ОБЪЕАИНЕННЫЙ ИНСТИТУТ
 नAEPHЫX ИССАЕАОВАНИЙ

AYБHA

C 323.4
A.T.Filippov

A RELATIVISTIC MODEL
OF COMPOSITE MESONS

1974

ААБОРАТОРИЯ TEOPETИYECHOЙ

E2 - 7929

A.T.Filippov

A RELATIVISTIC MODEL OF COMPOSITE MESONS

Submitted to the XVII International Conference on High Energy Physics, London, June l-10, 1974.

1. Introduotion

The prinoipal features of high energy hadronic reactions suggest a simple pioture of hadrons as oomposite systems built up of point-like oonstituents C freely moving within a sphere of a finite, approximately universal diameter D . (For a reoent discussion and references see, e.g. [1-3]). The data on elastic and inelastio hadronic reactions and on the pion and the proton electric-charge radil seem to be consistent with D of order 1 fin [$]$] From the well-known results on deep-inelastic lepton-hadron soattering it follows that these constituents are fermions of spin $y_{2}[1]$. The absenoe of exotio mesons suggests that mesons are built up from fermion C and antifermion \bar{C} having isospins 0 and $\%$, and that the admixture of exotic states (such as ($\bar{C} C)(\bar{C} C)$ e.a.) is small. The exact nature of these fermions is not known. They may be Gell-Mann-Zweig quarks, "oolored" quarks, "bare" baryons or something else. All these possibilities were widely discussed (see,e.g. ${ }^{[4]}$), and here we oonsider only dynamioal problems whioh are more or less independent of the exact properties of \mathcal{C} particles (other than their spin, mass, and their mutual interaction). As composite models for baryons do essentially depend on symmetry properties of oonstituents, we restrict our disoussion to mesons.

In building composite mesons the first dynamical question 1s: which formalism to use for describing tightly bound systems of C and $\overrightarrow{\mathcal{C}}$. We ohoose the Bethe-Salpeter aquation (BSE) for the relativistic wave function or, equivalently, the homogeneous Edwards equation for the bound state vertex function ${ }^{[5-7]}$. To give a physical interpretation of the wave function and to exclude
the exotio states of the seoond k nd ${ }^{[4]}$ it is useful to oonsider the bound-state wave funotion with equal time ooordinates of C and \bar{C} (of. ${ }^{[2]}$). Here these problems are not discussed.

The seoond question 1s: whioh interaotion potential (kernel) to choose to glue C and \bar{C}. The most popular potential nowadays is the four-dimensionel osoillator well whioh is oapable of reproduoing linear Regge trajeotories and keeps oonstituents inside hadrons $[2,8]$. However, it is diffioult to interpret this potential in any reasoneble field theory ${ }^{[9]}$ or in terms of partiole exohanges.

An appealing idea is to treat the $\bar{C} C$ potential as a bootstrap potential, i.e., to consider it as determined by exohange of resonances R, whioh are built up of the same oonstituents glued by the same potential. This idea was developed by several authors (see, e.g. ${ }^{[10]}$), and usually the kernel is approximated by low-lying resonanoes (π, ρ, ω, eto.). However, the oorresponding potential rapidly varies with the relative distance \mathcal{C} between C and C and is singular at $z=0$. This qualitatively disagrees with the ploture of free oonstituendso Moreover, the singularity at the origin $z=0$ results in the well-known Goldstein diffioulty ${ }^{[6]}$, and to avoid it a outmoff is necessary. With suoh potentials, it is also impossible to explain why the Regge trajeotories are growing, and there is no universal size D of hadrons. Our idea is to take into aooount exohanges of high-mass resonances. As far as the average number $N(m) d m$ of resonance states in the interval ($m, m+d m$) is rapidiy growing with their mass m, one mey suspeot that the oontribution of high-mass resonances might be not negligible.

In fact, if the distribution $N(m)$ is asymptotioally exponential $[11]$, 1.e., $N(m) \sim \exp (m a)$, and if the average contribution of the individual resonanoe state is proportional to $r^{-1} e^{-m r}$ then the arerage total oontribution of resonanoes of mass m is $\sim^{-1} \exp (m a-m r)$, and for $r \approx a$ the contribution of infinitely massive resonances is inifinite (the integral of this expression over the interval $\left(m_{0},+\infty\right)$) diverges for $\tau \leqslant a$.

The exponential growth of the resonance speotrum $N(m)$ in the interval $m \leqslant 1.5 \mathrm{GeV}$, with $a \propto 4 \div 6 \mathrm{GeV}^{-1}$, is the empirical fact (see ${ }^{\left[l_{1}\right]}$ and what follows), and thus we face two possibilities.i)The resonanoe spectrum is exponentially growing up to some finite mass M and for $m \geqslant M$ it is dying away (or its growth is less than exponential). In this case, the potential oorresponding to the exchange of resonances with mass $\leqslant M$ forms a deep well (or a "oore") of a radius of order $a \propto 4 \div 6 \mathrm{Ger}^{-1}$. The average depth of the well 1s $\geqslant M$, and therefore the mass of the constituents must be greater than M. This may give a justifioation of quark models with heavy quariss in terms of the bootstrap inter-quark potential (of. ${ }^{[4]}$). 2) a muoh more interesting possibility is suggested by statistioal and dual resonance models, in which the resonance spectrum is ideed asymptotically exponential, 1.e., $M=\infty$. Here we oonstruot the oorresponding potential and investigate its simplest oonsequenoes for composite models of mesons.

