ОБЪЕАИНЕННЫЙ ИНСТИТУТ
ЯAEPHЫX ИССАЕАОВАНИЙ
$\frac{C 324.1}{D-72}$
E2 - 7936

$$
2785 / 2-74
$$

A.D.Donkov, V.G.Kadyshevsky, M.D.Mateev, R.M.Mir-Kasimov

TRANSLATION INVARIANT
QUANTUM FIELD THEORY
WITH DE-SITTER MOMENTUM SPACE
OFF THE MASS SHELL

19724

ААБОРАТОРИЯ TEOPETИYECHOЙ

A.D.Donkov, V.G.Kidyshevsky, M.D.Mateev, R.M.Mir-Kasimov

TRANSLATION INVARIANT QUANTUM FIELD THEORY WITH DE-SITTER MOMENTUM SPACE off THE MASS SHELL

```
Submitted to XVII International Conference on High Energy Physics, London, 1974.
```

```
S | m rm | ! %
```

In the frumework of bogobubov'd axiomatic eppranch problems connected wiqn the excension of the senttaring gatrix off the wasa shell are considered. A specific poini for the otenderd extension procedure is the nasumption that the four dimensicnal spece of virtual momenta in which the extended objects (iields, currents, g-matrix coefficient functions, etcl are defined is flet winKowski space. However, such e chnice of the geopetry of the virtugl momentum space does not follow from the bosic axioma of the theory and in fect is an independent postulgte. In our poinion the peeudo= euclidean monertur space is not udequate for the description of the phenomens at high energiea (short distances). We guppoie t.zat the use of Minkowaki p-opace is actually responsible for tha known difficultiea of the locsl quantum field theory connected with the problem of mutiplying of diatributione with coinciding tingutarities on the light cone. fas an alternetive we propose to use in the extension of the S-matrix a 4-momentum space of constant curvature (De-Sitter space) with curvature radius $1 / \ell_{0}$, where Q_{0} is a fundmental length. The interection law of the elementary particies at large momenta are completely different in the num Bcheme.

The off masa-shell S-matrix extension in the spirit of DeSitter p-space geometry is consistent with the requirements of Poincaré invariance, initarity, spectrality, completeneas of tles system of abymptotic states. With the help of a Fourier tranafor. mation in De-Sitter momentum apace a new configuration $;$-space
 tially different from the paeudaeuclidean one. The causality andition which is direct generalization of Bogolubov's aausality condition, going to it in the finit $\ell_{0} \rightarrow 0$, is formulated in terma of this ξ-9pace. It is demonstrated that in the developed theory the problem of distribution products lones its acutenesa. In Farticular the commutation functions and propagstors in the new scheme are usual (not generalized) functions and there is no arbitrariness in any their powere and productes.
§ 1. As it is well known the dynamical deocribtion an quant um field theory requires the use of quantified off the wise shell. Such quantities are the Green's functions, the deivenberf fiejan And currents, the actitering matrix depending on external fields and sources, etc. Some physical requirements on d in partirniar le Bogclubav's causality condition can bo formulated only off the mass shell.

The extension of the S-2atrix of the mass shell obeying besides the causality condition the standard set of axioms:

1) Poincaré invariance,
2) Uniterity,
3) Completeness of the system of states with positive energy,
4) Uniqueness of the vacuum state,
5) Stability of the vacuum and one particle states, leads to most general formulation of the present local quantum field theory ${ }^{1 /}$. If we restrict ourself in considering only onecomponent scalar field ' P with mass m, then the physical S-matrix may be represented as the following decomposition:

$$
\begin{equation*}
S=\sum_{n} \int d^{*} p_{1} \cdot d^{4} p_{n} S_{n}\left(p_{1}, \cdot p_{n}\right) \cdot \psi^{n}\left(p_{2}\right) \cdot \psi\left(p_{n}\right) . \tag{I}
\end{equation*}
$$

Here we deliberately use p-representation. By definition:

$$
\begin{align*}
& \varphi(p)=\frac{1}{\left(j_{0}\right)^{5 / 2}} \int e^{-\alpha p x} \varphi(x) d^{+} x \tag{2}\\
& \varphi^{+}(p)=\varphi(-p) \tag{3}
\end{align*}
$$

and

$$
\begin{align*}
& \left(m^{x}-p^{2}\right) 4(p)=0 \tag{4~B}\\
& P(p)=\delta\left(m^{2}-p^{2}\right) \varphi(p) \tag{Ab}
\end{align*}
$$

From (4b) 9nd the invariance of S under tranalation tranaformations

$$
\begin{equation*}
\varphi^{\prime}(p) \rightarrow \varepsilon^{* p "} \varphi(p) \tag{5}
\end{equation*}
$$

it follows that the coefficient function (n.f.) $S_{n}\left(p_{1}, \ldots, p_{n}\right)$ in the decomposition (1) is derined only on the surface:

$$
\left\{\begin{array}{l}
\left(p_{1}++p_{n}\right)_{\mu^{2}}=0, \mu^{2}=0,1,2,3 \tag{6}\\
p_{1}^{2}=m_{1}^{2},, p_{n}^{2}=m_{n}^{2},
\end{array}\right.
$$

which further on we shall call mass shell.
5. 2. One of the ways to extend the S-matrix off the mass shell is to add a classical field to the operator $\varphi(p)$. The reaulting extended operator $\phi(\rho)$ does not satisfy wore the Klein Gordon equation (4a) and the 4 -momenta $p_{i}(i=1,2, \ldots n)$, on which depend the extended c.f. $S_{n}\left(p_{i},, p_{n}\right)$, are off the nyperboloids:

$$
\begin{equation*}
p_{i}^{2}-m_{i}^{\frac{1}{2}}=0, \tag{7}
\end{equation*}
$$

i.e., becorne virtual.

