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l. Introduction

The prinoipal features of high energy hadronic rcactions
suggest a simple ploture of hadrons as oomposite systems built
up of point-—like constituents ( freely moving within a sphere
of a finite, approximately universal diameter D . ( For a
reoent discussion and references see,e.g.[i-Jl). The data on
elastic and inelastio hadronic reactions and on the pion and
the proton electric—charge radil seem to be consistent with D
of order 1 fm (11 From the well-known results on deep-inelastic
lepton-hadron soattering it follows that these constituents
are fermions of spin %[1]. The absenoe of exotic mesons suggests
that mesons are built up from fermion ( and antifermion c
having isospins O and %, and that the admixture of exotic
states ( such as ({C)(TC) e.a.) is small. The exact nature
of these fermions is not known. They may be Gell-Mann-Zweig quarks,
'oolofed' quarks, "bare"™ baryons or something else. All these
possibllities were widely discussed ( see,e.g.f4]), and here we
oonsider only dynamiocal problems which are more or less inde-—
pendent of the exact properties of ( particles ( other than
their spin, mass, and their mutual interaction). As composite
models for baryons do essentially depend on symmetry properties
of oonstituents, we restriect our disoussion to mesons.

In building composite mesons the first dynamical question
1s: which formalism to use for describing tightly bound systems
of C and C . We ohoose the Bethe-Salpeter equation (BSE) for
the relativistic wave function or, equivalently, the homogeneous
Edwards equation for the bound state vertex function[B-ql. To
give a physical interpretation of the wave function and to exclude



the exotio states of the seoond kind “'Iit 1s useful to oonaider
the bound-state wave funotion with equal time ooordinates of (
and C ( of. [2]). Here these problems are not discussed.

The seoond question 1s: whioh interaoction potential (kernel)
to choose to glue C and ¢ « The most popular potential
nowadays is the four-dimensional osoillator well whioh is ocapable
of reproduoing linear Regge trajeotories and keeps oonstituents
inside hadrons'278), However, 1t 1s difficult to interpret this
(9]

potential in any reasonable fleld theory ““or in terms of partiole

exohanges,

An appealing idea 18 to treat the ¢ potential as a bootstrap
potential, 1.e.,to consider it as determined by exohange of re-~
sonances R , whioh are built up of the same oonstituents glued
by the same potential. This idea was developed by several
authors ( see ,e.g.[]'o]), and usually the kermel 1s approximated
by low-lying resonances ( T, ¢, & , eto.). However, the
oorresponding potential rapidly varles with the relative
distance T between ¢ and C and 1s singular at 1 =0.
This~gualitatively disagrees with the ploture of free oonstituents.
Moreover, the singulerity at the origin 7T =(0 results in the
well-known Goldstein diffioulty [6], and to avoid it a out—off is
necessary. With suoh potentials, it is also impossible to
explain why the Regge trajeotories are growing, and there 1s
no universal size D of hadrons. Our idea 1s to take into
aooount exohanges of high-mass resonances. As far as the avera—
ge number N(m)dm of resonance states in the interval (m,m+dm)
is rapidly growing with thelr mass m , one may suspeot that
the oontribution of high-mass resonances might be not negligible, -

In fact, 1f the distribution N(M) 1is asymptotiocally exponen—
t1a1 111 4, » N(m) ~ exp(ma), and 1f the average contribu-
tion of the individual resonanoe state is proportional to =t e ™M%
then the average total oontribution of resomances of mass m ’
is ~1'exp(ma-m<t) , and for T~Q the contribution of
infinitely massive resonances 1s infinite ( the integral of this
expression over the interval (mo,+©°) ) diverges for T Sa.

The exponentlal growth of the resonance speotrum A (m)
in the interval m < 1.5 GeV, with @ oC 426 GeVL , is the
empirical fact ( see[]'l]and what follows), and thus we face
two possibllities.)The resonanoe spectrum is exponentially grow—
ing up to some finite mass M and for m>M 1t 1s dying
away ( or its growth is less than exponential), In this case,
the potential oorresponding to the exchange of resonances with
mass <M forms a deep well ( or a "oore%) of a radius of
order @ 436 GeV™l . The average depth of the well 15 2 M |
and therefore the mass of the constituents must be greater than
M . This may give a justification of quark models with
heavy quarks in terms of the bootstrap inter-quark potential
( of. r4']). 2 A muoh more interesting possibility is suggested
by statistioal and dual resonance models, in which the resonance
spectrum 1s ideed asymptotically exponential, 1.e.,, M = oo,
Here we oonstruot the oorresponding potentlial and investigate

its simplest oonsequenoes for composite models of mesons.
2. The pion vertex
In what follows we treat 1a some detaills the composite

plon, whioh 1s desoribed by means of the Euclidean Bethe-;-Sa.lpe-
ter ( or Edwards) equation with a local potential ( kernel).



