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The principal features of high energy hadronic reactions 

suggest a simple picture of hadrons as composite systems built 

up of point-like constituents C freely moving within a sphere 

of a finite, approximately universal diameter ]} • ( For a 

recent discussion and references see,e.g.fl-J]). The data on 

elastic and inelastic hadronic reactions and on the pion and 

the proton electric-charge radii seem to be consistent with .D 

Of order 1 fm r11 From the well-known results on deep-inelastic 

lepton-hadron scattering it follows that these constituents 

are fermions of spin ~[l] • The absence of exotic mesons suggests 

that mesons are bull t up from fermion C and antife:rmion C 
having isospins O and ~' and that the admixture of exotic 

states ( such as (_Cc ) (CC) e.a.) is small. The exact nature 

of these fermions is not known. They may be Gell-Mann-Zweig quarks, 

•colored• quarks, •bare• baryons or something else. All these 

possibilities were widely discussed ( see,e.g.f4]), and here we 

consider only dynamical problems which are more or less inde­

pendent of the exact properties of C particles ( other than 

their spin, mass, and their mutual interaction). As composite 

models for bar,yons do essentially depend on symmetry properties 

of constituents, we restrict our discussion to mesons. 

In building composite mesons the first dynamical question 

is: which formalism to use for describing tightly bound systems 

of C and C • We choose the Bethe-Salpeter equation (BSE) for 

the relativistic wave :function or, equivalently, the homogeneous 

Edwards equation for the bound state vertex :tunction[5- 7J. To 

give a physical interpretation of the wave function and to exclude 
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the exotic states of the second kind[4Jit is useful to consider 

the bound-state wave function with equal. time coordinates of C 

and C ( of.[21). Here these problems are not discussed. 

The second question is: which interaction potential (kernel) 

to choose to glue C and E • The most popular potential 

nowadays is the four-dimensional oscillator well which is capable 

of reproducing linear Regge trajectories and keeps constituents 

inside hadrons[2,sJ. However, it is difficult to interpret this 

potential. in any reasonable field theory[gJor in te:rms of particle 

exchanges. · 

An appealing idea is to treat the CC potential as a bootstrap 

potential, i.e.,to consider it as determined by exchange of re­

sonances R , whioh are built up of the same constituents glued 

by the same potential. This idea was developed by several 

authors ( see 1e.g.flO]), and usually the kernel is approximated 

by low-lying resonances ( 1T, ~, w , etc.). However, the 

corresponding potential rapidly varies with the relative 

distance 'l. between C and C and is singular at "L = 0. 

This"'1J.alitatively disagrees with the picture of free oonstituems. 

Moreover, the singularity at the origin "L =O results in the 

well-known Goldstein diffioulty[6J, and to avoid it a out-off is 

necessary. With such potentials, it is also impossible to 

explain why the Regge trajectories are growing, and there is 

no universal size D of Jmdrons. our idea is to take into 

account exchanges of high-mass resonances. As far as the avera-

ge number f'/(m)cl.rn of resonance states in the interval (m, m+dm) 

is rapidly growing with their mass m 1 one may suspect that 

the contribution of high-mass resonances might be not negligible. 
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In fact, if the distribution N(m) is asymptotically exponen­

tial[ll], i.e., /\/(rn) - exp(ma.), and 1f' the average contribu­

tion of the individual re sonanoe state is proportional to 't-L e-m't 
-' 

then the average total contribution of resonances of mass 

is -'t-
1
exp(mQ-m"i) , and for 'l ""Q the contribution of 

infinitel;r massive resonances is infinite ( the integral of 

m 

this 

expression over the interval (mo,+ oo) ) diverges for 't ~a. 