It is uaually considered se obvioue thet the virtual 4-momenta fora q peeucioeuclidean Minkowski space (M). At least it is supposed in the present quartum field theory. This is the reason why, for example, the region in which the cf. $S_{n}\left(p_{1}, \ldots, p_{n}\right)$ are defined in translation invariant way is (c.f. eq. (G)):

$$
\left\{\begin{array}{l}
\left(p_{1}++p_{n}\right)_{\mu}=0, p^{\mu}=0,1,2,3 \tag{8}\\
p_{1} \in M, \quad, p_{n} \in M .
\end{array}\right.
$$

Analyzing the axioms of quantum field theory we concluded $/ 2 /$ that the pseudoeuclidean character of the 4 -dimenaional space of virtual
momenta does not follow from these axioms and in essentiully new postulate of the theory.

It is well known that in local field theory one bas to work with products of generalized functions with coinciding singularities on the light cone:

$$
\begin{equation*}
\left(x_{1}-x_{2}\right)^{z} \equiv \xi^{2}=0 \tag{9}
\end{equation*}
$$

These products are not defined in a unique way and as a result in tife theory eppear arbitrary constanta, divergences, etc.

In comentum representation these diffic.lties are nssocigted with the region of large virtugl momenta. But, as we said above, the choice of the gevmetry of the viriual momentum space is not firmily conrected with the basic requirements of the theory and is in fect in our hands. We think thet in the usual theory this choice is unsuccessful, i.e.gpreudouclidean charucter of the 4-dimensionsl momentum apace is actually reaponaiole for the mer.ioned difficulties of the local theory.
§3. As on alternative in order to describe the virtuni 4-momenta, we propose to use one of the De-fititer spaces:

$$
\begin{align*}
& p_{0}^{2}-\vec{p}^{2}+M_{p_{4}^{2}}^{2}-M^{1} \quad \frac{1}{p_{0}^{2}}, \tag{10}\\
& \because-\vec{p}^{2}-M_{1}^{2} p_{4}^{2}=-M_{1}^{2}=-\frac{1}{P_{0}^{2}} .
\end{align*}
$$

Here is a nẹw universal constant with dimenaion or length ("fundamental length"). M is the corresponding "fundamental mass". Latar on we shall put $\hbar=C=M=l_{0}=1$.

When $\mid \dot{l} 1$ both De-sitter spaces (10) and (11) coincide with
the Minkowaki space. If $|p| \geqslant 1$ the curvature affect become essantial. Therefore in a ficld theory using De-Sitter p-space the large virtual momenta are described in a completely differant manner in comparison with the usual theory.

Presently we can not definitively choose one of the fossibilitiea (10)-(11). Here we shall consider only the case (10). Therefore our basic idea may be formulated in the following way: in the exterasion off the mass shell the virtual 4 -momenta $\mathbb{P}_{\mu}(\mu=0,1,2,3)$ become arbitrary veciors in De-Sitter space

$$
\begin{equation*}
p_{1}^{2}-\vec{p}^{2}+p_{r}^{2}=1 . \tag{12}
\end{equation*}
$$

Doing that we consider that the axioma 1-5 have to be satiafied like they were before.

It is clear that in the new achome the region in which the extended c.f. $S_{n}\left(p_{n,}, p_{n}\right)$ are defined have to be (inatead of (8)):

$$
\left\{\begin{array}{l}
\left(p_{1}+\cdots+p_{n}\right)_{N_{1}}=0 \tag{13}\\
p_{16}^{2}-\vec{p}_{1}^{2}+p_{14}^{2}=1, \ldots, p_{n c}^{2}-\vec{p}_{n}^{2}+p_{n 4}=1 .
\end{array}\right.
$$

Let $\Phi\left(p, p_{4}\right)$ be the operstor of the extended field, defined on De-Sitter space (12). Like before this quantity depends on four variables, for instance ($p_{0}, p_{1}, p_{1}, p_{9}$). It follows from (13) that in the new scheme the extended 5 -matrix is invariant under the "gauge" transformation (compare with eq. (5)): ${ }^{x}$)

$$
\begin{equation*}
\phi\left(p, p_{4}\right) \rightarrow e^{1 p a} \phi\left(p, p_{4}\right), p o_{-}=p, a_{0}-\vec{p} \cdot \vec{Z} \tag{14}
\end{equation*}
$$

*) In the proposed theory transformatione of the type (14) can be conaidered as primary, completely forgeting that in the usual approach they correspond to translation $x \rightarrow x+a$ in the space time. The important point is that the invariance under the group (14) leads to the usual 4-momentum conservation law in the c.f: $\left(p_{1}+\cdots+p_{n}\right)_{\mu}=0$.

