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Summazr Y

In the framework of HBogelubov's axiomatic epproach prablems
connected with the extension of the scattering matrix off the masa
shell are conaidered., A specific poin! for the 3stendsrd extenaion
procedure ig the sssumption that the four dimensicnal spsce of
virtual momenta in which the extended objects (Iields, currents,
S-matrix coefficient functions, etcy ere defiped is flet Min-
kowsk1 space. However guch 8 choice of the geomeiry of the virtu=l
mementum Space does not follow from the besic exioms of the theory
and in fect is an independent postuiste. In our opinion the paseudo-
euclidean momentum space is not udequate for the deacript:on of the
phenomens at high energies (short distances)., We suppone tnhat the
use of Minkowski p-space is actuslly responsible for th2 known
difficulties of the loecsl quentum field theory connected with the
problem of multiplying of distributions with coinciding einguja~-
rities on the light cone. 48 an alternative we propose to use in
the extension of the S-metrix s 4-momentum space of conetant cur~
vature {(De-Sitter space) with curvature radius V& ; where £, a8
a fundamental length. The interection lawa of the elementary
particies at lerge moments are completely different in the new
scheme.,

The off-mass-shell S-matrix extension in the gpirit of De-
Sitter p-space geometry is consistent with the requiremente of
Poincaré invariance, unitarity, spectrality, completeness of the
system of asymptotic states, With the help of a Fourier transfor-
métian in De-Sitter momentum spece a new configuration % -space
is introduced, whose geometry ror smell distances £ E” is emsen-
tially different from the paeudoeuclideen one. The tcausality con-
dition which is direct generalization of Bogolubov'’s oausality
condition, going to it in the }imit Q,# 0 , is forwulsted in
terma of this g -ppace. It iademorstrated that in the developed
theory the problem of distribution products lopea its acutenesa.
In particular the commutation functions and propagstors in the
new scheme sre usual (not generalized) functione and there is no
erbitrariness in any their powers and producta.
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§ 1. A3 it is well known the dynaoical description in quantua
field theory requires the use of quantitiep off the mnss shell,
Such quantitica sre the Green's functiona, the deisenberg fieldn
and currents, the scbttering metrix depending on external fields
and sources, etc. Some physicel requiremcnts and in particuiar tie
Bogclubov'e ceugality condition can be formuleted only off the
maas shell,

The extension of the S-matrix off the mass shell obeying
besides the csusality condition the standord set of axioms:

1) Poincaré invarience,

2) Uniterity,

3) Completeneas of the system of states with positive
energy,

4) Uniqueness of the vacuum state,

5} Stsbility of the vacuum and one perticle states,
leads to most general formulalion of ihe present locsl gusntum
field theoryll/. If we restrict ourselfs in considering only ane-
compcnent acelar field ¥ with mass w , then the physical

S-msirix may be represented as the following decomposition:

S-= ZSLV?n Won Salpn %) () NUpa) (1
Here we deliberately use /F -representntion. By definition:
{ PR
D = o (e et a'x (2
+
(e - e(-p
{3)
and
- 7)Y (9) = 0 (aa)

0(p) = B¢t )€ ()
(ab)



~
From (4b) ond the invariance of O under translation trensforme-

tions
spa
¥(p - < T u(p (5)
it follows that the coeefficient function (e.f.) S"_(y,,.,p‘)
in the decomposition (1) is detined only on the surface:

{(«m =0 pronns

1 (6)

' i
P, :17:'1"‘“ ,

which further on we shall call mass shell.

