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Essentially Nonlinear Fields and Vacuum 
Polarization 

The behaviour of the energy density for interacting 
fields at large gradients is shown to be in agreement 
with the classification according to.their renormaliza-
bility. 

The vacuum polarization resulting in fields with 
limited derivatives is considered. 

Preprint. Joint Institute for Nuclear Research~ 

Dubna, 1974 

(C,}J974 06l>el}uHeHHI>Ul &IHCIIIUJJYIII Jf(}epHI>IX UCCAeOOBQHUiJ ,/b6Ha 

1. FIELDS AT LARGE GRADIENTS ··- . 

By the essentiallynonlinear field ·I mean 
a field the weak discontinuity of which 
("signal") propagates with a-velocity depen...;; 
ding on the f·ield itself: and/or its deriva­
tives. 

In this section a method, which will 
further be applied to the essentially non­
linear field, is at first explained by the 
example of simpler fields obeying the equa;.:' 
tions with constant coefficients .for the · · 
highest derivatives. 

It is shown that there arises a simple 
classification of ·fields which-corresponds 
to the classification according to the field 
renormalizability. 

_ The essence of the method consists in 
the study of the behaviour of the energy. 
density of a classic (nonquantized) field 
concentrated in a'small domain of dimension 
""e. ?lnd with the gradients. _a_ ·' ...l : .. of the 
order lfi at · e ... o x/ • _, a x. c t 

x/Note that the fun~tiona·l. integration 
in the Feynman int'egral (defining the scat­
tering matrix) covers all the possible.va­
lues of the~blas~ic~l-field, includes. inevi-
tably the mentioned field values too. ~ 
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A. We first consider a scalar fi~ld 
~(x,t) with self-action. For this field the 
energy density is 

l "2 2 2 2 n H = - [ ti> + V ~ + m -~ ·] + g ~ = 0. 
. 2 (1) 

The expression in brackets is the energy 
density 'of a· free field, '-the.last term is 
the self-action energy and'g is the self-ac­
t-ion, constant. ·Instead of ~c , g and H we · 
introdug,e the dimensionless quantities·~, 
g and H according to the formulas: 

..jtic . ,; .. · 1- ~ n-4, iic "" 
~ = . e cJ:l ' g = (1ic) . 'A .. g' H = -. -4- H . . (2) . , e . 
Here A is a- certain ·length def·ining the. 
self~action st-rength. The quantity ?ft­
is, in its order of magnit~de, equal"to 
the zero-energy density-of-a-wave of length 
.\ = e. It· follows from eqs. (1) and (2) 
"" l ' ,. . "" . 2 2 ,.;, .. e 4-n ·, n 
H=2.[~'~'+m e <ll~]+g(A) ~ ·, (3) 
,. 
~, being a dimensionless derivative. It is 
seen- from eq. · -{~) '.that at"f -+. o the self­
action disappears, provided n < 4. This is the 
so-called super-renormalizable theory. 

· When n =4 the ·self-action remains finite, that 
is the theory is renormalizable. Finally, 
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at n > 4 the self-interaction grows infinite­
ly, in this case. the theory is nonrenorma­
lizable. ; 

B. _We now. turn to ·electroqyn~mics. The 
energy density is in this case · 

- A 2- - A . /LV 
H=Eiic'Pa'P+mc 'P'l']+e'PA'l'+F/LvF · (4) 

' 
'i 

The notation is obvious. We put 

1: -."" · ..jhc ·=---- .:· ..jt.ic =,-·· ··=,. · .- • 
'I'= . I '1', A =: e A ,F v=--2 (A/LV.-AV/L).(5)~--e3 2 __ P.. . . P. IL e . .. 

From here and eq_. ( 4 )'.we get . 
= ;; =, - ·;; = . 1/2;; "" = l .-.;; ,· 2 ., .. 
H='P'P+mcf'l''l'+a 'l'A'l'+4(A). (6) 

2 ...... . . ·, . ·-
Herea=e/Tic.It is seen from eq. :(6)-that at 
f.-+ 0. the density H remains finite. Electrody­
namics is known to be renormalizable. .We 
consider 

C. A weak interaction of·two spinor fields 
'l' and .(fJ via a contact interaction. of cur:..· . 
rents~ The:.expression for the en·ergy den~ity 
reads now " - ,- · 

-,. . '2 _·;· . -·" . . ~f-
H=[nc'l'a'l' +m 1 c 'l''P]+[1ic~a~ +m 2·c ~<ll]+ 

- ,\ - . 
+ G F 'l' 0 -'I' • ~ 0 ,\~ • (7) 

Here m1and m2are the spinor field masses, 
G the Fermi-:interaction constant, 0 A. the 
current operator. Using the first· formula.· of 
eqs. (5) we obtain 
~ ·~ ~ ~ =::: ~ = ~ = 
H= ['l''P'+m

1 
cf'P'l'.]-H<ll<ll'+ m 2 cf~4>] + 

2 . 
AF ;;;. ,\_;;; ,. . 