It is extremely important to understand that the curvature of the p-space and the requirement of invariance of the theory under traneformations (14) are compleqely compatinle with each other. This is seen when anslyzing relations (13) and coaparing then with (B).
S.4. It can be easily seen that the hyperboloide (7) can be embedded in De-Sitter p-apace only if the condition

$$
\begin{equation*}
m^{2} \leq 1 \tag{15}
\end{equation*}
$$

is satisfied.
We shell suppose that the reatriction (15) ia always fulfilled for the masses of these objects, which are described by quentized φ-fields. Then (7) is equivalent to the relation:

$$
\begin{equation*}
\left(p_{4}-m_{4}\right)\left(p_{4}+m_{4}\right)=0 \tag{16}
\end{equation*}
$$

where by definition $m_{4}=\sqrt{1-m^{2}} \geqslant 0$. Since on the surface (12) to any fixed value of p there carrespond two different just by sian values of p_{4}, then each of the brackete in (16) can vanish:

$$
\begin{align*}
& p_{4}-\eta r_{4}=0 . \tag{17a}\\
& p_{1}+m r_{4}=0 . \tag{17b}
\end{align*}
$$

Let ua now make an important physical assumptions for the free field $\varphi\left(p, p_{r}\right)$ defined in De-Sitter p-spoce only the condition (17a) is satisfied. In other words:

$$
\begin{equation*}
Q\left(p_{4}-m_{y}\right) \varphi\left(p, p_{4}\right)=c \tag{18}
\end{equation*}
$$

He introduced the fector 2 in order eq. (18) to coincide exactiy
with eq. (Aa) in the "flat" limit, mi, \mid pi<< 1
From (18) it follow a (compare with (4b)) that:

$$
\begin{equation*}
\varphi\left(p, p_{4}\right)=\tilde{\varepsilon}\left(2 p_{y}-2 n_{4}\right) \tilde{\varphi}\left(p, p_{4}\right), \tag{19}
\end{equation*}
$$

where $\bar{\varphi}\left(p, p_{4}\right)$ is operator without singularities on the surface (17a).
The invariant volume element in the space (12) may be written in different ways:
1).

$$
\begin{align*}
& d \Omega_{t}=d \omega d^{3} \vec{p} \tag{20}\\
& \left\{\begin{array}{l}
p_{4}=\cos \omega \sqrt{1+\vec{p}^{2}} \\
p_{0}=\sin \omega \sqrt{1+\vec{p}^{2}}
\end{array}\right. \tag{21}
\end{align*}
$$

2). $\quad d \Omega_{p}=2 \delta\left(1-p_{1}^{2}+\vec{p}^{2}-p_{4}^{2}\right) d^{5} p=$
(22a)

$$
\begin{equation*}
=2 \operatorname{Res}_{\lambda=-1}\left(1-p_{2}^{1}+\vec{p}^{2}-p_{4}^{2}\right)_{+}^{\lambda} d^{5} p= \tag{22b}
\end{equation*}
$$

$$
\begin{equation*}
=2 \lim _{\lambda \rightarrow-1} \frac{1}{\Gamma(\lambda+1)}\left(1-p_{0}^{2}+p^{2}-p_{4}^{2}\right)_{+}^{\lambda} d^{5} p \tag{22c}
\end{equation*}
$$

where

$$
(x)_{+}^{\lambda}= \begin{cases}x^{\lambda} & , x \geqslant 0 \tag{23}\\ 0 & , x<0\end{cases}
$$

Last formulas show that the integration over De-Sitter p-space can be reduced to standard operations with analytical functionals. In fact this is equivalent to some natural way of regularization of the integrals in this space (see for instance $/ 3 /$).
*) The equation based on relation (17b) hes no formally correct flat limit. Let us note, however, that from an optimistic point of view on the theory developed here we have not to exolude the possibility, that particle states with $\mathfrak{P}_{4}<0$ can have for the new theory such a fundamental meaning es, for instance, the states with negative energies in Dirac's theory of the electron.

The fcur-dinencional δ-function in De-Sitter P-space con be represented by the relation:

$$
\begin{align*}
& \int d^{*} \Omega_{p} \delta^{(4)}\left(p^{\prime}, p\right) \phi\left(p, p_{4}\right)=\phi\left(p^{\prime}, p_{i}\right) \tag{248}\\
& \frac{\delta \phi\left(p^{\prime}, p_{v}^{\prime}\right)}{\delta \phi\left(p, p_{*}\right)}=\delta^{(v)}\left(p^{\prime}, p\right) \tag{2ab}
\end{align*}
$$

In the decomposition of the scattering matrix in terms of φ-fields every field operator appears accompanied by "itu own" volume element:

$$
\begin{equation*}
\int \ldots d \Omega_{p} \varphi\left(p, p_{4}\right) \ldots \tag{55}
\end{equation*}
$$

(the dots substitute other operators, volume elements, cf., etc.). Now using (19) and (20) expression (35) can de written in the following way:

$$
\begin{align*}
\int \ldots d \Omega_{p} \varphi\left(p, p_{4}\right) \ldots & \left.=\int \ldots 2 \delta\left(p_{0}^{2}-\vec{p}^{2}+p_{v}^{2}-1\right) d^{5} p \delta\left(2 p_{v}-2 m_{4}\right) \tilde{\varphi} \rho_{-}, m_{4}\right) \\
& =\int \ldots \delta\left(p^{2}-m^{2}\right) \tilde{\varphi}\left(p, m_{r}\right) d p \ldots \tag{26}
\end{align*}
$$

In the "flat" limit taking into account i4b) we should have inatetad of (26):

$$
\begin{equation*}
\int \ldots d^{4} p \varphi(p) \ldots \delta\left(p^{2}-m^{2}\right) \tilde{\varphi}(p) d^{4} p \ldots \tag{27}
\end{equation*}
$$

Comparing (26) and (27) we conclude that Ci tine surface (7) the following equality should be satisfied:

$$
\begin{equation*}
\tilde{\varphi}\left(p, m_{4}\right)=\tilde{\varphi}(p) . \tag{28}
\end{equation*}
$$