2. The pion vertex

In what follows we treat in some details the composite pion, whioh is desoribed by means of the Euclidean Bethe-Salpeter (or Bdwards) equation with a local potential (kernel).

As explained above, we consider the potentials haring exponentiaily infinite spectral functions, oonnected with the empirioal mess spectrum of resonances. The $\bar{C} C$ potential in the ooordinate spaoe (the ooordinate is $x=\gamma_{c}{ }^{-\gamma_{\bar{c}}}$ where τ_{c} and $\tau_{\bar{c}}$ are the Euclidean four-dimensional ooordinates of C and \bar{C}) is the four-dimensional Fourier transform of $\bar{C}-C$ soattering amplitude. For simplicity we oonsider only on-mass-shell amplitudes giving local potentials. The equation for the pion vertex $\Gamma(p, k)$ is presented in the diagram form on Fig.i. The corresponding equation for the $B S$ wave funotion $X_{k}(P)$ follows from the relation ${ }^{[7]}$

$$
\begin{equation*}
x_{k}(p)=S_{F}^{\prime}(p-k / 2) \Gamma(p, k) S_{F}^{\prime}(p+k / 2) \tag{1}
\end{equation*}
$$

where S_{F}^{\prime} is the exact propagator of the $C-p a r t i c l e, ~ A s ~ t h e ~$ first approximation we take here the bare fermion propagators, the dressed propagators will be discussed later. To simplify the disoussion we solve here only the pion equation in which the dependence of the vertex Γ on k may be negleoted. We simply put in the pion equation $k=0$ and $m_{\pi}=0$, and in catculating the physioal prooesses with the pions, $k \neq 0, m_{\pi} \neq 0$, we use an approximate vertex $\Gamma(p) \equiv \Gamma(p, 0)$ - This approximation is reliable if the C-partiole mass M_{C} is muoh greater than m_{π}.

$$
\begin{align*}
& \text { Now the most general form of the potential } 1 \mathrm{~s}[2] \\
& V(-t, s)=(1 \otimes 1) V_{s}(-t, s)+\left(\gamma_{5} \otimes \gamma_{s}\right) V_{P}(-t, s)+\frac{1}{4}\left(\gamma_{\mu} \otimes \gamma^{\mu}\right) V_{V}(-t, s)+ \\
& +\frac{1}{4}\left(\gamma_{5} \gamma_{\mu} \otimes \gamma_{5} \gamma^{\mu}\right) V_{A}(-t, s)+\frac{1}{\sqrt{6}}\left(\sigma_{\mu \nu} \otimes \sigma^{\mu \nu}\right) V_{T}(-t, s), \tag{1a}
\end{align*}
$$

Where V_{i} are soalar funotions, and for the Dirac γ-matrices the Bjorken-Drell $[13]$ notation 1s used. (Here we consider only 1sosoalar potential, inclusion of the isoveotor one is quite
obvious). The $k=0$ pion vertex has the form $\Gamma(p)=i \vec{\tau} \gamma_{5} F\left(-p^{2}\right)$, and F obeys the equation

$$
\begin{equation*}
F\left(-p^{2}\right)=\int \frac{d^{4} q}{(2 q)^{4} i} V_{\pi}\left[-(p-q)^{2}\right]\left(M_{c}^{2}-q^{2}-i 0\right)^{-1} F\left(-q^{2}\right), \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{\pi}(-t)=\sum_{i} \varepsilon_{i} V_{i}(-t), \quad(i=S, P, V, A, T) \tag{3}
\end{equation*}
$$

$$
V_{i}(-t) \equiv V_{i}(-t, 0), \quad \varepsilon_{S}=\varepsilon_{V}=\varepsilon_{T}=1, \quad \varepsilon_{P}=\varepsilon_{A}=-1
$$

One oan easily identify the partioles (or the Regge trajeotories) oontributing to different potentials V_{i} by using the
 problem ${ }^{[14]}$. Here we simply suppose that all V_{i} are of the same form, 1.e., $V_{i}(-t)=f_{i} V(-t)$, and $V(-t)$ is determined by the mass speotrus of all resonanoes. Then $V_{\pi}(-t)=f_{\pi} V(-t)$, where $f_{\pi}=\sum_{i} \varepsilon_{i} f_{i}$, and by solving Eq. (2) the oonstant f_{r} will be determined in terms of M and the parameters character1zing $V(-t)$.

