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Essentially Nonlinear Fields and Vacuum
Polarization

The behaviour of the energy density for interacting
fields at large gradients is shown to be in agreement
with the classification according to.their renormallza—
bility.

’ The vacuum polarlzatlon resulting in fields with
limited derivatives is considered.
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1. FIELDS AT LARGE GRADIENTS

By the essentially nonlinear field T mean
a field the weak discontinuity of which
("signal") propagates with a velocity: depen-
ding on the fleld 1tself and/or 1ts derlva—“
tives. : E

In this sectlon a. method whlch will
further be applied to the essentially non-
linear field, is at first explained by the
example of simpler fields obeying the equa-a
tions with constant coefflclents for the'”'”
highest derivatives. . : ¥

Tt is shown that there arises a 51mple
classification of ‘fields which corresponds -
to the classification accordlng to the f1eld
renormalizability. '

. The essence of the method consists in

the study. of the behaviour of the:energy-
density of a classic (nonquantized) field
concentrated in a small domain-of dimension .
=f{ and with the gradlents , — of ther
order lﬂ at’ £+ 0 x/ S 9x v e a :

x/Note that the. functlonal 1ntegrat10n,
in the Feynman 1ntegral (deflnlng the scat—
tering. matrix) covers all the possible.va-
lues of the’ cla551cal f1eld, includes 1nev1—;
tably the mentioned fleld values too.‘



A. We first consider a scalar field
®(x,t) with self-~action. For this field the
energy den51ty is

H=2[0"+ V0 +m3<1>.2]+g<1>“=o. . (1)

The expression in brackets 1s the energy
den51ty '0of a’ free field, the last term is
the self—actlon energy- and ‘g is the self-ac-
tion-constant. Instead of &, g and H we -
1ntrodu§e the dimensionléss quantities- o ‘.

g and H accordlng to the formulas-'
'ﬁ SRCR 1__!_1_ n_4z ‘H ~
.0 = ‘/ec D, -(‘Hc) .2 t»-g,. H=- 2(; H. “(2)

Here A is a certain length defining the.
self-action strength. The ‘quantity mille

is, in its order of magnitude, equal‘ to -
the zero-energy density- of a wave of length
A=t It follows from egs. (1) and (2)

i-Llig e +m222¢¢]+g(-—) “"if:",»
2. - (3)
@’ being a dimensionless”derivative; It is
seen- from eq. (3) ‘that atf+ 0 the self-
action disappears, provided n<4. This is the
so-called super-renormalizable theory.
- When n=4 the self-action remains finite, that
is the theory is renormalizable. Finally,.
at n>4 the self-interaction grows infinite-
ly, in this case the theory is ‘nonrenorma-
lizable. .

B. We now. turn to electrodynamlcs. The
energy den51ty is 1n this case

H =Hic ¥V + me ‘P‘P]+e\PA"P+F#V'F#V. )

The notation 1s obvious. We put

 From here and eq.’ (4)J&e getxj”
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H = v

Here a=e/fic. It is seen from eq. (6) that at
-0 .the density}lremalns finite. Electrody—
namics is known to be renormallzable. We
consider

C. A weak interaction of ‘two splnor flelds,
¥ and @ -via a.contact 1nteractlon of cur--.
rents. The. expre551on for the- energy den51ty
reads now ‘

v

g
H= [‘acwaw +m e \P‘I‘]+['hc<l)a<l) +mge <I><I>]+ _
+ Gp¥0M¥.0,0. - s _.A(‘fi).

Here mjand mgpare the spinor field maSSes,
‘G the Fermi-interaction constant, O) the

-current operator. U51ng the first’ formula of

eqgs. (5) we obtain

A = - = = .
+ — v0*¥80,d (@
/2 _ o 67.107%¢
Ag=(Gyhe) 7 = . o .