§ 2. One of the ways to extend the S-matrix off the mess shell
is to add e classicnl field to the operator ¥(p) « The resulting
extended operator ¢Gv does not satisfy wore theKlein Gordon
equation (4a} and the 4-monmenta P {i=1, 2, .s. n), on which de~
pend the extended e.f. 5. (p, ,p.) Are off the hyperboloids:

pi-miz=0, (7
i.e.,becone virtual,

It i3 uvauslly coneidered ne obvious that the virtual 4-mo-
menta form a pseudoeuclidean Minkowski space (M). At least it is
supposed in the present quaitum field theoxry. This is the reason
why, for example, the region in which the ¢} S,,(pl,.w Pr)
are defined in translation inveriant way is (e.f. eg. (6)):

(o r?n)czo , (70,123
PeM,  paeM L

(8)

Anelyzing the axioms of quantum field theory we concluded /2/ that

the pseudoeuUclidesn charecter of the 4-dimensional space of virtual



momenta does not follow from these sxiecms and ie essentislly new
postulate of the theory.

It is well known that in locnl field theory one has to work
with products of generalized functions with coinciding singulari-
ties on the light cone:

(v-x)zg=0 (93

These products are not defined in a unique way and 88 & result
in the theory eppear arbitrery constants, divergences, etc.

In momentum representation these diffic.lties are nssocinated
with the region of large virtual momenta. But,ss we said above,the
choice of the gevmetry of the viriuel momentum space i8 not rirmly
conrected with the basic requirements of the theory end is in fect
in our handg. We think that in the usual theol'y this choice is
unsuccessful, i.e.;pneudoeuclidean cheracter of the 4-dimensi-
onal momentum Bpace ie actually reaponeible for the mern‘iocned

difficulties of the local theory,

§ 3. As en alternative in order to describe the virtual

4-momenta, we propose to use one of the De-Gitter spaces:

1 2 ¥ 4 10
l?u—? {-Mﬁ":vM —iz, 10
R T R
B N A M g (a1
°
Here * 1is a new universal constant with dimenaion of length {"fun-

demental length"}. M is the corresponding "fundemental mnss®,latzar
on we shall put fec=M=0=1 .

When.H(<l both De-Sitter spaces (10) and (11) coincide with



the Minkowaki apace. If If]?,j_ the curvature effects become essen-
tial, Therefore in a field theory uaing De-Sitter p-space the
large virtual moments are described in & completely different
manner in comparison with the usuel theorye

Presently we cen not definitively choose one of the rossibi-
lities (10)-(11). Here we shall consider only the case (10). There-
fore our bagic idea may be formulated in the following way: in the
extension off the mass shell the virtuel 4-momentm IF,' (¢ =0,1,2,3)
become erbitrary veciors in De-Sitter space

B -Frapl =4 a2

Doing that we consider thet the axioms 1~5 have to bas satisfied
like they were before.

It is clear that in the new acheme the region in which the

extended c.f. S"(p.,,,?..,) are defined have to be (instead of (8)):

(,?'f . +1:~Q(‘ =Q
(13)

PP = s o~ B prged,

Let (D(F.fh,) be the operstor of the extended field, defined
on De-Sitter space (12). Like before this guantity depende on four
variables, for instance (#o,$.,4i,%) + It follows from (13) thet in
the new acheme the extended S~matrix is invariant uwnder the “gauge”

transformation (compare with eq. (5)):”

Grpy = e Glan), o= poo~FE. (10

) the proposed theory transformetione of the type (14)
can be considered as primary, completely forgeting that in the
usual approach they correspond to translations x-sxra. in the
space time. The important point is that the invariance under the
group (14) leads to the usual 4-momentum conservation law in the

cofs (?,0--‘07..)‘*: 0.



It is extremely important to understend that the curveture of

the p-space and the requirement of invarisnce of the theory under
tranaformations {(14) are completely competihle with each other.
This is seen when analyzing relations {13) and compering them with

(8).