3. The potential in pion equation

Now let us disouss the potential $V(-t)$. If it is determined by exohange of a spinless partioles with mass m_{R}, it has the form $g_{R}\left(m_{R}-t-i 0\right)^{-1}$, and the oorresponding Eq. (2) was oarefully investigated by many authors ${ }^{[5-7]}$. The imaginary part of this potential on the out $t>0$ (the speotral function) is $\pi g_{R} \delta\left(t-m_{R}^{2}\right)$. The potential in the Euolidean ooordinate representation oan be defined in terms of the speotral function as follows (this is the Källen-Lehmann representation of $U(2)^{[13]}$)

$$
\begin{equation*}
U(r)=\int_{0}^{\infty} d m^{2} \sigma\left(m^{2}\right) \Delta_{F}\left(m^{2}, r\right)=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k r} V\left(k^{2}\right) \tag{4}
\end{equation*}
$$

Here $\quad \Delta_{F}\left(m^{2}, z\right)=m K_{1}(m z) / 4 \pi^{2} r \quad$ is the Euclidean Feymman propagator, and $\tau^{2}=\vec{\tau}^{2}+\tau_{4}^{2}$. For one-partiole exchange $\sigma\left(m^{2}\right)=g_{R} \delta\left(m^{2}-m_{R}^{2}\right)$ and $U(r)=g_{R} \Delta_{F}\left(m_{R}^{2}, r\right)$. The spectral function oorresponding to the exchange of many infinitely narrow resonanoes R may be approximated by the distribution

$$
\begin{equation*}
\sigma\left(m^{2}\right)=\sum_{n} g_{n} \delta\left(m^{2}-m_{n}^{2}\right) N_{n} \tag{5}
\end{equation*}
$$

where $N_{n}=\left(2 \partial_{n}+1\right)$ is the number of different spin states of R_{n}. Smoothing off this distribution (replaoing δ - functions by Gaussian exponentials, as in ref. [11], we find

$$
\begin{equation*}
G\left(m^{2}\right) \approx g\left(m^{2}\right) \rho\left(m^{2}\right) \tag{6}
\end{equation*}
$$

where $\rho\left(m^{2}\right)$ is the average density of exchanged resonance states and $g\left(m^{2}\right)$ is the average $\bar{C} C R \quad$ coupling constant.

To obtain some useful information from the empirioal mass spectrum we make the simplest assumptions that g is independent of m and that $\rho\left(m^{2}\right)$ is proportional to the density of all observed resonance states $\rho_{\text {tot }}\left(m^{2}\right)$. As the pion is oomposed of oonstituents with isospin $1 / 2$, only isosoalar and isovector resonames contribute to the pion equation, and the seoond assumption is true if the distributions $\rho_{\mathrm{B}, \mathrm{I}}\left(\mathrm{m}^{2}\right)$ of baryons $\left(B=1 ; I=0, \frac{1}{2}, 1, \frac{3}{2}\right)$ and mesons $\left(B=0 ; I=0, \frac{1}{2}, 1\right)$ are proportional to each other, 1.e., $\rho_{B, I}\left(m^{2}\right)=A_{B, I} \rho_{\text {Lot }}\left(m^{2}\right)$. For high-mass resonances this seems to be oonsistent with present experimental evidence ${ }^{[15]}$.

In the above discussion we have included the spin of the resonanoe R_{n} only in the factor $2 J_{n}+1$. To justify this assumption, imagine that we know the distribution $\tilde{\rho}\left(m^{2}, j\right)$ of resonance masses and spins. Then the spectral function of the
potential $U(z)$ may be written in the form (of. [14]).
$\sigma\left(m^{2}\right)=\int_{0}^{\infty} d m_{R}^{2} \sum_{j=0}^{\infty} \tilde{\rho}\left(m_{R}^{2}, J\right) g_{R} \delta\left(m^{2}-m_{R}^{2}\right)(2 \partial+1) \rho_{J}\left(1+\frac{2 s}{m^{2}-4 M_{c}^{2}}\right)$,
where $1+2 s /\left(t-4 M_{c}^{2}\right)=\cos \theta_{t}$, and θ_{t} is the t-ohannel
scattering angle. At first sight, this spectral funotion depends on s, but we are interested in the dependenoe of 6 on m for $m \rightarrow \infty$ and for $s<4 M_{c}^{2}$ (bound statesi), and it will be Immediately shown that in this domain the s-dependence of G can be negleoted. Suppose that $\tilde{\rho}\left(m^{2}, J\right)$ is suoh that the average value $\bar{\jmath}$ contributing to Eq. (7) for large m is bounded by m^{α}, where $\alpha<2$. This assumption is valid in statistioal and dual resonance models [16], where the spin distributions are proportional to $\exp \left(-y^{2} / m d\right), d \infty a$, and $\exp (-\mathcal{J} / \mathrm{md})$, respeotively. Then for $2 \mathrm{~s}\left(m^{2}-4 M_{c}^{2}\right)^{-1} \ll 1$

$$
\begin{equation*}
P_{z}\left(1+\frac{2 s}{m^{2}-4 M_{c}^{2}}\right) \approx 1+\frac{2 s}{m^{2}-4 M_{c}} P_{j}^{\prime}(1)+\ldots \approx 1+\frac{\bar{j}_{s}}{m_{s}^{2}-4 m_{c}}+\ldots \approx 1, \tag{8}
\end{equation*}
$$

$$
\text { as } s \bar{y} / m^{2} \rightarrow 0 \text { for } m \rightarrow \infty \text {, and we effeotively obtain the }
$$

equation (6) with

$$
\begin{aligned}
& \text { with } \\
& \rho\left(m^{2}\right) \approx \sum_{j=0}^{\infty}(2 J+1) \tilde{\rho}\left(m^{2}, J\right) . \\
& \text { onsiderations make sense if } \rho(m
\end{aligned}
$$