The exponential growth of the resonance spectrum IV (m) 

in the interval m ~ 1.5 GeV, with a oe 4+6 GeV-1 , is the 

empirical fact ( see[ll]and what follows), and thus we face 

two possibilities.~The resonance spectrum is exponentially grow­

ing up to some finite mass M and for m ;>:.M it is dying 

away ( or its growth is less than. exponential). In this case, 

the potential corresponding to the exchange of resonances with 

mass f M forms a deep well ( or a •core•) of a radius of 

order aoe 4.:-6 GeV-1 • The average ~epth of the well is ~ M , 

and therefore the mass of the constituents must be greater than 

M • This may give a justification of quark models with 

heaYy quarks in terms of the bootstrap inter-quark potential 

( cf.f4J). :>,4 A much more interesting possibility is suggested 

by statistical and dual resonance models, in which the resonance 

spectrum is ideed asymptotically exponential, i.e. 1 M = ex:> • 

Here we construct the corresponding potential and investigate 

its simplest consequences for composite models of mesons. 

~~!...Pl:!!.a. vertex 

In what follows we treat in some details the composite 

pion, which is described by means of the Euclidean Bethe-Salpe­

ter ( or Edwards) equation with a local potential ( kernel). 
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As explained above, we consider the potentials having exponen­

tially infinite spectral functions, oonnected with the empirioal 

mass spectrum of resonances. The CC potential in the ooordina-

te space ( the ooordinate is 't = 'tc'lc: where "le and 'le 

are the Euclidean four-dimensional ooordinates of C and C ) 
is the four-dimensional P'ouril.er transform of C-C. scattering 

amplitude. For simplicity we consider only on-mass-shell 

amplitudes giving local potentials. The equation for the pion 

vertex r(p,k) is presented in the diagram form on lig.l. 

The corresponding equation for the BS wave function Jk(p) 

follows from the relat1on[7-\ 

:x...(p) = S~(p-k12)r{p,k)$~Cp+1<12), (1) 

where S'F is the exact propagator of the C-particle. As the 

first approximation we take here the bare fermion propagators, 

the dressed propagators will be discussed later. To simplify the 

discussion we solve here only the pion equation 1n which 

the dependence of the vertex f on k may be neglected. We 

simply put in the pion equation k = O and m..,.= o, and in 

cat"euiating the physical processes with the pions , K-# O, m11 +- 0, 

we use an appror.l.mate vertex r(p) = r(p, 0) • This approxima­

tion is reliable if the C-partiole maes Mc is much greater 

than mir. 

Now the most general form of the potential is[2J 

V(-t,s) =(1®1) Vs (-t,s) + O'sC!!I ts> Vp(-t,s) + tCr,..<» r'') Vv(-t; s)t-

+ f ((6 tf' ® 'ts¥") Vp, (-t, s) +-It (e;,,, ~ e;r") v'I" (-t, s)} 
(la) 

where l{ are scalar functions, and for the Dirao t - matrices 

the Bjorken..irell [lJ] notation is uaed. ( Here we consider onl.7 

isosoalar potential, inclusion of the isovector one is quite 
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obvious). The k=O pion vertex has the farm r (p) = i..1: 'Is F(-p'J, 

and F obeys the equation 

where 

Ftr2J = ( "\. V., [-(p-1t)2](11z-'},1 -iof
1 

Fl-i.i>; J (211) l 

Vir(-t) =~ E,V,(-t), (i=5,P,V,A,'T'), 
I 

V(-t) = 17 (-tO) f =c =E = i fp=EA=-i < - Y( I J $ V • T I • 

(2) 

(J) 

One oan easily identify the particles ( or the Regge trajecto­

ries) contributing to different potentials v; by using the 

t-channel Regge formalism developed for treating the conspiraoy 

problemfl4]. Here we simply suppose that all \Z are of the 

same form, i.e., Vi(-t); h V(-t), and V(-t) is determined by 

the mass spectrum of all resonances. Then V,.. (- t) = fn- V (-t ), 

where fir =I_ ti fi , and by solving Bq. (2) the oonstant f .­
will be deten:iined in terms of M and the parameters charac­

terising V (- t) • 

it.A!..ll.!!a!!AJ._i!!.....ll.2!!..!!Luat 10.a 

Now let us discuss the potential VC-t) , If it is 

determined by exchange of a spinless particles with mass mR , 
-1 

it has the form ~R(mR-t-io), and the corresponding Eq. (2) 

was carefully investigated by many authors[5- 7J. The imaginary 

part of this potential on the out t > 0 ( the spectral 

function) is Tr'IJ R & ( t - m:) , The potential in the Euclidean 

coordinate representation can be defined in terms of the spectral 

function as follows ( this is the Kii.J.len-Lehmann representation 

of U(1JlJ]) 