+---'PO 'P~O\ <ll. · 
e 2 "' 

(~) . -
1/2 . -16 

AF=(GF1ic) = 0,67·10 em • 

... ~~ ~. ··.: 
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Ate ... othe energydensity increases infinite-- . -

ly and cannot be compensated by the kinetic. 
energy densityx/. The weak interaction theo­
ry is unrenormalizable. The situation 
changes if we replace the contact interac­
tion by the inte:raction via an intermediate 
boson ( B 11 · field),. Now_ the energy den~ity 
takes on the form 

1 a B a a 2 
H=T +T +-(~---v) 

. . .I 2 4 a~ ax 
' . v .· 11 

- .\ , -- ,\ . 

+ g 
1 

IJI Q ,\ 1J1 B + g 
2 

tfl'O ~ <ll B , 

2 11 
+MBB

11
+ 

. . (9) 

where by, T1 and • T 2 we denote the density of. 
free spinor fields (the two·· first terms in 
eq.> (8)),. the· next two terms in. eq.· (9) is 
the" energy density of the boson fieid, M 
is the intermediate boson mass. The.two last 
terms are the intera:ction of the boson · 
field with the fermion ones, in this case 

.gl~ 2 = GF. Putting B
11 

=_v-r.'lc B
11
it is not 

difficult to see that 

li ='- T + T + _l o1') 2 '+: M 2 e 2 i3 2 + . .·1 . 2 ' -4. . . - - '• 

"" "" ""=:: ,\ "" "" .. "",\ 
•(10) 

+ g 1 'I'O.x'I'B +g 2 <ll0,\¢B 

At 'l-+0 this expression remains finite. In 
"" g 1 =:: g 2 ' 

·this case g 1= ~and g 2 = ~.The;!;_thes>ry. 
remains renormalizable. · · · 

x/This conclusion was indicated by the 
author in 1957 in the article, devoted to 
weak interactions/!/. 
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D. The chiral::sYniroetric field II a (~=1;2;3) •• 
In-this·case the-energy density-is 

1 . • 
H: = .....;.. g b ( II IIb + V II VII b ) 2 , a a · a 

the chiral 

g =A· o ab· ab 

tens·or gab 

rranb 
+ B II 2 

being equal to/3/ 

-· 
(11) 

j \,-

(12) 

· A A ( -sin z ) 2 · • II. · . - ~-
B = 1 - ·, · = z · , z = II{ ·(13) 

where -II_o is '"a certaih . cons·tant/21. J>uttin~ .. 
~--,1 -~=:: o '. ''-c • ·, ,·' .·' C· .• 

II= 'l II , z = en
0 

llwe ~ake sure that the· 
dimensionless density=-R remains finite for 
'l -+ 0 • x/. Iri this case . inf-inities are reni.o-' 
ved by the superpr6pagator nietlioci/3/. 

2. THE ESSENTIALLY 'NONLINEAR FI:ELD ·· 

The- simpi'est exampl:e of: the. essent'iaf:iy 
nonlinear field is --~he' scalar field <I> ~. the 
equation for which is determitleii. ·by .·t~~ L~g·.:.. · 
rangian ·. 

f = f(K), K ., !_l~-~- v <I> 2 ] •. 
2 . •; (14) .-

For the sake ·of· simplification_ 9f the ··:F~re­
going di_scus~iop' ~,e. ·r~;strict··_oy~tselves ·to _ 
the case Of the two dimensions ( t, x) ·With 
this simplification the equation '"for .. the '­
field takes the form 

x/Note, that in spite of the dependence 
of the tensor gab on the field II, the chiral­
symmetric field has·straight-:-:line characte..;. 
ristics and therefore.does not belong'to 
the class of essentially nonlinear fields. 
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a2ell 

goo at2 

where 

~ 

a2ell 
+ 2 go 1- at ax 

' 
j-glJ: 

a2ell 

ax2 
0, 

1 
2 . 

goo= +ap 'go1=a.pq, g 11 = -0- aq 2 ) 

and 
a ell 

p = 
at 

a ell 
--, q = ax 

a 2f df 
a = - ., - I kK 

The.veloc.i.ty.of .the signal propagation 
{weak discontinuity) for such a field 
is/4,5/ ·. · · · · 

(15) 

(16) ' 

(17) 

+ 1 -.-
. u- = ..-- [ g ± v'- D], · ( 18) 

g . 01 . . 
00 2 . 2 2 . 

D=g g -g =-[1+a(p-q )]. {19) 
00 11 01 

The velocities of opposite directions'are 
obtained provided that D.< 0 and· . goo and. g 11 
have opposite signs {norma,l beha-viour) •. If 
the signs of J~ 0~.and g 11 a~e identical then 
both the velocities u± have the same direc-. 
tion. In this case there does not exist 
~ reflected signal: a "collapse" for the 
field ell comes. For D > o the velocities be­
come.complex. The equationturns to an el­
liptic type._ equation •. The ·time and space 
cease to be·· distinguishable with respect to· 
the field ell. · · .. 