Relation (28) plays the role of a grecific "correspondence principle". With ito help the commutation relations which should be satisfied by the solutions of equation (19) can be determined. Giaple calculations rive:

$$
\begin{equation*}
\left[氏\left(p_{1}, p_{1 \gamma}\right) \cdot \varphi\left(p_{2}, p_{2}\right)\right]=\sigma^{(y)}\left(p_{1}-p_{2}\right) \stackrel{\sim}{\circ}\left(p_{2}\right) \stackrel{\sim}{\circ}\left(2 p_{2 r}-2 m_{4}\right) . \tag{29}
\end{equation*}
$$

The notion of a noreal product of field operatore and the correspondent wick' thearam can be formulated in the new sebene without ohanges in principle. In suoh a way the S-aatrix, like before, ray be reprasented in the form of a decompauition, juat waking formally the subatitution:

$$
\begin{equation*}
d^{4} p \rightarrow d \Omega_{p}, \varphi(p) \rightarrow \varphi\left(p, p_{v}\right) \tag{60}
\end{equation*}
$$

On the mase shell, because of (28), the aubstitution (30) i.j reduced only into introduction of new notations. Howaver in the extension of the field off the shell $p_{y}=m_{y}$, i.e.,in the trensition from the operator $\varphi\left(p, p_{0}\right)$ to the operator $\phi\left(p, p_{V}\right)$ a new extended s-matrix appears. Ita coefficient functions, as we already mentioned are defined in regions of the type (13) and therefore the behaviour of theae fuctions at large virtual momenta $|p| \geqslant 1$ is much different to all with which we are familier in the conventional theory.

Let ue further note that because of the translation invariance the total 4-momentum in the new acheme is conserved in ary transition and all the properties of this quantity, in particular the character of the spectrum remoin unchanged too. For instence for a system of two aree particjes with 4-momonta p_{1} and p_{2} we have:

$$
\begin{equation*}
4 m^{2} \leq\left(p_{1}+p_{2}\right)^{2}<\infty . \tag{31}
\end{equation*}
$$

However the curvature of the p-apace inevitebly affecta the 4-momenta which are not fixed by the total momentur conservation lain. These 4-momenta in the usual theory are proportional to the differences of the particles momenta (reat or virtual) and may be conventionally called "relative" momenta.
5. The "distortion" of the relative mosentue of the system of two particles in the new achene can be illustrated by the follow wins reasoning. Let $\left(p_{1}, p_{11}\right)$ and $\left(p_{1}, p_{1}\right)$ are two S-vectors of the space (12). If $p_{4 y}: P_{2,}=m_{y}$ then we have real particles; in the general case, which we shall conticar, the corresponding particles are virtual. Let we pase fromelent independent variable a (p, p_{N}) and (p_{a}, p_{2}) to now variables among which we shall obligatory want the total enargy-monentul vector to be:

$$
\begin{equation*}
P_{\Gamma}=\left(p_{1}+p_{2}\right)_{P},{ }_{\mu}=0,1,2,3 . \tag{32}
\end{equation*}
$$

In the usual theory the second independent 4-vector is usually taken to be the "relative" momentum q, defined by the relations:

$$
\begin{align*}
& p_{1}=q_{1}+\frac{p}{2} \\
& p_{2}=-q+\frac{p}{2} \tag{33}
\end{align*}, q=p_{1}-\frac{p}{2}=\frac{p_{1}-p_{2}}{2}
$$

In De-Sitter $p-s p a c e$ direct analogues of the formulae (33) exist:

$$
\begin{align*}
& \left\{\begin{array}{l}
p_{1}=q(t) U \\
U_{\mu}=\frac{p_{r}}{2 \sqrt{1-q^{2}}}, p_{2}=-q_{1}(+) \sigma \\
\left\{\begin{array}{l}
U_{1}=\sqrt{1-U^{2}} \\
q_{1}=\sqrt{1-q^{2}}(-) U
\end{array}\right. \\
q_{1}=\frac{\mu_{2} p_{1}-\mu_{1} p_{2}}{\mu_{1}+\mu_{2}}
\end{array}\right. \tag{34}
\end{align*}
$$

$$
\pm
$$

where

$$
\begin{aligned}
& \mu_{1}=\frac{1}{2}\left(p_{14}+\frac{1}{2} \sqrt{p^{2}+\left(p_{12}+p_{14}\right)^{2}}\right), \\
& \mu_{2}=\frac{1}{2}\left(p_{24}+\frac{1}{2} \sqrt{p^{2}+\left(p_{14}+p_{24}\right)^{2}}\right) .
\end{aligned}
$$

In these relations with the symbol $(+)$ we denote the operation of translation on the surface (12). This operation belongs to the moLion group SO (2,3). Explicitly:

$$
\begin{align*}
& \left.(a)_{\mu}=\left(B_{a}\right) C\right)_{\mu}=b_{\mu}+C_{\mu}\left(B_{4}-\frac{B_{c}}{A_{+} b_{4}}\right) \\
& (a)_{4}=(B(+) C)_{4}=B_{4} c_{4}-B_{c} . \tag{36}
\end{align*}
$$

In tho flnt 1 imit, obvinusly b inc $\rightarrow B+C$.
Goming beck to (34) and comparing thest formulat with (33) we conclude that topethar with $P_{\text {F }}$,"independent" variable ie the 1-momentum q_{F} which bolones, in contrat to P_{r} to the Demsitter space (12).