5 4, It can be easily seen that the hyperbgloide (7) can be

embedded in De-Sitter p-space only if the condition
m¥ oy (15)
is sstisefied,

We shall suppose that the reatriction {15) is alweys fulfilled
for the meases of these objects, which are deseribed by quentized
Y -fields.Then (7) is equivalent to the relstion:

(R m)(pu+mD =0 (16)
where by definitionm,:\-m'70 . Since on the surface (12) to any
fixed value ofP there carrespond two different just by sign values
of Py e then ench of the brackets in (16) can vanish:

Py=Ty =0, (17a)

’ﬁ, +VY =0, (17b)
Let ue now make sn importent physicel assumption: for the free
field ‘?(p,qa,)defined in De-Sitter /P-apsce anly the condition (17a)

is  satisfied. In other worda:

Ap-m)¥(ppd=C. ae)

We introduced the factor 2 in order eq. (18) to coincide exactly



»)

with e,q'.(lh) in the “flat” limit, m iplecd .
From (18) it followa (compare with (4b)) thet:
Clep) = B2 -2m)N(Ripy (a9}

~
where ¥ (s, p,) is operator without singularities on the surface (17a).

The invariant volume element in the space (12) may be written

in different ways:

H Ay = dedP (20)
Py = Loded 11-;"
o= Sl 4Bt {21)
A= AT (L-piepi DA% =
? * ( Peop R (22a)
2 .

= 3 R (1-pMeBipd), A=
2 Ve (1-peBipl), &P (2209

= 2 b (Lop gl 27
P T e et Dl N (22c)

where \ x»\ , %30

(x), = 0 , 2¢O - (23)

Last formulae show that the integration over De-Sitter ,P-apace
can be reduced to stamdard operations with analytical functionals,
In fact this is equivalent to some natural way of regularization

of the integrals in this space (see for instence /3/).

*) The squation based on relation (17b) hes no formaliy cor=-
rect flat limit. Let us note,howevar, that from an optimistic point

of view on the theory developed here we have not to exoluds the
possibility, thet particle states with £4,<0 can have for the new
theory such a fundementml meaning @s, for inetence, the states
with negative energies in Dirac's theory of the electron.



The fcur-~dimensional S ~function in De-Sitter /> -space can

be rcpressnted by the relation:

('R, 5%, p) $pp) = PCoi) (248

S‘¢(f"1 i) 3 © ( f
= = £Hp)
3 ¢(‘P; fn)

In the decomposition of the scattering matrix ir terms of

(2ab)

v ~-fields every field operator appesrs eccompanied by "ils own"
volume element:
IR (O SR 8)
(the dots subatitute other operators, volume elements, c.f.,ett.).
Now using (19) and (20) expreesion (25} can ue wr:itten in the fol-
lowing ways
g...nl»'l‘,\e(?,y.,)... = S---ﬂ3(?3——7"+f,‘—1)451;:(2?‘-21'1,)"?(‘?.m,) .=

2§ Bpem) B (pmy dlp ... (261

In the "flat® limit taking into sccount {4b) we should have
instesd of (26):

S.d‘?‘f(p) = Su- 8(?“"“‘)&(?)‘*'?... (27)
Comparing (26) and (27) we conclude that o thne durface (7) the
following equnlity should be satisfied:

R Ry = U (). , (28)

Nelatior (28) pleya the role of o specifi. “correspenience
principle”. With ite help the commutation relations which should
bc satiafied by the solutions of equation (19) cen b2 dctermined.

Simple calculstions give:

L€ by S Cp, 1)) = 5"’(9 )R (p)E(2p,-2m,) . (29)



The notion of A norsel product of field operators and the
correspondent Wick's theorem can be formulated in the new scheme
without changes in principle. In suoh a way the S-mstrixz, like
before, may he represented in the form of a decomposition, just
making formally the subatitution:

d'p— dQ |, Yip) - Cipp). (z0)

On the msns shell, because of (28}, the substituticn (30) is
reduced only into introduction of new notationa. Howaver in the
extension of the field off the shell #fy="my , i.e.,in the transi-
tion from the operator \Q(p,p,) toc the operator ¢(p.p.) a new
extended S-matrix eppears. Ita coefficient functions, ss we already
mentioned are defined in regions of the type (13) and therefore the
behaviour of these fuactions at large virtual momenta |plx4
is much different to all with which we ere familiar in the con-~
ventional theory.