As explained above, we consider the potentials having exponen- . obvious). The k=0 pion vertex has the farm | (P)=1T ¥ FeEpo,

tially infinite spectral functions, connected with the empirioal and F obeys the equation

mass spectrum of resonances. The ([C potential in the ocordina- Fep?) = (,d_l'j«"_ V, [- (p-q (M2~ cf-'lo)_i Fee®), (2
te spaoe ( the ooordinate is 1 = Te~T¢ where 17, and Zc: | where S

are the Euclidean four-dimensional ooordinates of C and C ) { : 3 -

1s the four-dimensional Pourier transform of C-C soattering ' Vr (-+) = ‘Z & Vi( * ' (r=shv A,T)I (€))
amplitude. For simplicity we oonsider only on-mass-shell Vi(--f_) = V.(-t,0) , & =&, =&, - 1, €p=Ep= -1.

amplitudes giving local potentlals. The equation for the pion
One oan easily identify the partioles ( or the Regge trajecto=~

. ries) oontributing to different potentials U by using the
t—ohannel Regge formaliem developed for treating the oonsplraoy

vertex ['(p,k) 1is presented in the diagram form on Fig.l.
The corresponding equation for the BS wave funotion A«(P>

follows from the relation["l. (14}
problem « Here we simply suppose that all V. are of the

= S (p—kn) T(pk)S,(pr+K/2),
Xe(p) = Se(p—ke2) F ¢)) % same form, i.e, V;(t)=§; V(-t) ana V(t) 1s determined by

where S; 1is the exact propagator of the C article., As the .
F propaga P the mass spectrum of all resonancess Then V. (-t)= fir V(-1),

first approximatlion we take here the bare fermion propagators 'flf,
PP propagators, B where {, =9 & §; , and by solving Eq. (2) the constant fy
the dressed propagators will be discussed later. To simplify the f t
§ will be determined in terms of M and the parameters charac—
disoussion we solve here only the plon equation in which
. ; terizing V(t) .

the dependence of the vertex ! on k may be negleoted. We
and My=0 and in ks 3:_The potential in pion_equation
2

simply put in the pion equatton k=0
Now let us disouss the potential V(-t) ., If it 1s

cal@ulating the physical processes with the pions , K#0, Mn¥0,

m
we use an approximate vertex | (p) = F(P,0) . This approxima- determined by exchange of a spinless partiocles with mass R,

|
—t -0 and N
tion is reliable if the C-particle mass ™, 1s muoh greater . ,it has the form g (Mg t-to, the f_;r;;sponding Ee. (2)

was oarefully investigated by many authors « The imaginary

than My,
Now the most general form of the potential is [2]

V(-t5) =A@ Vs (-ts) + (0 L) Vp(ts) + (5@ Y*) (o)t

part of this potential on the out t>0 ( the speotral
function) 18 Tgg S(t —Mg) . The potential in the Buolidean
ooordinate representation oan be defined in terms of the speotral

] v . "

+ I‘i(a% ¥pu @ ¥s Xﬂ)VA(’i'S) +7E (gr/@gf‘ ) Ve (t8), funotion as follows ( this 1s the Kallen-lLehmann representation
oz TRV

oo

U(1) = Sdmzs(mz) Dp(min) = gd_),, e " V(K )

Q1a)

where |, are soalar funotions, and for the Dirac X — matrioces

i 4
k
the BJorkon-Drollfl)Jnotation i1s used. ( Hore we consider only - (o

[4
isosoalar potential, inclusion of the isovector one 1s quite



fHere Ap(mi7)=mKi(m1d/4w* is the Buclidean Feynman
prdpagator , and t=T%+ Tf + For one-partiole exchange
6(m?) = 9o 8(m™M2)  and  UCY = gg Ae(My,1). The spectral
function oorresponding to the exchange of many infinitely

narrow resonanoes R may be approximated by the dlstribution

2z _ 2
“wt =3 gu e i, >

where N,=(2],+1) 1s the number of different spin states of R, .
Smoothing off this distribution ( replaoing § — functions by
Gaussian exponentlals, as in ref. [11]), we find

s(m?) = gem?) p(m*), )

where Q(mz) 1s the average density of' exchanged resonance
states and g(m‘) is the average CCR coupling constant.