All these oonsiderations make sense if $\rho\left(m^{2}\right)$ is asymptotioally exponential

$$
\begin{equation*}
\rho\left(m^{2}\right) \underset{m^{2} \rightarrow \infty}{\sim} c m^{b} \exp (m a) \tag{9}
\end{equation*}
$$

In statistioal models such behaviour of ρ is required by bootstrap oonditions [Il]. A very similar asymptotio behaviour of ρ was observed in the Veneziano model $[12]$, where the parameter a was found to be equal to $a=2 \pi\left(\frac{2}{3} \alpha^{\prime}\right)^{1 / 2} \approx 4.7 \mathrm{GeV}^{-1}$ (if we take for α^{\prime} the slope of the ρ trajectory). The empirioal density of states $\rho_{\text {tot }}\left(m^{2}\right)$ in the interval $0 \leqslant m \leqslant 1$ GeV was obtained by R. Hagedorn ${ }^{[11]}$, who fitted the
smoothed experimental ourve by the exponential

$$
\rho_{t o t}\left(m^{2}\right) \approx 0.83(2 m)^{-1}\left(m_{0}^{2}+m^{2}\right)^{-5 / 4} \exp (m a),
$$

where $m_{0} \approx 0.5 \mathrm{GeV}$ and $\quad \alpha \approx 6.25 \mathrm{GeV}^{-1}$.
On the basis of these observations $\rho\left(m^{2}\right)$ is supposed to be asymptotioally exponential and the parameter a oan be derived from the empirical distribution of resonanoe levels. To obtain a simple analytic form for the potential $U(r)$ for all r we use, instead of the exponential, the Bessel functions. Namely, We fit the empirical spectral density by the modified Bessel function of the first kind: $A_{\text {tot }} \cdot(2 m)^{-1} \cdot I_{\perp}(m a) \mathrm{GeV}^{-2}$. Taking into account all well established resonanoes (see ${ }^{[15]}$) we find a good fit in the interval $0.2 \leqslant m \leqslant 1.4 \mathrm{GeV}$ with the parameters $a \approx 4 \mathrm{GeV}^{-1}$ and $A_{\text {tot }} \approx 18 \mathrm{GeV}^{-1}$. The potentials corresponding to this spectral function oan easily be oalculated for $r>a$ by substituting $g A_{t a t}(2 m)^{-1} I_{1}(m a)$ in Eq. (4) (see ${ }^{[17]}$, Chap. 10, Sec.3, eq. (17)) and is equal to ($\left.\frac{y}{4 \pi^{2}}\right) A_{t o t} a \tau^{-2}\left(r^{2}-a^{2}\right)^{-1}$. This potential, analytically continued to the interval $0 \leqslant z<a$ is singular at the origin and, as was disoovered in ref. [6], the corresponding BSE has no discrete spectrum. To obtain a regular potential we therefore modify $1 t$ by adding the term $-S\left(m^{2}\right)$ to the spectral function (alternatively one can use the function $J_{1}(m a)+I_{1}(m a)$ instead of $I_{1}(m a)$, obtaining the potential $\left(\frac{g}{4 \pi^{2}}\right) 2 A_{\text {tot }} a\left(z^{4}-a^{4}\right)$ which is as good as the potential used here). Following these considerations, we finally use the speotral function

$$
\begin{equation*}
\sigma\left(m^{2}\right)=g A \cdot(2 m)^{-1}\left[I_{1}(m a)+4 m a^{-1} \delta\left(m^{2}\right)\right], \tag{10}
\end{equation*}
$$

giving the potential

$$
\begin{equation*}
U(z)=\left(g / 4 \pi^{2}\right) A a^{-1}\left(z^{2}-a^{2}\right)^{-1} \equiv f^{2}\left(r^{2}-a^{2}\right)^{-1} \tag{11}
\end{equation*}
$$

This potential is singular at the point $z=a$, and to calculate its Fourier transform a rule of integration over this point is required. The most natural one is the prinoipal value prescription, 1.e.,

$$
\begin{equation*}
U(r)=f^{2} \mathscr{P}_{0}\left\{\frac{1}{r^{2}-a^{2}}\right\} \tag{12}
\end{equation*}
$$

The origin of this reoipe can be understood in the context of nonpolynomial field theories (see ${ }^{[18]}$ and referenoes quoted therein). The equation (4) is the Källen-Lehmann representation for the effeotive propagator desoribing resonance exchanges between C and \bar{C}, and $\sigma\left(P^{2}\right)$ is its imaginary part on the out $0 \leqslant p^{2} \equiv p_{0}^{2}-p^{2}$. Therefore, to find the potential is to find the propagator with the exponentially rising imaginary part. This problem was solved in nonpolynomial field theories, and such propagators (or, striotly speaking, their Fourier transforms into momentum space) are usually called superpropagators x. The principal value presoription corresponds to constructing the minimally singular ${ }^{[18]}$ superpropagator having Eq. (10) as its imaginary pert.