At f.othe energy den51ty 1ncreases 1nf1n1te-
ly and cannot be compensated by the kinetic.
energy densityX/. The weak interaction theo-
ry is unrenormalizable. The situation
changes if we replace the contact interac-
tion by the interaction via an intermediate

boson (B,  field). Now the energy density
takes on the form ' -
‘ 9B, B, 2 2
H;T+1V+i( -y yuB'B
s 4 _axv dx : - H

" o
A : - (9) .
+g‘I’Q ‘I’B+g ’I’O ‘DB ()
where by.Tyand Tgswe denote the den51ty of.
free spinor fields (the two- flrst terms in
‘eqd..-(8)), the next two terms in eq. (9) is.
the energy dens1ty of the boson field, M

is .the 1ntermed1ate boson mass. The two last-

terms are the 1nteract10n of the boson
field with the fermlon ones, in this case

8189 fic n
i - G.. Putting B#-jv 7 B#lt is not

difficult to see that
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At €-0 this expression remains finite. In
Tl = - Bl =~ B2 . . _

thls.case g 1= 5 and g2—-?E§nThehthepry”
remains renormalizable. . : S

x/ThlS conclusion was indicated by the
author in 1957 in the article, devoted to

weak interactions/l/,
6
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D. The chlral symmetrlc fleld I, (a 1zm
In ‘this case the ehergy density is

H=-§ ab“TH5+VU vily) o dy
the chlral tensor gb belng equal to/3/ b
Han<b
Bap = AP gy + B —g—, o a2y
‘suklz' 2 _i - RV

B=1~A, A= ( E )%, = I%' , . 113)

whereylh,ls a ‘cértain | constant/z/ Puttlng;

"%E:Hwe make sure that the
dlmen51onless den51ty " remains flnlte for«
£+ 0 X/, In this case "infinities are remo-
ved by the superpropagator method/3/

2. THE ‘ESSENTIALLY NONLINEAR FIELD

The 51mplest example of “the essentlally
nonlinear field is the scalar field @ 4. the’
equation for whlch 1s determlned by the Lag-'
ranglan“" ' :

g = g(K)r ‘.' .

1 '.2f~‘ 2~ oo s

e V¢']f oo an !
For the sake of 51mpllf1catlon of the fore—
going dlscu551on we ‘restrict” ourselves to
the case of the two dimensions (t, , X) . Wlth
this simplification the equation for the
field takes the form

x/Note, that in spite of the dependence
of the tensor gab on the field II, the chiral-
symmetrlc field has stralght llne characte—
ristics and therefore does not belong to
the class of essentlally nonlinear fields.



a2 S A D

i oo 2= -0, (is)
Boo Tg¢ 2 * 2301 atax - P1t ax? T (15)
where BRI

. o 2

2 - . — - -~

Bop= 1+apP » 84y = 2P9» B~ (} @) (16)
and S B

T o0 _4°£ df '
Py 1T Ix T dK2 W 4N

The. velocity of the- 51gnal propagatlon

(weak dlscontlnulty) for. such a field
is/4,5/

0

e =.T[g01 - \/ D] o ‘ 4 (18)'

00 2

= =- ~ g, 19
D =g, .8, " 8g1 [1+a(p q (19)
The velocities of opposite directions are
obtained provided that D <0 and -Boo and &n
have opposite signs (normal behav1our) If

the signs of gooand g 11 are identical then

both the velocities uf have the same direc-,

"tion. In this case there does not exist

a reflected signal: a "collapse" for the
field ® comes. For D>0 the velocities be-
come complex. The equation. turns to an el-
llpth type. equation. The time and space

cease to be dlstlngulshable with respect to=

the fleld .

ThlS phenomenon was called by the author
the formation of a "lump" of events (see

ref. /5/)X/

Thus, the reglon of the normal behav1ourA

of a cla551c fleld is’ restrlcted by the
condltlons - -
D<o, g% 0 &y S0 (20)..
According to egs. (17) and (19) these condi-
tions read : - IR ‘ ’

1+ a(pz—q?)§_0, 1+ apz p3 0,‘\ 1-aq? 0 (21)

. The conditions (21) mean the restrlctlon on

the allowable values of the derivatives
which is to be taken into account in . the
fundamental Feynman  integral- when 1ntegra—
ting in the functional space R{@(x,0) ).