;::: ·_;·:· 

.. ,; --
·8 

This phenomenon was called by_the author 
the formation of a "lump" of events {see 
ref./5/)x/. , 

Thus,; the region: of' the normal behaviour 
qf a ciassic field is restricted by the -
conditions ' 

. .' > . 0' D <·o, goo < ? 1~ §. 0. (20) .. 

According to eqs. (17·) and (19) these condi­
tions read 

l+a(p2-q2)>_0, l~ap 2 ~o, l-aq 2 ~P·(21)·· 

The conditions (21) mean the restriction on 
the allowable values-of the de:r;-ivatives 
which is to be taken into account in the 
fundament_ai Feynman ;i_ntegral· when integra­
ting in the functional space .R!<Il(x,t)}. 

Putting again ~ =. v;c: ~ a~d me~tioning 
that the Lagrangian (14). i~ a func£ion bf 
the form f(K) = h~ F( K/h~) ( ·h 0 is the field" 
scale defining the nonlinearity of e~u~tion§) 
we obtain for the measure of the derivatives 
tbe ratio · · 

v'1i. c l 
Y = _e2- h · (22) 

0 

This ratio must.not exceed the values of. 
the order of unity. From here 

x/ In this connection it is inter.esting to 
·study in more detail the situation in the 
gravitational field during the collapse 
whether or not the collapse can.result in 
the formation of a "lump" of events~ 
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f 
I 

£ > (~ 1/4 
'b 2 ) . • 

0 

~ 

(23) .' 

Thus, there arises a. restriction o~ the 
magnitude of the ·field gradients, in other 
words, on the wave le~gth. More exact condi­
tion (23) can be formulated only on the basis 
of the knowledge of the coefficient a(K/h6). 
In particular, for a· Lagrangian of the Born­
Infeld type_ 
~ 2 . --------~2~ 

= b 0 [f" yl + 2f" K/b
0 

-( ], f = ± 1. ( 24 ) 

The ·limitations on thederivativesfollowing 
from eq. (21) are 

b~ +£(p2 -q 2
) >.o. h;+£p 2 >o, b~-:-:£q 2 > o. (25) 

The class of fields described by·the Lagran­
gian (24) includes the. field on "one-dimen­
siorie~.l" string studied in ref./6/. Recently 
the interest in the.theory of such-a string 
has increased due to papers/7,8/ in which 
one has pointed to the connection of this · 
theory with the theory of. the Veneziano·· dual 
amplitude. 

3. VACUUM POLARIZATION 

In.this section we ·co'nsider .the vacuum 
polarization of a ferm.fon fiei'd 'I' :of a large 
mass M. 

This field may be interpreted as a field 
of "partons"; "quarks"· or. "maximons" •. By . 
the_notion of maximon.I mean particles ·a~ 
large (extr~me) mass which may, however·, not 

- . ~ ! 
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exist in the free state due to large decay 
constant r,comparable with the mass· r ~ M. 

We.'consider the polarization of such 
a vacuUm induced by a convergent spherical 
wave of a certain-boson field <II the mass of 
which-m <<M. The vacuum polarization is de­
fined by the field 

. . •. 2· . 1i 
b0 = Me.'-/g(-· ) = 

Me 

M 2_e 3 

gti 
(26) 

having the. simple meaning: the work of this 
field on the length. 1i/Me is equal to Me 2 

(comp./91) .' As the measure of the field <II, 

we take as before. the quantity v~ so 
-'1i . - -. h' d. v e . :; (;: ) . 1 . t at .,., = ---r- .... ; .... ""· 1 • The vacuum. po ar~za-

. . ' 
tion induced by the wave <11 will be noticeable 
if y (eq. (22) )· is of the order .of unity._· · 
On the other hand, at ·r close to unity there 
arise the above-mentioned restrictions on 
the field deriva_tives. This limitation.with 
the account of eqs •. (22) and (23) reads. 

2 . . 1/4 i 
£ ::: ( g /h e) - • : ( 2 7) 

. Me · 
' 

The vacutim polarization is appreciable when. 
this relation is close to the equality. 

For the field <II to be efficiently descri­
bed by a Lagrang'ian belonging to the class 

·of essentially nonlinear fields; (14) ·.·it is 
necessary that the condition of quasi'-statio­
narity 

1 ....!...._ a<~~ I = 1...!....· ..!. <~~I « 1.<~~1 
Me a X Me £ .• 

(28) 

·u . 
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be ''fulfilled, that is '£»-~~For g2 /hc»lthere 
: · · · · · · · Me.: .. :_. . . ,_ .·. · .. ,-

exists thereg~on.o~ the values,of the f~eld 
and .~ts _derivatives for V{hich both t~e. con­
dition {28) is fulfilled_and.the equality­
in _eq. {2']) is reached. This impl;ies that-~ln 
this situation when the boson field comes 
nearer to the maximon i:t becomes ·essent.ia.lly 
nonlinear. In particular, an anomalous beha­
viour of the field (collapse) is also quite 
possible... . . ". 

It follows from eqs~ - (27) and· {28) that · 
nothj,.ng of the kind. can. occmr in electi."ody­
namics since the equality in eq. {27) is 
reached .in· this case' when e « h/Mc. 
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