4. Solution of the pion equation and pion deoays

Using this reaipe one can easily oalculate the Fourier transform of Eq. (12) (this result can be obtained using ${ }^{[17]}$, Chap. 8, Sec. 5, Eq. (12), and analytic continuation in a plane):
x) For example, in the theory with the interaction $\mathcal{L}=G: \bar{\psi} \psi \exp \left(g \varphi^{+} \varphi\right)$, where φ is the massless oharged scalar (or pseudosoalar) field, the superpropagator $\langle T \mathcal{L}(z) \mathscr{L}(0)\rangle$ is proportional to $\mathcal{P} .\left\{\left(2^{4}-a^{4}\right)^{-1}\right\}$, where $a^{2}=g / 4 \pi(\operatorname{see}[19])$.
$V\left[(p-q)^{2}\right]=\int d^{4} \tau e^{i(p-q)^{z}} U(r)=-4 \pi^{2} f^{2} \frac{1}{2} \pi a|p-q|^{-1} Y_{1}(a|p-q|)$,
where Y_{1} is the Bessel function of the second kind. Now Eq. (2) for the pion vertex can be written in both ooordinate and momentum representations. The latter is more oonvenient for out present purposes. Writing Eq. (2) in the Euclidean representation $\left(-p^{2}=\right.$ $\left.=\vec{p}^{2}-p_{0}^{2} \Rightarrow p^{2}=\vec{p}^{2}+p_{4}^{2}, i d q_{0} \rightarrow-d q_{4}\right)$ and putting in it the potential (13) we obtain after performing angular integrations

$$
\begin{align*}
F(x)=\frac{1}{2} \pi f^{2} & \left\{\int_{0}^{x} d y x^{-1} y^{2}\left(y^{2}+\mu^{2}\right)^{-1} Y_{1}(x) J_{1}(y) F(y)+\right. \tag{14}\\
& \left.+\int_{x}^{\infty} d y x^{-1} y^{2}\left(y^{2}+\mu^{2}\right)^{-1} \partial_{1}(x) Y_{1}(y) F(y)\right\}
\end{align*}
$$

where

$$
x=p a, y=q a, \mu=M_{c} a, F\left(p^{2}\right) \equiv F(x), F\left(q^{2}\right) \equiv F(y)
$$

This integral equation is equivalent to the differential
equation for $u(x)=x^{3 / 2} F(x)$

$$
\begin{equation*}
\frac{d^{2} u}{d x^{2}}+\left[1-f^{2}\left(x^{2}+\mu^{2}\right)^{-1}-\frac{3}{4} x^{-2}\right] u(x)=0 \tag{15}
\end{equation*}
$$

with boundary conditions

$$
\begin{align*}
& x^{1 / 2} u(x) \rightarrow 0, x \rightarrow 0 ; u(x) \sim x^{y_{2}} Y_{1}(x), x \rightarrow \infty . \tag{16}\\
& \text { The well-known normalization cond1tion for } x_{k}(p)\left(\operatorname{ses}^{[5-7]}\right)
\end{align*}
$$ and Eq. (1) define the normalization oondition for $u(x)$

$$
\begin{equation*}
\int_{0}^{\infty} d x u^{2}(x)\left(x^{2}+\mu^{2}\right)^{-2}=8 \pi^{2} \tag{17}
\end{equation*}
$$

We have solved the equations (15) and (16) by using WKBJ method ${ }^{x}$). For $\mu=0$ the analytic solution evidently exists, whiah was used to test the WKBJ approximation. The eigenvalue problem (Eqs. (15) and (16)) has the disorete f^{2} spectrum. For small and large values of μ the WKBJ approximations for f^{2} are:
$\bar{x}_{\text {All }}$ numerical results were obtained in oollaboration with D.Mavlo, I. Puzynin and N.Truskova.

$$
\begin{align*}
& f^{2}=N(N+2)\left\{1+\frac{1}{2} \mu^{2}[N(N+2)+1]^{-1}+O\left(\mu^{4}\right)\right\}, \mu^{2} \ll 1, \\
& f^{2}=2 N \mu-\frac{1}{2} N^{2}+O\left(\mu^{-1}\right), \quad \mu^{2} \gg 1, \tag{18}
\end{align*}
$$

where $N=1,3,5, \ldots$, and the lowest eigenvalue oorresponding to $N=1$ is to be ohosen to describe the plon.

To obtain further information on the parameters f, a and M_{c} we oalculated $\Gamma(\pi \rightarrow \mu \nu)$ and $\Gamma(\pi \rightarrow \gamma \gamma)$ by using one-loop diagrams Fig.2. For $C \bar{C} \rightarrow \mu \nu$ transition the nonrenormalized V-A vertex was used, and $\bar{C} \bar{C} \rightarrow \gamma \gamma$ transition was approximated by the C-pole diagram with bare $C \bar{C} \gamma$ vertioes. The results of the numerioal caloulations of $\Gamma(\pi \rightarrow \mu \nu)$ and $\Gamma(\pi \rightarrow \gamma\rangle)$ (with WKBJ approximation for $\bar{C}(\pi$ vertex) were compared with the experimental values taken from PDt ${ }^{[15]}$. Combining these with the eigenvalue conditions for f^{2} we oan estimate all the parameters. The result s are the following: for C particles with integral charges

$$
\begin{equation*}
a \approx 4.2 \mathrm{GeV}^{-1}, \quad f^{2} \approx 8, \quad M_{c} \approx 0.9 \mathrm{GeV} \tag{19a}
\end{equation*}
$$

and for fraotionally charged C (quarks)

$$
\begin{equation*}
a=5.4 \mathrm{GeV}^{-1}, \quad f^{2} \approx 10, \quad M_{c} \approx 0.4 \mathrm{GeV} \tag{19b}
\end{equation*}
$$

These numbers should not be considered too seriously, due to the approximations used. Nevertheless, the value of a is consistent with our mass speotrum interpretation of the U-potential.