To obtain some mnseful information from the empirioal
mass spectrum we make the simplest assumptions that g 1is in-
dependent of m and that q(mz) is proportional to the density
of all observed resonance states Qi (M*)e AS the pion is
oomposed of oonstituents with isospin %, only isoscalar and
iso:"ector resonances contribute to the pion equation, and the
seoond assumption 1s true if the distributions @, (M*)
of baryons (5=1;1=0,;~_,1,.g—) and mesons (B=O,‘I=O,%—,1)
are proportional to each other, l.e., ¢g;(m?) =AB'I Pre (mMm?),
For high-mass resonances thlis seems to be oonsistent with
present experimental evidence [15 ].

In the above discussion we have included the spin of the
resonance R, only in the faotor 2J,+1 . To justify this
assumption, imagine that we know the distribution 9 (m* J)

of resonance masses and spins, Then the spectral function of the

14]
potential U(v) may be written in the form ( of.('- ).

oo oo
o2 2.2 2
e(m?) = jc’miz ?(mk;})gk §(m=mg) (2d+1) E; (1 +mz__quc2 ) ’
° 3=0 .
where |+ 25 /(t—4MZ) =wsb, an 6, 1s the t—channel

)

scattering angle. At first sight, this spectral funoction depends
on S5 5 but we are interested in the dependenoe of 6 on m
for m—>oo and for S$<4%M& ( bound statesl), and it will De
immediately shown that in this domain the s-dependence of &
can be negleoted. Suppose that g(m*, 1) 1s suoh that the
average value j contributing to Eq. (7) for large Im is
bounded by m” , where ®<2 . This assumption 1is valid

in statistioal and dual resonance models[]'sj, where the spin
distributions are proportional to’ exp (- n? /md )l , 0(":‘_1',
and exp (-3/md) , respeotively. Then for 26 (m™=4Mc) <1

i+—L—‘ +”‘9=:i, (B)

s
m>=4M}

25\ o425 DPI() . =
P;(1+ml—sz{M:') 'vj_ +mz—l/Mc‘ PJ( )

as sJ}/m*-—>0 for m-oo, and we effeotively obtain the
equation (6) with oo o
p(m?) 2:%6(2}+1)9(m;3)-
A1l these oonsiderations make sense if P(mz) is asymptotioally
exponential
ocm*y - _ cm®exp (mad. (9

mi> oo
In statistioal models such behaviour of ¢ 1s required by
bootstrap oonditions [11]. A very similar asymptotio bel:ua.vioux:
of ¢ was observed in the Venezlano modelrlz], where’hthe .
parameter @ was found to be equal to a=2r(%«) =4 7 GeV
( 1f we take for ' the slope of the § trajectory). The
empirical density of states @y (mt) in the interval
0<ms< 1 GeV was obtained by R.Eagedorn 31, who fittea the




smoothed experimental ourve by the exponential
Ot (M*) = 0.83 emyt(m2+m2) % exp(ma),

where M,~ 0.5 GeVand (= 6,25 GeVL ,

On the basis of these observations 9(m’) 1s supposed to be
asymptotioally exponential and the parameter a oan be derived
from the empirical distribution of resonanoce levels. To obtain a
simple analytic form for the potential U(r) for all % we
use, instead of the exponential, the Bessel functions. Namely,
we fit the empirical spectral density by the modified Bessel
function of the first kind: Atd-(ZM)-i I (ma) Gev™:
Ta.kiné into account all well established resonanoces ( see[15])
we £ind a good fit in the interval 0.2 <M< 1.4 GeV with the
parameters 4 = 4 GeV™ and A,,~ 18 GeV™% . The potentials
corresponding to this spectral functlon can easily be oalculated
for 1>a by substituting 3AM(2m)_' I,(ma) in Bq. (4) ( seernJ,
Chap. 10, Sec.3, eq. (17) ) and is equal to (l—f’l-ﬁ)At,tal'z("L‘—a‘)'i.
This potential, analytically continued to the interval 0<T1 <a
is singular at the orlgin and, as was disoovered in ref. [61, the
co;z'-esponding BSE has no discrete spectrum. To obtaln a regular
‘potential we therefore modify it by adding the temm ~ S(m?)
to the spectral function ( alternatively one can use the function