Let ve further note thst because of the translation invariance
the total 4-momentum in the new acheme is conserved in any
tranaition and all the properties of this quantity, in particular
the character of the spectrum remein unchanged too. For instence
far e system of two .ree particlas with 4-momenta annﬂ fi we have: ~

Lm? ¢ (lp,+p‘)z PRV (21)

However the curvature of the 4 -apace inevitsbly affscts the
4~momenta which are not fixed@ by the total momentum conservation
law, These 4-momenta in the usual theory sre proportiomal to the
differences of the particles momenta (reai or virtual) and may

be conventionelly celled "relative” momenta.



4.5, The "Gistortion™ of the relstive woreniua of Lhe systen
of two particlea in the nes scheme can be illustrated by the follo~
wing roasoning. Let(fs,fiyy end (£,p,) are two S-voctora of the
space (12). If py: f,= M, then we have resl particles; in the
general case, which we shall consiéar, the corresponding particles
are virtusl, Let ue pass from eight independent variables (4%,p.)
and (%, p.)) to new variabley among which we shell obligatory want
the total energy-momentum vector to be:

P‘. = (pepa)p , (1= 0223 (a2)
In the usual theory the second independent 4-vector is ususlly

taker to be the "relative® momentum 4 defined by the relations:

p
B=ar 3z -P2

> ‘t=1’-';P_ = P—'Z‘?' (33)
,?,';-ﬂ,fb-i

In De-Sitter p -space direct analogues of the formulee(33) exiat:

=40l , p--qwU o)
Va=to. | U, -0
¢ 2{a-q* )
% = ?.(—)U = M‘.’."‘.ﬁi
i < (Mot (4 (35)
941 = V-9 ?

whera S
(= ";:(TH + ';:\lpt"'(f-t'fn) ) ,

= Lo+ P @uengt) .
In these relations with the symbol (+) we denote the operation of
translstion on the surface (12). This operstion belongs to the mo-
tion group S0(2,3). Explicitly:

@ = Bweyy = buv @, - & b

8y
@, = B®), = 8,¢ - ke (36)



In the flnt limit, obviously wc - iC |

Coming back to (34) and comparing thes¢ formulas with (33)
we conclude that togethear with Pr,"independonz" variable is the
4-momentun qH.which belonea, in contrast to pr' to the De-Sitter
space {12).

Now it is clear that in the theory we developed also the
quantities, which are in the flat limit coordinate differences,will
be essentially modified. We shall denote these "relative” coordi-
natea by;(compare with (9)). Evidently the ;—space is canonically

conjugated to the curved # -space (12)in the spirit of the corres-
vondent Fourier transforration. Later on we shall denote the

kernel of this traneformation by <Elp4) -

3 6. Quantities <§””PV> are eigenfunctions of the Casimir's
operators of the group 50(2,3);

i)
T (‘Jrv\h—; )<§\1’1’~) AL \ppa) (37)

( a‘.w is the metrie tensor of the curved 4-space (12),5:&tl\3-c-vll
and ; is a complete set of observablea in the new configuration
representation), Without going into details letus only notice that
the M -gpectrum in (37) corresponds to the maximally degenerate
series of unitary representations of the group 50(2,3)/4/ and
econgists of two branches-discrete snd continuous:

Lk La-q,0,4, ... (38e)

VA | 0cnge .