Now it is clear that in the theory we devoloped also the quantities, which are in the flat limit coordinate differences, will be esgentially modified. We ghall denote theae "relative" coordinatea byj(compare with (9)). Eridently the g-space is canonically conjugated to the curved $p-s p a c e(12) i n$ the spirit of the corresnondent Fourier transformation. Later on we shall denate the kernel of this transformation by $\left\langle\xi \mid p, p_{4}\right\rangle$.
£6. quantities $\left\langle\xi i p_{1} p_{4}\right\rangle$ are eigenfunctions of the Casimir's operatore of the group $S O(2,3)$;

$$
\begin{equation*}
-\frac{1}{\sqrt{g}} \frac{\partial}{\partial p_{\mu}}\left\langle y_{\mu^{2}}^{-1} \sqrt{|g|} \frac{\partial}{\partial p_{j}}\right)\left\langle\xi \mid p, p_{7}\right\rangle=\lambda\left\langle\xi \mid p, p_{4}\right\rangle \tag{37}
\end{equation*}
$$

($g_{\mu} \nu$ is the metric tensor of the curved 4-space (12), $g=d e t$ igyouli and ξ is a complete set of observables in the new configuration repreaentation), Without going intodetails let us only notice that the λ-spectrum in (37) correaponds to the maximally degenerate series of unitany representations of the group $\operatorname{SO}(2,3)^{/ 4 /}$ and consists of two branches-discrete and continuous:

$$
\lambda= \begin{cases}L(L+3) & L=-1,0,1, \ldots \tag{380}\\ -\left(\frac{3}{2}\right)^{2}-\Lambda^{2} & , \quad 0 \leqslant n \leqslant \infty .\end{cases}
$$

In the flat limit (37) becomes the eigenvelue problem for the operat or of the pseudoeuclideen interval $\left(i \frac{\partial}{3}\right)^{2}$. The L-ragion goes into the timelize region and the A-region into the
spacelike region. Let ue emphasize ths: thero is no annlogue or the light-cone in the apectrum (38). This surface appeara only. in the flet limit.

The besis functions $\left\langle\xi \mid \hat{\beta}, \phi_{4}\right\rangle$ correaponding to the spectrum (38) may be written in relativibtic invariant why

$$
\begin{align*}
& \left\langle\xi_{2} \mid p_{1}, p_{4}\right\rangle=\left(p_{4}-i p N\right)^{-i-3}, N_{N}=\left(N_{0}, \vec{N}\right), N^{2}=1, \tag{30}\\
& \left\langle\xi_{2} \mid p_{1} p_{4}\right\rangle=\left(p_{4}+p N\right)_{+}^{-1 / 2+i \Lambda}, N_{N}=\left(N_{0}, \vec{N}\right), N^{2}=-1 . \tag{40}
\end{align*}
$$

The functions (39) in accordance with the diacrate sinaracter of the spectrum (3Ba) are square integrable in the metrics $d \Omega_{p}$ and (AO) have to be considered as gencralized function of the type (23).

In the flat linit any of these quantities transforms in usuel exponent:

$$
\begin{align*}
& \left\langle\xi_{L} \mid p_{1} p_{4}\right\rangle=\left(p_{y}-\alpha p N\right)^{-L-3} \rightarrow e^{. L\left(N_{p}\right)}=e^{.5 p}, \xi_{\mu}=L N_{M} \tag{41}\\
& \left\langle\xi_{A} \mid p_{1} p_{4}\right\rangle=\left(p_{y}+p N\right)_{+}^{-3 / 2+1 A} \rightarrow e^{. N(N p)}=e^{i 5 p}, \xi_{4}=A N_{\mu} \tag{42}
\end{align*}
$$

In order to perform Fourier traraformation in De-Sitter p-space one may also use basis functions in which the complete set of variables $\overline{5}$ differa from the set (39)-(40). Let us consider in this connection the generatore of the 5-rotations in the (μ^{4})planes:

$$
\begin{equation*}
M^{t^{4}}=-2 p_{4} \frac{\partial}{\partial p_{4}} \tag{43}
\end{equation*}
$$

The zero component of this 4 -vector in terme of (ω, \vec{p})-coordinates (see (2I)) is equal to $M^{04}=-\frac{\partial}{\partial w}$. From here, imposing periom dicity in ω, we obtain that in any Lorentz reference frame the eigenvalues of the operator $M^{a 4}$ are integere $n=0,+1, \pm 2, \ldots$ and the
corraspondent eigenfunctions have the form:

$$
\begin{equation*}
\langle n \mid \omega\rangle=e^{n \omega} \text {. } \tag{44}
\end{equation*}
$$

Since M^{44} comuteswith the Casimits operator of the group SO(2,3), n may be included in the conplete aet of observablee together with λ. In auch a way we gat one more set of baaio functions. Their use is particularly attractive because of the simplew -deperdence:

$$
\begin{equation*}
\left\langle\lambda, n, \mid p, p_{4}\right\rangle=\langle n \mid \omega\rangle\langle\lambda, n, \ldots \mid \vec{p}\rangle . \tag{45}
\end{equation*}
$$

The dote correspond to the other variables in the complete aet. As an illustration we give the full expression for e function of the considered type in the case of the discrete spectrun:

Here C_{k}^{α} is Gegenbauer polynomial and A is a normalization constant. The function (46) is different from zero if:

$$
\begin{equation*}
|n| \geqslant L+3=2,3,4, \ldots \tag{47}
\end{equation*}
$$

The diacrete paramgter n we shall call "time", because in the flat limit the quentity M^{04} coincidee with the time operator $-i \frac{\partial}{\partial p}$ of the usual theory.

A remarkable property of the diacrete time n is the invariance of its aign in the representations of $S O(2,3)$ corresponding to the diacrete "timelike" region(38):

$$
\begin{equation*}
\frac{n}{|n|}=\text { invar , if } \lambda=L(L+3) \text {. } \tag{48}
\end{equation*}
$$

The inequality (47) in this case playo the rale of "timelikeness" condition.