Jd«(ma) + [ (ma) instead of I,(ma), obtaining the potential
(%Z)QAM a(1?~a*) which 1s as good as the potential used
here). Following these conslderatlons, we finally use the
spectral function

e(m?) = 3A~(2m)—1 [I‘(ma.) + 4mat S(ml)} , (10)

glving the potential

U@ =(9/41%) Ao~ (12-a*)™* = §2(1*-a?)™* (11)

This potential 1s singular at the point 7 =a , and to calculate
its Fourler transform a rule of integration over this point is
requlred. The most natural one is the prinoipal value prescrip—

tion, i.e.,

Uty = §2 R4 1‘1—a1} . (12)

The origin of this reoipe can be understood in the context
of nonpolynomial field theories ( see[]'e]a.nd referenoes quoted
therein). The equation (4) is the Kallen-Lehmann representation
for the effeotive propagator desorlbing resonance exchanges
between C and € , and &(p?)- is its imagilnary part on the
out 0<p’= p’-p* . Therefore, to find the potential is to find the
propagator with the exponentially rising imaginary part. This
problem was solved in nonpolynomial field theories, and such
propagators ( or, striotly speaking, their Fourler transforms
into momentum space) are usually called superpropagators x). The
principal value presoription corresponds to construc.ting the
minimally singular [J'BJ superpropagator having Eq. (10) as its
imaginary part.

4. _Solution of the pion equation and pilon deocays

Using this reoipe one can easlly oalculate the Fourler
transform of Eq. (12) ( this result can be obtained using[17],
Chap. 8, Sec. 5, Eq. (2), and analytic continuation in a&-

plane):

x) For example, in the theory with the interaction
l=6G:¥¢ exp(y ¢*t9), where ¢ 1s the massless oharged
scalar ( or pseudoscalar) field, the superpropagator T &)
18 proportiomal to P Jxt-a)t]  where a*-g/4m ( see (19 ).



Vip-9y]= (0‘41 e PV Y(z) =-41*{* 5T lp-g ™ Y, @lp-gD), (%)
where Y1 is the Bessel function of the second kind. Now Egq. (2)
for the pion vertex can be written in both ooordinate and momentum
representations. The latter 1s more oonvenient for out present
purposes. Writing Eq. (2) in the Buclidean representation (-p*=
=P’-ps > p = B*+pi, iolq,,—» ~ol¢t,,) and putting in it the poten—
tial (13) we obtain after performing angular integrations

Foo = g § {dg X" (g ept Y00 Tl Bl ¥ (1)
P R T R ORALY F(”)})

where
x=pa, y=qa  p=Ma, F(p*)= F(x), F(3*) =F(y).
This integral equation is equivalent to the differential
equation for  u(X) = xY2 F(x)
du (1= poeppn™ - Faafue =0, (19
with boundary conditions
XEUG) =0, k0§ ub) ~ XY (), X0 (16)
The:ell-known normalization condition for X, (P) ( see [5"7])
and Bq. (1) define the normalization oondition for udx)
de wd(x) (x*+ M2 E = 82, an
We h;.ve solved the equations (15) and (16) by using WEBJ
method x). For M=0 the analytic solution evidently exists, which
was used to test the WKBJ approximation. The eigenvalue problem
( Eqs. (15) and (16) ) has the disorete 4* spectrum. Por small
and large values of pm the WEBJ approximations for f" aret

x).ul numerical results were obtained in oollaboration with
D.Mavlo, I.Puzynin and N.Truskova.

12

$2= /V(A/+2){i + F [V IVH2) +11t +0H 4 , /41«1)
f'=20p -5 N2 + O(p), pM2>1, (18)

where A= 1,3,5 ..sy and the lowest eigenvalue oorresponding
to N=1 48 to be chosen to describe the pion.

To obtain further information on the parameters {, a
and M, we calculated [(T->pmv) and ["(F->¥¥) by using one-loop
diagrams Fig.2, For C-> MY transition the nonrenormalized
V-A vertex was used, and (C—>¥¥ transition was approximated by
the C-pole diagram with bare CCY¥ vertioes. The results of the
numerioal caloulations of [ (W —> V) and I'(T>¥7) ( with
WKBJ approximation for e vertex) were compared with the
experimental values taken from PDBIL3), Combining these with the
elgenvalue conditlions for -fz we oan estimate all the parameters.