In the above discussion we have ignored the spin and isospin struoture of U. Now let us briefly discuss this problem. In meson models with nonexotio quantum numbers the great degeneracy of levels, leading to the exponentially infinite density of states, is due to daughter trajeotories ${ }^{[12]}$. Then, the highest trajectories (ρ and ω) with their daughters give the main oontribution
to the potential (assuming all C̄CR ooupling constant of the same order) determining its spin and isospin (or $S V_{3}$ spin) struoture ${ }^{x}$). To treat particies other than the pion a careful analysis of this structure is neoessary. In particular, we have to explain the absence of tightly bound CC states. This will be discussed elsewhere. (With veotor foroes this could probabiy be explained). Here we only stress one of the unusual features of our approaoh: the dominant part of the potential is oonneoted with highest trajectories (as in the Regge theory) rather than with lightest exohanged resonanoes (contrary to the usual dispersion ideas).

Above we also ignored the finiteness of range of foroes whioh glue oonstituents. In fact the for oes oorresponding to different struotures in Eq. (la) may have different radil. For example, the range of V_{P} must be greater than m_{π}^{-1} whereas that of V_{V} is $\gtrsim m_{\rho}^{-1}$ (oorrespondingly, $\sigma_{p}\left(m^{2}\right)=0$ for $m<m_{r}$ and $\sigma_{v}\left(m^{2}\right)=0$ for $m<m_{\rho}$, see Eq. (4)). As far as we oonsider only tightly bound states of C and $\bar{C}($ like π or ρ) this does not signifioantily influence our results. However, for more massive states, or for possible bound states of two C-partioles (whioh we have to forbid) this is quite important. We can understand this by oonsidering the shape of the potential. From Fig. 3 one can see that in the "attraotive" asse (Fig. 3a) the effeot of the short range on bound states of the potential is not oruoial but for the "repulsive" oase (Fig.3b) the situation ohanges drastically as tightly bound states may exist only for very light constituents.
${ }^{\text {x) }}$ Therefore, one may suspeot that the potential is dominated by the veotor $\gamma_{\mu} \otimes \gamma^{\mu}$ struoture.

The easiest way to demonstrate this is to consider the Schrödinger equation $u^{n}=\left[x^{2}+V(\tau)\right] u$, where $x^{2}=M_{c}^{2}-\frac{1}{4} s$. A tightly bound state oorresponds to $s<4 M_{c}^{2}$, i.e., $x \approx M_{c}^{2}$, but in case b) the eigenvaiue x^{2} must be small. This gives us a possibility of explaining the absence of cc states by assuming "attractive" vector interaotion between C and C. The problem of the existence of CCC bound states requires muoh more delicate considerations and is not disoussed here.

5. Fermion propagator

Here we briefly discuss the fermion propagator $S_{F}^{\prime \prime}$. Consider the approximate Johnson type equation for $S_{F}^{\prime \prime}$ whioh in the diagram form, is represented by Fig.4. Suppose that the bare fermion mess is zero, and the physical mass is created by the virtual emission and absorption of the resonances, effeotively described by the superpropagator $V\left[-(p-q)^{2}\right]$ (see Fig.4). The propagator $S_{F}^{\prime \prime}$ has the form

$$
\begin{equation*}
S_{F}^{\prime}=\left[\alpha\left(-p^{2}\right)-\hat{p} \beta\left(-p^{2}\right)\right]^{-1} \tag{20}
\end{equation*}
$$

Where $\alpha=0$ and $\beta=1$ for the bare propagator S_{F}, and the soalar functions α and β satisfy the equations $\left(-P_{E u c}^{2} \rightarrow P^{2}\right)$

$$
\begin{align*}
& \alpha\left(p^{2}\right)=-\frac{\pi a}{2} f_{\alpha} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{\alpha\left(q^{2}\right)}{\alpha^{2}+q^{2} \beta^{2}} \frac{Y_{1}(a|p-q|)}{|p-q|}, \tag{21}\\
& \beta\left(p^{2}\right)=1-\frac{\pi a}{2} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{\beta\left(q^{2}\right)}{\alpha^{2}+q^{2} \beta^{2}} \frac{Y_{1}(a|p-q|)}{|p-q|} \frac{(p q)}{q^{2}}, \tag{22}
\end{align*}
$$

$$
\begin{align*}
& \text { where } \quad f_{\alpha}=\sum_{i} \varepsilon_{\alpha}^{i} f_{i}, \quad f_{\beta}=\sum_{i} \varepsilon_{\beta}^{i} f_{i}, \quad\left(i=S, P, V, A_{1} T\right) \tag{23}\\
& \varepsilon_{\alpha}^{p}=\varepsilon_{\alpha}^{V}=1=\varepsilon_{\beta}^{P}=\varepsilon_{\beta}^{S} ; \quad \varepsilon_{\alpha}^{S}=\varepsilon_{\alpha}^{A}=\varepsilon_{\alpha}^{T}=-1, \\
& \varepsilon_{\beta}^{\gamma}=\varepsilon_{\beta}^{A}=1 / 2 ; \quad \varepsilon_{\rho}^{T}=-2 / 3 .
\end{align*}
$$