Because of (48) the operatora in the L -region can be ordered in invariant way in the parameter n. The correspondent "step" function hes the form:

$$
\theta(n)=\frac{1}{4 \pi i} \int_{-\pi}^{\pi} \frac{e^{, n \omega}}{\operatorname{tg} \frac{\omega}{2}-i r} d \omega= \begin{cases}1, & n>0 \tag{49}\\ 0, & n<0\end{cases}
$$

Now we are able to make the following concluaion: the new ξ-space consiata of two regiona, L and Λ, which are analogous to the timelike and spacelike regions of the pseudouclidean space. Moreover - in the L-region one can order in an invariant way in terms of the diecrete time. Therefore in our disposal we have all necessary machirary in order to formulate the causality condition in the developed theory. This condition, es we already seid, can be written only off the quss ahell. Therefore it would be sensiiive to the accepted by us way of extension off the mass shell.

S7. In order to be able to attack the problen of canaality some preliminary work is needed.

Let us consider the operator:

$$
\begin{equation*}
\varphi(\xi)=\frac{1}{(2 \pi)^{3 / 2}} \int\left\langle\xi \mid p, p_{4}\right\rangle \varphi\left(p, p_{4}\right) d \Omega_{p} \tag{50}
\end{equation*}
$$

Lot us now apply to it the tranalation transformation (14):

$$
\begin{equation*}
\frac{1}{(2 k)^{2 / 2}} \int\left\langle\xi \mid p_{1}, p_{4}\right\rangle \varphi\left(p, p_{k}\right) e^{i p a} d \Omega_{p} \equiv \varphi_{a}(\xi) . \tag{51}
\end{equation*}
$$

In the flat limit we heve, of course:

$$
\begin{equation*}
\varphi_{n}(\xi)=\varphi(\xi+a) . \tag{52}
\end{equation*}
$$

In the present case the quantities a and 5 have completaly different mathenatical nature and thie is the reason why $\varphi_{n}(\xi) \neq \varphi(\xi+a)$.

Let us further put by definition:

$$
\begin{equation*}
\frac{1}{(2 p)^{r_{2}}} \int \varphi\left(p, p_{4}\right) e^{i p a} d \Omega_{p}=\varphi_{a}(0) . \tag{53}
\end{equation*}
$$

and let us consider the commutator $\left[\mathscr{Y}_{a}(5), \varphi_{a}(0)\right]$. With the help
of (29) it ie easy to demonstrate thet it does not depend on a. i.e.,is tranglucion invariant:

$$
\begin{equation*}
\left[\varphi_{1}(\xi), \psi_{a}(0)\right] \equiv \frac{1}{1} g\left(\xi_{1} 0\right)=\frac{-1}{(2)^{3}} \int\left\langle\xi \mid p, p_{4}\right\rangle \varepsilon\left(p_{4}\right) \delta\left(p_{p_{4}}-2 m_{v}\right) d \Omega_{p} . \tag{54}
\end{equation*}
$$

From (54) it follows that:

$$
\begin{equation*}
\left[\psi_{A}(\xi), \psi_{a}(0)\right]=0, \tag{55}
\end{equation*}
$$

if $f^{i s}$ in the continuous specelike series (3 Bb).
Completely in the same manner one con prove that:
$\left[\varphi_{a}(\xi), \varphi_{a}(-\xi)\right]=0, \quad a$ - arbitrary, $\xi \in \wedge$-series
Let us mention, by the way, that the variable ξ plays the role of e "relative" coordinate in the considered commutation relations. The equalities (55) and (56) may be taken as pattern in the fornulation of the locality condition in a theory with interaction.

Now let us conaider the chronologicel product of free φ fields:
$T \varphi_{a}(\xi) \varphi_{a}(p)=\theta(n) \varphi_{a}(\xi) \varphi_{a}(0)+\theta(-n) \varphi_{a}(0) \varphi_{a}(-\xi)$.
This product, becabee of (48a) and (55) is invariant. After putting
(57) in normal form and taking into account (49) we obtain:

$$
\begin{equation*}
T Y_{a}(\xi) \varphi_{a}(0)=: Y_{a}(5) \varphi_{a}(0):+\langle 0| T \varphi_{a}(5) \varphi_{a}(0)|0\rangle \tag{58}
\end{equation*}
$$

$$
\begin{equation*}
\langle 0| T\left\{\varphi_{4}(\xi) \varphi_{n}(c)\right]|0\rangle \equiv \frac{1}{i} D^{\prime}(\xi)=\frac{1}{\left\langle(n)^{v}\right.} \int\left\langle\xi \mid p_{1} p_{4}\right\rangle \frac{d \Omega_{p}}{2\left(p_{4}-m_{4}-1 \varepsilon\right)} \tag{59}
\end{equation*}
$$

Therefore we have the right to interpreie the quantity

$$
\begin{equation*}
\nabla^{c}(p)=\frac{1}{2\left(p_{1}-m_{1}-1 \varepsilon\right)} \tag{60}
\end{equation*}
$$

as the propagator of a free particle. Let us also notice thet
$\mathcal{D}^{c}(p)$ is arean's runction of the equation (18).
§. Le. Let us define the current operator in De-siter space by:

$$
\begin{equation*}
j\left(p, p_{4}\right)=i \frac{\delta S}{\delta \phi\left(-\phi_{1} p_{4}\right)} S^{+} . \tag{61}
\end{equation*}
$$