(38b)

In the flat limit (37) becomes the eigenvelue problem for the
. %
operator of the pseudoeuclideen interval (( %P) . TheL~rogion

goes into the timelike region and the A «region into the



spacelike region. Let us emphasize tha. therc is no eanalogue of
the light-cone in the spectrum {38). This surface appeara only
in the flat limit,
The besis functions <§\'l"7~7 corresponding to the spectrum
(38) may be written in relativistic invariant way
Rl ppay = (py-iph) ™2, Nl A%2 1, (o0
<Ede bays (s ?N);'/‘”,Aufgn.j’), LY (40)
The functions (39) in accordence with the diacrete cinaracter of
the spectrum (38a) are aquare integrable in the metrics dﬂp
and (40) have to be considered as gencralized function of the
type(23).
In the flat limit any of these quantities transforms 1n

usuel exponent: L sp (a1)
Sulppy = (Eeip) e e s La
ek MR o)
s lppy = (petpPh), e L T AN ¢

In order to perform Fourier transformation in De-Sitter

4 -space one may also use basis functions in which the complete

sst of variables; differa from the set (39)~(40). Let us consider
in this connection the gensrators of the S-rotations in the ( (4“ )=
planes: o } s (43)

MV =-s P,,?_P .

The zero component of this 4-vector in terms of (w,p )- coordinates

{ see (21) ) is equal to H'”ri%, « From here, imposing perio-
dicity inw , we obtain that in any Lorentz reference frome the

2y
sigenvalues of the operator M are integers m =0,t4,:2 . and the



correspondsnt eigenfunctions have the form:
dniwy = et (44)
Since Mo commutes with the Casimirs operator of the group
50(2,3), n» may be included in ths complate set of observables
together with A . In such & way we get one more set of basie
functions. Their use is particularly attractive because of the

simplew ~dependence:
Ony 1ppd = (I, L 1BD. “45)
The dots correspord to the other variasbles in the complete aet,

As an illustration we give the full expression for s function of

the considered type in the case of the diacrete spectrum:
N nw
Oﬂ\ﬁn.‘fnltﬂ.f,@,ﬂ’,)-ﬁ 4 InHL'i){ (w)O 238, -5 G,sin Orm(v,-\’r)]. (46)

Here C: is Gegenbauer polynomial and A is e normalirzation constant.
The function (46) is different from zero if:
inlzLed =2,3,4,.. (47}

The discrete paramater 7. we shall call "time"”, because in
the flat }limit the quantity M“ coincides with the time operator
"'-_E- of the usual theory.

A remarkeble property of the discrete timem is the inve-
riance of its sign in the repreasentationa of 50(2,3) cerresponding

to the diascrete "timelike" region(38):
'";—' = anvar |, Y AsL(L43). (48)
The inequality (47) in this case playe the role of "timelikenegs®
condition,

Because of (48) the operators in the L =region can be
ordered in invariant way in the parametermn. The correspondent

“step” function hes the form:



L4
a PR 1, my0
9(“)—m &,}L_\l_.“ Aw = { 1) m<¢o 49)
- Z

‘

Now we are able to make the following conclusion: the new
g ~-apace consists of two rogiona,L ana A , which are snalogous to
the timelike and spacelike regions of the pseudoeuclidean space.
Moreover - in the L-region one can order in an invariant way in
terms of the discrete time, Therefore in our disposal we have all
necessary machinary in order to formulate the csusality condition
in the developed theory. This condition, as we slready seid, cen
be written only off the mass shell. Therefore it would be sensiiive
to the accepted by us way of extension off the mass shell.

§. 7. In order to be able to &ltack the problem of causality
some preliminary work is needed,

Let us consider the operator:

(5) e § <51ppay Clppe) 4. (50)
Let us now apply to it the transletion transformation (14):
{ ipa
G (<simppsiopye® dfy =¥, (z). (s1)
In the flat limit we have, of course:
(%) = ¥z +a). (52)

In the present case the quantities a and T have completely diffe-
rent mathematical nature and this is the reamon why ‘(.(g)-‘ele(gfq)‘
Let us further put by definition:
R L
ap SV(?-?V)Q d-Q? 5 ¥ (0). (58)
and let us consider the commutator [Ya(g),% (s)] . With the help



of (29) it is easy to demonstrate that it does not depend on 4 ,

i.e., io translaction invariant:

M® %) = 290 - m, S(g [pp) €5 (2 p,-2m) A2, . (54)
From (54) it follows that:
{€.(D,%U2]=0, (55)

if} is in the continuous spacelike series (38b).
Completely in the same manner one can prove that:
(wE)%(-9)=0 , - arbitrary, ge A -series (563
Let us mention, by the way, that the variable ‘; plays the role
of & "relative” coordinate in the co}lsidered commutation relations.
The equalities (55) snd (56) may be taken as pattern in the formu-
lation of the locality condition in a theory with interaction.
Now let us conaider the chronological product of free ¥ -
fields:
T4 (0) = O0EIT)EL (0D + BERIVa () ¥ (-5) - (57)
This product, because of (48a) and (55) is invarient. After putting
{57) in normal form end taking into account {49) we obtain:

TEEGE = 6T + Ol T@m (D> . (58)

S(;’l? f.)JEL,_

T4 oy = £2°(5) =
P1 ™, '{) (59)

2..)
Therefore we have the right to interprete the quantity

1

It (60)

2 (P) i 2{py=mq-i0)

as the propagator of & free psrticle. Let us also notice thet




<
2 (p) is grean’s function of the equation (18).
§ B. Let us define the current opcrator in De-Sitter space by:

: ?S +
(P o)z i —2e 8. (61)
(A BPéoen

Evidently under transformations (14) and becauses of the invariance
of the S-metrix we shall have:

1p) — P 5(pp) . (62)
Applying eimulteneously the transformatione (50} and (62) %o the

operator (61) we obtain in complete enalogy with (51):

: i Ljpa, .
70 = g $2 ™ lalppd Sep) 4% )
Let us now inircduce the "bilocal" variation derivative:
s ) A -ifa 5
el = — din e - P
(%‘f(z) @ §4 ¢ ;\”)ﬂ(f,m) o

We postulate that our current operator satisfies the condition:

(E%g) 1n(§) =0 tor'gz,o , @- arbitrary, (65)

whers the symbol g;,o weé underastand in the following wey:
1) sither E & L. - series anda m v0
2) or T & A -series,
Bvidently the flat limit of (85) is the Bogolubov's causality
condition
S’a’(pa) P
§YLE va)
Here the symbol F2.0 has already the ususl sense:
1) either £°50,%5,20 , 2) or [%XO .
Using the well known "solvability condition", following from
Y

the commutativity of the variation derivatives ﬁ , At is emsy

for E 20, a-arbitrery (66)

7



to write relation (65) in the following form:

§ . .
(M))‘j-(i) =4 86n) [4a(8),ja 5] en

[jq('g),j.(-g)] =0 ,if Te A -series, & is arbitrary. (68)

Equality (68} has to be consjdersd as the locality condition
for the current in the new scheme (c.f.[58). It ensures the rela-
tivistic invariance of the equation (67}.

Relstions (67) end (68) may be used in order to obtain the
S-matrix c.f., for example in perturbation theory.

The product of the step © -function and the current commutator
appearing in (67) have to be coneidered with closeat attention since
in the usual theory such kind of products can not be uniquely
defin=d (see above). In other words a reasonable question arises:
what happens with the products of generalized fumctions with

coineiding singulerities in the present scheme?

$ 9. In order to clarify this question let us consider in the
fremework of the usual theory the product of the functiona 5(;,)
oo \Eg,
and 9(5) . Since 0(5)- - &a(F. e "5
i
»

g ; then formally
-4

e(z,)F(g,) = ‘{—'_ '.S _d—E } g(;») = o X(g.) .

2me it E-10
A more rigorous approach based on the theory of the generalized
functions gives:
8(5)8(5,) = C £(5) , where C is en arbitrary conatant.
The analogue of 9(5.) 5(€.) in the new scheme is the expression
8(n) 8.. , where Bin) is the step function (49), and T, is

the Kronecker symbol. Therefore

e(n)s,,ﬁ{‘i_‘éé%:}s.. (s Als.- 40, 69



(ﬁ;%’sE -.is the new integration variable).