These nonlinear equations have a solution satisfying the boundary oonditions $\alpha \rightarrow 0, \beta \rightarrow 1, p^{2} \rightarrow \infty$. Then, by iterating Eq. (22) one can prove that $\beta\left(p^{2}\right)$ may be represented in the form

$$
\begin{equation*}
\beta\left(p^{2}\right)=1-f_{p}\left[4 \pi^{2} a^{2} p^{2}\right]^{-1}+(p a)^{-5 / 2} u_{2}(p a) . \tag{24}
\end{equation*}
$$

Introducing the notation

$$
\begin{equation*}
\alpha\left(p^{2}\right) \equiv(p a)^{-3 / 2} u_{1}(p a) \tag{25}
\end{equation*}
$$

and neglecting the terms $\sim u_{1}^{2}$ and $\sim u_{2}^{2}$ in the denominators of Eqs. (21) and (22) we arrive at the approximate linear equations for u_{1} and u_{2}, which in the differential form are ($x=p a$,

$$
\begin{equation*}
\left.f_{1}=-f_{\alpha} / 4 \pi^{2}, \quad f_{2}=-f_{B} / 4 \pi^{2}, \mu^{2}=2 f_{2}\right): \tag{26}
\end{equation*}
$$

$$
\begin{align*}
& u_{1}^{\prime \prime}+\left[1-f_{1}\left(x^{2}+\mu^{2}\right)^{-1}-\frac{3}{4} x^{-2}\right] u_{1}(x)=0 \\
& u_{2}^{\prime \prime}+\left[1-f_{2}\left(x^{2}+\mu^{\prime}\right)^{-1}-\frac{15}{4} x^{-2}\right] u_{2}(x)=0 \tag{27}
\end{align*}
$$

In deriving these equations we have neglected the nonhomogeneous term (in Eq. (27)) of order $\sim x^{-3 / 2}$. The boundary oonditions for u_{1} and u_{2} are

$$
\begin{array}{ll}
u_{1}(x) \sim x^{v_{2}} Y_{1}(x), & u_{2}(x) \sim x^{y_{2}} Y_{2}(x), \tag{28}\\
u_{1}(x) \rightarrow 0, & u_{2}(x) \rightarrow 0,
\end{array}
$$

1 mmediately follow from the linearized form of Eqs. (21) and (22). The solutions of Eqs. (28) and (27) give a good approximation to those of EqS. (21) and (22) for large x and not too much deviate from them for small x. Therefore we consider the solution of the linear equations (26) and (27) as a reasonable approximation to the solution of the monlinear equations (21) and (22) for all x^{x}). The solution of the linear problem was found numerically (in collaboration with I.V. Puzynin) and the result is

$$
\begin{equation*}
f_{1}=8.35, \quad f_{2}=9.25, \quad \mu=4.30 \tag{29}
\end{equation*}
$$

Note that the possibility of determining the parameter μ is due to the relation between μ and f_{2} resulting from the nonlinear nature of the original problem.

Let us disouss the physioal interpretations of the solution. If the ooupling is a purely veotor (or axial-vector) one, Eq. (26) is identioal to the equation for the massless pion vertex, if $\mu=M_{c} a$ and $f_{1}=f$. This is a oonsequence of the general theorem on the spontaneous breakdown of γ_{5}-symmetry ${ }^{[21]}$, if the pion is treated as the corresponding Goldstone particle. This interpretation is strongly supported by the striking coincidence of the parameters f_{1} and μ given by Eq. (29) with the values given by Eq. (19a). Therefore it is not unreasonable to suppose that C-partioles are something like bare nuoleons, as in the Fermi--Iang model ${ }^{[22]}$. This conclusion is supported by the faot that $\overline{\mathrm{C}} C \pi$ ooupling oonstant (i.e., $F\left(-M_{c}^{2}\right)$) is found to be of the order $20 \div 25$ (this result was obtained in oollaboration with D.Mavlo and N.Truskova) and favours the vector forces giving the repulaive oore of a radius $a \approx 0.8 \mathrm{fm}$ for cc-interaotion, whioh in qualitative agreement with nuclear physios data ${ }^{[23]}$.