The results are the following: for C particles with integral

charges

a=426evt §*=g, Mc=03¢6eV, (19a)
and for fraotionally charged C ( quarks)

a =54 GVt fim{p M =04GeV (19b)

These numbers should not be considered too seriously, due to the
approximations used. Nevertheless, the value of @ 1s consistent
with our mass speotrum interpretation of the U- potential.

In the above discussion we have ignored the spin and isospin
struoture of U , Now let us briefly discuss this problem, In
meson models with nonexotio quantum numbers the great degeneracy
of levels, leading to the exponentially infinite density of states,
is due to daughter trajeotories 2], Then, the highest trajectories
( ¢ and w ) with their daughters give the main oontribution




to the potential ( assuming all CCR ooupling constant of the same
order) determining its spin and isospin ( or SU, spin )
struoture x). To treat partioleé other than the pion a careful
analysis of this structure 1s neoessary. In particular, we have
to explain the absence of tightly bound CC states. This will

be discussed elsewhere. ( With veotor foroes this could probabiy
be explained). Here we only stress one of the unusual features
of our approaoh: the dominant part of the potential is oonneoted
with highest trajectories ( as in the Regge theory) rather than
with lightest exohanged resonanoes ( contrary to the usual
dispersion ideas).

Above we also ignored the finiteness of range of foroes whiloh
glue oonstituents. In fact the foroes oorresponding to different
struotures in Eq. (la) may have different radii. For example,
the range of EG, must be greater than rn;l whereas that of Vy

is ij;‘( oorrespondingly, 6p(m =0 for m<m, and &, (M)=0

for m < mp, see Eq. (4) ). As far as we oonsider only tightl:
bound states of C and C ( like I or P ) this does not signifi-
oarftiy influence our results. However, for more massive states,
or for possible bound states of two C-partioles ( whioh we have
to forbid) this 1s quite important. We can understand this by
oonsidering the shape of the potential. From Fig.3 one can see
that in the "attraotive® ocase ( Fig.3a)the effeot of theshort
range on bound states of the potential is not cruoial but for the
"repulsive" oase ( Fig.3Jb) the situation ohanges drastically as
tightly bound states may exist only for very light constituents.

x)Ti:tere:tore, one may suspeot that the potential is dominated
by the veotor L,O YY" structure.

4

)
The easiest way to demonstrate this 1s to consider the SchrBdinger

equation w'=[®’+U@]u where **=M/-1S. A tightly bound
state oorreaponds to 544/‘1;, l.esy, 2= MZ , but in case b)
the eigenvalue »? must be small, This gives us a possibility
of explaining the absence of CC states by assuming "attractive"
vector interaotion between C and C. The problem of the existence
of (CC bound states requires much more delicate considerations
and is not disoussed here.
5. _Fermion propagator
Here we briefly discuss the fermlon propagator SL .Consider

the approximate Johnson type equation for S} which in the
diagram form, is represented by Fig.4. Suppose that the bare
fermion mass is zero, and the physical mass is created by the
virtual emission and absorption of the resonances, effeotively
described by the superpropagator V [-(p-q)f]( see Fig.4). The
propagator S, has the form

g = [ae-py~Pocpt] (20)
where «=0 and 8={ for the bare propagator S¢, and the

scalar functions « and ¢ satisfy the equations (—Pz-:P*)
Euct.

4 «(q?) Y, (alp-91) (21)
o(p?) = — Ta o L’J’ s 1
(P Tf 8(2"_)4, 0(2""12[32 lP-‘H ’
dfq, e3>  Y,(alp-91) (P9) ”
-4 -TIal TV 1 v/ (22)
g =1-7% g(zn)l' a*+qfe*  [p-q| 9%’ |
where L i
=7 & ¥ = : i = S, P VAT
{a lz o sl s Sg Zlég &L , (l. ' (23)
(el —t-gf gL, £-el-el =1
£y =eh =12 Eg =2/3.

