1973).
[T2] I.T.Todorov. Dymamioal equations and conformal expansions, Leotures presented at the Tehran Symposium in Theoretioal Phyaios (September, 1973) Springer Leoture Notes in Physios (to be published).
[T3] I.T.Todoror and R.P.ZZalkov, J.Math.Phys., 10 (1969) 2014.
[Z 1$]$ RcP. Zaikov, Spootral rapresentation of oonformal invariant two-point funotion for fields of arbitrary spin, fulgarian Journal of Physios (to be published).

Received by Publishing Department on May 24, 1973.