6. Conolusion

Finally, we mention another remarkable feature of our model, Whioh oan be tested experimentally: the pion electromagnetio form-factor $G_{n}\left(-q_{\gamma}^{2}\right)$ has oso1llating terms in the spaco-like asymptotio region $q_{\gamma}^{2}=\vec{q}_{r}^{2}+q_{\gamma 4}^{2} \rightarrow+\infty$. We have shown this in the statio non-relativistio approximation for G_{π} in whioh $\left(r_{0}=0, \bar{r}^{2}=r^{2}\right)$ $G_{\pi}\left(q_{r}^{2}\right)=\int_{0}^{\infty} d r \frac{2 \sin \left(q_{r} r / 2\right)}{q^{r}} u^{2}(r)=G_{0}\left(q_{\gamma}^{2}\right)+c_{1}\left(q_{\gamma} a\right)^{-B_{1}} \cos \left(q_{r} a / 2\right)+\ldots$ Where G_{0} is a smoothly deoreasing function of q_{δ}, determined by the behariour of $u(\tau)$ near $r=0$, and the seoond term depends on the infinite barrier at $z=a \quad x$. For our potential
$x_{\text {For potential with a marginal singularity or for regular poten- }}$ tials there are no suoh osoillating terms (see, e.g. 1-3).

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.
$B_{1} \propto 3$ and c_{1} is of order $4 \div 5$ (for $M_{e} \approx 1$ GeV). This asymptotic expansion is valid for $\frac{1}{2} q_{r} a \gg 1$, or $q_{\gamma} \gg 0.5 \mathrm{GeV}$. The static nonrelativistio approximation is of course very orve but the principal qualitative faot, the existence of osoillations with the period of order 1 GeV , survives also in better approximations. The experimental disoovery of suoh osoillations would be a rery serious evidence in favour of the oomposite model disoussed above.

The approaoh to the oomposite meson models presented here was proposed in refs. [24]. The author is greatly indebted to N. N.Bogolubov and V.A.Meshcheryakov for their constant interest in this work.

The author is also greatly indebted to Drs.S.Gerasimov, A.Efremov, V.Ogievetsky, L.Ponomarẹ, Ya.Smorodinsky and R.Faustov for useful dis cussions and oomments and espeoially to D.Mavio, N.Truskova and I.Puzynin for fruitful oollaboration. The results of $\$ 5$ were obtained during the visit of the author to the Rufer Boškovio Institue (Zagreb, Yugoslavia), the hospitality of the Theory division staff of which is kindly appreciated.

Referenoes:

1. D.Amati et al. preprint CERN TH-1644, Geneva (1973). 2. M. Böhm et al. preprint DESY 73/20, Hamburg (1973).
2. B.D.Drell and T.D.Lee, Phys.Rev., D5, 1738 (1972).
3. H.Lipkin, Physios Reports, 8C, 173 (1973).
4. N. Nakanish1, Suppl. Progr. Theor. Phys., N. 43 (1969).
5. S.Mandelstam, Proo.Roy.Soc. (Lond.), A233, 248 (1955); A237, 496 (1956); H.S.Green, Phys.Rev.,97, 540 (1955).
6. S.0kubo and D.Feldman, Phys.Rev.,117, 279 (1960); D.Lurie et al. Phys.Rev.,140, Bl091 (1965).
7. R.Feymman et al. Phys.Rev., D3, 2706 (1971); K.Johnson, Phys.Rev. ,D6, 1101 (1972).
8. R.Haag, Remark at the IInd Aix-en-Province Intern. Conf. on Elementary Particles, 1973 (unpublished).
10.J. Harte, Nuovo C1m., 45, 179 (1966).
11.R.Hagedorn, Suppl. Fuovo Cim. 23, 147 (1965);
S.Frautsch1, Phys.Rev., D3, 2821 (1971).
12.S.Fubini and G.Veneziano, Nuovo Cim., 64A, 84 (1969).
9. J. Bjorken and S.Drell, Relativistic Quantum Mechanios, McGraw-H1ll, N.Y., 1964.
14.1. Van Hove, Preprint CERN 68-31 (1968);
P.D.B.Collins, Physics Reports, 1C, 105 (1970).
10. Particle Data Group, Rev.Mod. Phys., 45, N. 2, 51 (1973).
16.C.B.Chiu and R.I.Heimann, Phys.ReV., 4, D3184 (1971);
C.B.Chiu, R.I.Heimann and A.Schwimmer, Phys.Rev., 4, D3177 (1971
11. Tables of Integral Transforms, V.II, McGraw-H111, N.Y.,1954.
12. N.Atakishiev and A.T.Filippov, Commun.Math. Phys., 24,74 (1971).
19.Z. Lane and A.Chodos, Phys.Rev., D4, 1667 (1971).
20.K.Johnson et al. Phys.Rev.,136, Bllll (1964).
13. Y. Nambu and G.Jona Lesiai.o, Phys.Rev., 122, 345 (1961);
J.Goldstone et al. Phys.Rer., 127, 965 (1962).
14. B.Fermi and C.N.Iang, Phys.Rev., 76, 1739 (1949).
23.H. Bethe, Ann.Rev. Nucl.Sci., 21, 93 (1971).
24.A.T.Filippov, preprint JINR E2-6936, Dubna, 1973;

Proo.of the III Intern.Seminar on Non-Looal Quantum Fields Theortes, JINR D2-7161, Dubne (1973); preprint JINR B2-7563, Dubna, 1973.

> Received by Publishing Department on May 8,1974