These nonlinear equations have a solution satisfylng the boundary

oonditions o —> O,ﬁ->i,P£>°°. Then, by iterating Eq. (22) one
can prove that @(pz) may be represented in the form



p(p™) =1 — §y [4m2azpr]™ +(pa) ™ ua(pa). (24)
Introducing the notation
*(p2) = (pa) 2 u,(pa), (25)

and neglecting the terms ~u," and ~uf in the denominators of
Eqs. (21) and (22) we arrive at the approximate linear equations
for 4, and u, , which in the differeatial form axre ( x =Pz,

h:—{u/4'7rz, {a ="§p/z/772/ f“-2=2f2.)"

(26)
w' + [1-% (x+p27t -7::— x2] Uxy =0,

w, +[1~ N ()n‘-r,ul)—’ - —'g x| u,:)=0. (27)

In deriving these equatlons we have neglected the nonhomogeneous
term ( in Eq. (27) ) of order ~X *2, The boundary oonditions
for u, and U, are

W) ~x2Y, (), ux)~ x2Y, (), Xx>o09, (28)
u,00 ~—> 0, U, —> 0, x = 0,

immedlately follow from the linearized form of Eqs. (21) and (22).
Thexfolutions of Eqs. (28) and (27) gilve a good approximation
to those of Egqs. (21) and (22) for large x and not too much
deviate from them for small X ., Therefore we consider the
solution of the linear equations (26) and (27) as a reasonable
approximation to the solution of themonlinear equations (21)
and (22) for all x X), The solutlon of the linear problem
was found numerically ( in collaboration with I,.V.Puzynin) and
the result is

=835 fo =925, pm=430. (29)
Note that the possibility of determining the parameter a4 is
due to the relation between M and f, resulting from the
nonlinear nature of the ariginal problem.

Let us disouss the physioal interpretations of the solution.
If the ooupling is a purely vector ( or axial-vector) onme,Eq.
(26) is identioal to the equatien for the massless pion vertex,
1f m=-Moa and {,=4f . This is a oonsequence of the general
theorem on the spontaneous breakdown of 3;-symmetry[21],1f
the pion is treated as the corresponding Goldstone particle. This
interpretation is strongly supported by the striking coincidence
of the parameters {, and j given by Eq. (29) with the values
given by BEq. (19a). Therefore it is not unreasonable to suppose
that C-partiolesare something like bare nuoleons, as in the Fermi-
-Yang model[zz]. This conclusion is supported by the faot that
Ter ooupling constant ( i.e., F (-M)) is found to be of the
order 20+2%5 ( this result was obtalned in collaboration with
D.Mavlo and N.Truskova) and favours the vector forces giving
the repulsive core of a radius a = 0,8 fm for CC-interaotion,
;hioh in qualitative agreement with nuclear physilos data[éql.
8. Conmolusion

Finally, we mention another remarkabdble feature of our model,
whioh oan be tested experimentally: the pion electromagnetio
form-faotor Gy(q;)bhas osoillating terms in the space-like
asmetotio region q,?:ti:‘ +q/f4—>+00 . We ha.ve shown this in the
statio non-relativistio approximation for G, in whioh Cu=0,5{=19
6,4 = (d B wieo = 6,47 ei(q,a) " osCqa/a)

[

where G, 1is a smoothly decreasing functlon of Ds s determined
by the behaviour of w(r) mnear I=0 » and the seoond term
depends_on the infinite barrier at 1=a xq For our potential

x)ror potentlal with a marginal singularity or for regular poten-

tials there are no suoh osoillating terms (see, e.g. 1-3 .
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ro 3 and c, 1s of order 45 ( for M= 1 GeV). This asympto-
tic expansion 1s valld for q,e»!, or q,3> 0.5 GeV. The static
nonrelativistio approximation is of course very orude but the
principal qualitative faot, the existenoe of osoillations with

the period of order 1 GeV, survives also in better approximations.
The experimental discovery of suoh osolllations would be a very
serious evidenoce in favour of the oomposite model disoussed above,

The approaoh to the oomposite meson models presented here
was proposed in refs.[24]. The author is greatly indebted to
N.N.Bogolubov and V.A ,Meshcheryakov for their constant lnterest
in this work.

The author 1s also greatly indebted to Drs.S.Gerasimov,
A.Efremov, Y.Ogievetsky, L.Ponomarev, Ya.Smorodinsky and R.riustov
for useful discussions and oomments and especially to D.Mavlo,
N.Pruskova and I.Puzynin for fruitful ocollaboration. The results
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