Putt1ng again- ® = 7 '¢and mentlonlng

that the Lagranglan (14) is a function of :
the form £(K) =bJF(K/b2) ( by is the field
scale deflnlng the nonllnearlty of equatlons)

we obtain: for the measure of the derlvatlves
the ratio

Vhe
22

. 1
vos D (22)
This ratio must. not exceed the. Values of g
the order of unity. From here

x/In this connection it is intefestlng to

study in more detail the situation in the

grav1tatlonal field during ‘the" collapse E
whether- or not the collapse can.result in
the formation of a "lump” of events.



Thus, there arises aérestriction on the
magnitude of the field gradients, in other
words, on the wave length. More exact condi-

tion (23) can be formulated only on the basiS'

of the knowledge of the coefficient a (K/b2).

In particular, for a Lagranglan of the Born— .

Infeld type. . SR
e - b [e \/1+ 2¢ K/b el, e=t*1. e (24)‘ :

The'limitations on'the'derivativesAfollowing
from eq. (21) are.

b(2) +€'(P2 _‘q,2) >0’ b2+'€.P2>0; b27‘,€ qb2> 0. (25)

The class of flelds descrlbed by the Lagran—
‘gian (24) ‘includes the. field on "one—dlmen—
sional" string studied in ref./6/, Recently
the interest in the theory. of such-a string
has increased due to papers/7:8/ in which
one has pointed to the connection: of this -
theory with the theory of- the Veneziano-dual
amplitude. : . .

3. VACUUM POLARIZATION

In this sectlon we cons1der the vacuum
polarization of a fermion fleld ¥ of a large‘
mass M. .

This field may be 1nterpreted as a fleld
of "partons"; "quarks" or - "maximons". By
the notion of maximon. I mean partlcles of
large (extreme) mass which may, however, not“

10

exist in the free state. due to large decay

constant T, comparable with the mass I' 2 M.
‘We ‘consider the polarization of such -

a vacuum induced by a-convergent spherlcal'

wave of a certain-boson field ¢ the mass of

_ which m <<M. The vacuum polarlzatlon is de-

flned by the fleld

b, M 2pgi By - , (26
. © /g Mo & (26)
hav1ng the s1mple meanlng. the work of thlS
field on the length %/Mc is equal to Mc 2
(comp./9/) . as the measure of the fleld o,

we take as;before ‘the quantity e

e 3, - L
; (® = 1). The vacuum: polarlza-

so'

that @ =

tion - 1nduced by the wave @ w1ll ‘be noticeable
if y (eq. (22)) is of the ‘order .of unity.
On the other ‘hand, at vy close to un1ty there
arise the above-mentloned restrictions on

the field derlvatlves. This limitation. w1th

" the account of eqs. (22) and (23) reads

V235 IR 4 '
Z h L]
2z / ) Mc o (27)
The vacuum polarlzatlon is apprec1able when
this relation is close to the equality.
'~ For the field ¢ to be efficiently descri-
bed by a Lagranglan belonging to the class !

- of essentially nonlinear fields (14) it is

necessary that the condltlon of qua51 statlo—

'narlty : .
¢ » ‘ : . ' R N : - .
S AT S § QJA<< L@l} L (28)

‘Mc Jx Mc [




be fulfllled that is Ex>i% ‘For g ﬂmxﬂthere

ex1sts the region of the values of the fleld
and its. derlvatlves for which both the con-
dltlon (28) is fulfllled and the . equallty
in eq..(27) is reached. ‘This implies that .in
this situation when the boson field comes . .
nearer to the maximon it becomes ‘essentially
nonlinear. In particular, an anomalous beha-
viour of the field (collapse) is also qulte
possible. . - _
It follows, from eqs. (27) and’ (28) that
nothlng of the klnd can, occur in electrody—
namiés since the equallty in eq. (27) is’
reached -in- this case:when ( G:h/Mc
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