The conclusion which can be drown by the considered exsmple
is that the functions B(n) end ‘5,,.0 are, contrary to their con-
tinuous Analogues, ordinary (not generalized ) functions and their

product is constructed in an unique way.

It turns sut that a similar eitustion holds in the more gene-
ral case. For instance, the commutator {54) for zefo mass perticles
is given by the expression:

2(x, o)l L i(v»)—— B0 6wy = 80)-06m (70)

m=0 I 2L+, L—-ioi,...
In the "classical® cese we should bave correspondingly:
2(;)[ = 3'; €59 3(gh . (71
m=0

A comparison of formulae (70) and (71) demonstrates that the
first one has a completely well defined mathematical sense and cen
be interpreted as an ordinary product of ordinary .t’uncuons!)
at the same time the second formula is & typical for the orthodox
field theory example of multiplying of singular generalized functi-
ons with coineiding aingularities.

It should be clearly understcod that the appeasrance in our
formalism of discrete (quantized) veriebles L. andm is directly
connected with the boundedness of the new ,P -space in timelike

dirsction in the sense of De-Sitter metrics. Owing to the some

*) A similer statement is true for the function J(%,0) form+0,
for mll commutation functions and propagators and alaso for arbitra-
Ty powera and products of these quantities.



reason the “plane waves” (39) and (48), corresponding to the
timelike L -series are square integrablefunctions. The last cir-
cumstance will play an important role in the example, which we
consider below.

Let

JROERICA SE - q72)

is e "bilocal” operstor, constructed of the fields (51). From

(56) it is cbvious that:
[J.‘ (;),:]A(—")] =0 if § € A -series {73)
and A is arbitrary

It ie clear slso that
ol 3u(5), Ju DD = <ol 3(3),7¢EIs) »
FE® = ey

Now let us consider the integral:

gled=+ (<a1p.p00mAl [ 3(5), JCI U €T 1, > 4Ry, (74)
where dZc= 2(LeD(La2) (L ) BN AN

® {2A(A‘.'/,)u\n/\d,1'o(~‘-1)dw

of the configuration spacc. In the flat iimit this quentity coin-

where

is the volume element

cides up to a constant factor with the resl part of the one par-
iticle propagstor, calculated in second order of the perturbation
theory, in a mecdel with intersction of tue type: :‘fz:)lf(m). As it
ia well known in this case the correspondent integral is diver-

gent. The reason is thet the product of the generalized functions

9(2.,) and <°lr}(i),}(—i)]\o> is not integreble because of coin-
cidence of their singularities at’ 'g:O + In the con-

sidered case, becsuse of the locality condition (73) only the



L, -region contributes to (74). Taking into account that the
functions <§\f,ﬁ) are aquars-integrahle in thie region it is easy
to prove that the integrsl (74) is absolutely convergent.

The considered examples testify, apparently, that the extension
of the S-matrix off the m a a8 8 shell, based on De-Sitter p-spece
is less singulsr and mathematically more correct than the exten-
sion based on Minkowaki momentum space.

It is interesting to note hars that in our acheme the® genera-
lized functions are removed, in certsin way, from the d:mamical
part of the theory to the kinematical (plane waves, volun. .lement)
and it happens that on their new place they allow unigue regulari-

zation.

§ 310. Our exposition is inevitably fragmentary, ¥e did not
say abo:t numerous applications of our theory:systems of integral
equations for the Orsen‘s functions, spectral repreaontati&ns,three-

dimensional formulation of the two-body problem, different conse-

q *or the ph logical appr hes, etc. We only wanted the
mein idea of this work to be correctly understood; there exiats a
possibility of extension the S-matrix off the mass shell in a
four-dimensionel momentum space with De-Sitter geometry snd this

posaibility ie internally consistent.

a
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