Evidently under transprmations (14) and because of the invariance of the S -matrix we bhall hava:

$$
\begin{equation*}
f\left(p, p_{1}\right) \rightarrow e^{i p a^{2}} j\left(p, p_{1}\right) \tag{62}
\end{equation*}
$$

Applying simultaneously the transformations (50) and (62) to the operator (61) we obtain in complete analogy with (51):

$$
\begin{equation*}
j_{a}(\xi)=\frac{1}{(2,)^{5 / 2}} \int e^{i \psi a}\left\langle\xi \mid p, p_{4}\right\rangle j\left(p, p_{4}\right) d \Omega_{p} . \tag{63}
\end{equation*}
$$

Let us now introduce the "bilocal" variation derivative:

$$
\begin{equation*}
\left(\frac{\delta}{\delta \varphi(\xi)}\right)_{a}=\frac{1}{(2 \pi)^{5 / 2}} \int d \Omega e^{-i p a}\left\langle-\xi \mid p, p_{v}\right\rangle \frac{\delta}{\delta \varphi\left(p_{1} p_{y}\right)} \tag{64}
\end{equation*}
$$

We postulate that our current operator satipfies the condition:

$$
\begin{equation*}
\left(\frac{\delta}{\delta(4(\xi)}\right)_{A} j_{n}(\xi)=0 \quad \text { for } \xi \geqslant 0, \text { a-arbitrary, } \tag{65}
\end{equation*}
$$

where the symbol $\xi \geqslant 0$ wa underetand in the following way:

1) *ither $\xi \in L$ - series and $n>0$
2) or $\xi \in \wedge$-series.

Evidently the flat limit of (65) is the Bogolubov'a ceugality condition

$$
\begin{equation*}
\frac{\delta j(\xi+a)}{\delta \varphi(-\xi+a)}=0 \quad \text { for } \quad \xi \geqslant 0, a \text {-arbitrery } \tag{66}
\end{equation*}
$$

Here the symbol $\xi \geqslant 0$ has already the usual sense:
2) either $\xi^{2}>0, \xi_{0}>0$, 2) or $\xi^{2}<0$.

Uaing the well known "Bolvability condition", following from the computativity of the variation derivatives $\frac{\delta}{\delta \varphi}$, It is easy
to write relation (65) is the following :ora:

$$
\begin{equation*}
\left(\frac{\delta}{\delta Y(-\xi)}\right)_{a} j_{a}(\xi)=i \theta(-n)\left[j_{a}(\xi), j_{a}(-\xi)\right] \tag{67}
\end{equation*}
$$

$$
\begin{equation*}
\left[j_{a}(\xi), j_{0}(-\xi)\right]=0 \text {, if } \xi \in \Lambda \text {-series, } \text { a is arbitrary. } \tag{68}
\end{equation*}
$$

Equaltty (68) has to be considerad as the locality condition for the current in the new scheme (c.f. (56)). It ensures the relativistic invariance of the equation (67).

Relationa (07) and (68) may be used in order to obtain the S-matrix c.f., for example in perturbation theory.

The product of the step θ-function and the current conmutator appearing in (67) have to be considered with closest attention since in the usual theory auch kind of producta can not be uniquely defined (see above). In other words a reasonable question arisea: what happens with the products of generalized functions with coinciding singularities in the present scheme?
\$9. In order to clarify this question let us consider in the f_{1} :mmework of the usual theory the product of the functions $\delta\left(\xi_{0}\right)$ and $\theta\left(\xi_{0}\right)$. Since $\theta\left(\xi_{0}\right)=\frac{1}{-\infty i} \int_{-\infty}^{+\infty} d E \frac{e^{C E} \xi_{0}}{E-10} \quad$, then formally

$$
\theta\left(\xi_{0}\right) \Sigma\left(\xi_{0}\right)=\left\{\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{d E}{E-10}\right\} \delta\left(\xi_{0}\right)=\infty \delta\left(\xi_{0}\right) .
$$

A more rigorous approach based on the theory of the generalized functiona givea:

$$
\theta\left(\xi_{0}\right) \delta\left(\xi_{0}\right)=C \delta\left(\xi_{0}\right) \quad \text {, where } C \text { is an arbitrary conatant }
$$

The analogue of $\theta\left(\xi_{0}\right) \delta\left(\xi_{c}\right)$ in the new acheme is the expresaion $\theta(n) \delta_{n, 0}$, where $\theta(n)$ is the step function (49), and $\delta_{n, m}$ is the Kronecker symbol. Therefore

$$
\begin{equation*}
\theta(n) \delta_{n, 0}=\left\{\frac{1}{4 n+1} \int_{-\pi}^{\pi} \frac{d \omega}{y} \frac{\frac{\omega}{2}-\varepsilon}{}\right\} \delta_{n, 0}=\left\{\frac{1}{2 \pi} \int_{-\infty}^{\omega} \frac{d E}{E-1} \frac{1}{1+E^{2}}\right\} \Sigma_{n, 0}=\frac{1}{2} \delta_{n, 0} \tag{69}
\end{equation*}
$$

($\operatorname{tg}_{\mathrm{g}} \frac{\omega}{2}=\mathrm{E}$ - is the new integration variable).
The conclusion which can be drown by the considered example is that the functions $\theta(r)$ end $\delta_{n, 0}$ ere, contrary to their continuous analogues, ordinary (not generalized) functions and their product is constructed in an unique way.

It turns out that a similar situation holds in the more general case. For instance, the commutator (54) for zero mass particles is given by the expression:

$$
\begin{align*}
\left.D(\xi, 0)\right|_{m=0}=\frac{1}{2 \pi} \varepsilon(n) \frac{1}{L+2} \delta_{L ;-1} ; & \varepsilon(n)=\theta(n)-\theta(-n), \tag{70}\\
& |n| \geqslant L+3, L=-1,0,1, \ldots
\end{align*}
$$

In the "classical" case we should have correspondingly:

$$
\begin{equation*}
\left.D(\xi)\right|_{m=0}=\frac{1}{2 \pi} \varepsilon(\xi) \delta(\xi) \tag{71}
\end{equation*}
$$

A comparison of formulae (70) and (71) demonstrates that the firat one has a completely well defined mathemstical aense and can be interproted as an ordinary product of ordinary functions ${ }^{\text {¹ }}$) and at the same time the second formula is a typical for the orthodor field theory example of multiplying of singular generalized functions with coinciding aingularities.

It ehould be clearly underatood that the appearance in our formaliom of discrete (quantised) variables L and n is directly connected with the boundodnase of the new p-space in timelike diraction in the senae of De-Sitter metrics, owing to the sone
*) A aimilar atatement is true for the function $\mathscr{D}(5,0)$ form $\neq 0$, for all commutation functions and propagators and alao for arbitrary powers and products of these quantities.
reason the "plane waves" (39) and (46), correaponding to the timolife L-zeries are square integrmbefunctions. The last circumstance will play on important role in the oxample, which we consider below.

Let

$$
\begin{equation*}
J_{a}(\xi)=:\left(\varphi_{x}(\xi)\right)^{n}: \tag{72}
\end{equation*}
$$

is a "bilocal" operator, conatructed of the fields (51). From (56) it is cbvious that:

$$
\begin{equation*}
\left.\left.[]_{\alpha}(\xi)\right]_{A}(-\dot{j})\right]=0, \quad \text { ir } \xi \in \Lambda \text {-seriss } \tag{73}
\end{equation*}
$$

and a is arbitrary
It ie clear elso that
where

$$
\langle 0|\left[\jmath_{-}(\xi), \jmath_{N}(-\xi)\right]|0\rangle=\langle 0|[J(\xi), J(-\xi)]|0\rangle,
$$

$$
f(5)=:(\varphi(5))^{2}:
$$

Now let us consider the integral:

$$
\begin{equation*}
g(p)=i \int\left\langle\xi \mid p, p_{4}\right\rangle \theta\left(n_{0}\right)\langle\theta|[f(\xi), f(-\xi)]|0\rangle\left\langle\xi \mid p, p_{4}\right\rangle d \Omega_{\xi}, \tag{74}
\end{equation*}
$$

where $d \Omega_{\xi}=\left\{\begin{array}{l}2(L+1)(L+2)(L+3 / 2) \delta\left(N^{2}-1\right) d^{4} N \\ 2 \Lambda\left(\Lambda^{2}+1 / 4\right) H \pi \Lambda d \Lambda \bar{o}\left(N^{2}-1\right) d^{H} N\end{array}\right.$ is the volune element
of the configuration apace. In the flat diait this quantity coincides up to a constant factor with the real part of the one pariicle propagator, calculated in second order of the perturbation theory, in a nodel with interaction of the type: : $\varphi^{n+1}(x):(m, y)$, As it ia well known in this case the correapondent integral is divergent. The reason is thet the product of the generalized functions $\theta\left(\xi_{3}\right)$ and $\left.\langle 0|[\zeta(\bar{\zeta})\},(-\xi)\right]|0\rangle$ is not integroble because of coincidence of their singularities at $\xi=0$. In the considered case, becouse of the locality condition (73) only the

L-region contributes to (74). Taking into account that the functions $\left\langle\xi \mid p, p_{4}\right\rangle$ are aquare-integrable in thie region it is easy to prove that the integrel (74) is absolutely convergent.

The considered examplea testify, apparently, thet the extension of the S-matrix off the a a shell, based on De-Sitter p-apece is less singular and athematically more correct then the extension based on Minkowaki monentue apace.

It is interesting to note here that in our achene the generalized functions are removed, in cortsin way, from the d:namical pari of the theory to the kinematical (plane waven, voluf. -lemene) and it happens that on their new place they allow unique repularizotion.

S 10. Our exposition is inevitably fragmentary. v/e did not say aboit nueerous applications of our theory:systeme of integral equations for the Oreen's functions, spectral repreaentations, threedimenaional formulation of the two-body problen, different consequances for the phenomenological sppronches, etc. We only wanted the main ides of this work to be correctly understood: there exista a possibility of extension the s-matrix off the mass shell in a four-dimensional momentun space with De-Sitter geometry and this posaibility is internally consistent.

1. N.N.Bogolubov, D.V.Shirkuv, Introduction in Quantur Field Theory, Moscow, 1957.
N.N. Bogolubov, A.A.Logunov, I.T.Todorov, Axiomati: Approach to Quantum Field Theory, Hoscow, 1969. B.V.Medvedev, V.P.Paviov, L.K.Polivenov, A.D.Sukhenov, Thenretical and Mathematical Physica, 13, 3, 1972.
2. V.G.Kadyshevsky in Problems of Theoretionl Physios, volume dedicated to the memory of I.E.Tamin, Hoscow, 1972. A.D.Donkov, V.G.Kadyshevaky, M.D. Hateev, H.M.Mir-Kasimov, Preprint JINR, E2-6992, Dubna, 1973.
3. I.H.Gel'fand, G.E.Shilov, Generalized Punctione, vols.1,5 Mobcow, 1559.
4. N.Limic, J.Niederle, R.Haczka, J.math. Phys. B, 1079, 1967.

> Received by Publishing Department on Muy 12,1974 .