C f cl+k -ik"t. V(k:i) 
U('t)= }dm2 G(m2)~F(m~ 'l.) = )(z1T)'I e . (4) 

0 
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Here b..F(m~'l.) == mK1(m'l.) /Liir2."t. is the Euclidean Fe;rmnan 
2. -"P2. ,..,~ 

prd'pagator , and "l- = 'l + "'t • For one-particle exchange 

e>(mZ) = 811. 6(m'--rn:J and U("t) = ~R. .t.F(rn~,'t). The spectral 

function corresponding to the exchange of many infinitely 

narrow resonances R may be approximated by the distribution 

G>(m2) = L 9n [)(m.z -rn~) Nn' (5) 
n 

where N11 =(2J..,+1) is the number of different spin states of Rn • 

Smoothing off this distribution (replacing o- functions by 

Gaussian exponentials, as in ref.[ll]), we find 

G(m 2
) ~ g(m 2

) s:>(m 2
), 

where ~cmz) is the average density of exchanged resonance 

states and ~ (m.z) is the average CCR coupling constant. 

To obtain some usefUl information from the empirical 

(6) 

mass spectrum we make the simplest assumptions that g is in­

dependent of m. and that f(rn.z) is proportional to the density 

of all observed resonance states ~tot (rn 2
). As the pion is 

composed of constituents with isospin ~' only isoscalar and 
..... 

isovector resonan:>es contribute to the pion equation, and the 

second assumption is true if the distributions f a,r (/'Tl 2) 

of baryons (B'=i;I=O,i,1,:f) and mesons (B=O;I=O,f,i) 

are proportional to each other, i.e., fs,r(mi) =Aa,r Pt.tCm:1.). 

For high-mass resonances this seems to be consistent with 

present experimental evidence[l!i]. 

In the above discussion we have included the spin of the 

resonance Rn only in the factor 2 Jn+ i . To justify this 

assumption, imagine that we know the distribution fi Cm'-, J) 

of resonance masses and spins. Then the spectral function of the 
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potential U('tJ may be written in the form ( of. [
141). 

00 oO 

6(m'-) =I dm~ L ~cm;,J ).\)ii S(m'--rn~) (2J+1) ~ ( 1 + m:~liM:1. ) , 
0 J~ . c 

(7) 

where 1 + 2s/<t-'iM2) =W16t ,and Bt is the t-channel 

scattering angle. At first sight, this spectral function depends 

on 5 , but we are interested in the dependence of ID on m. 

for m~oo and for '<..c.1tM~ (bound states!), and it will be 

immediately shown that in this domain the a-dependence of ~ 

can be neglected. Suppose that ~cm'-, 'd) is such that the 

average value J contributing to Eq. (7) for large m- is 

bounded by mOl , where ex<. ~ • This assumption is valid 

in statistical and dual resonance models[l6l, where the spin 

distributions are proportional to· ex p ( - 'd 
2 I rn d. ) , d <F Q 1 

2. z -I 
and exp (-;J/md) , respectively. Then for 2s cm -'iMc) ~i 

P (1 
2s ) 1 + 2s p'(1 ) + - 1 +_h_ + .,.,. i (8) 

1 -t m'--.'tM<.. ~ m'-'1Mt J ... - m2

-4Mt ·· ' 

as ~a1m2 -o for m~oo , and we effectively obtain the 

equation (6) with 

f'(rni.) 

00 

~I C2J+1) 5>(m
2

, ;n. 

All these 
J=o 

considerations make sense if f'(m 2
) is as7111ptotioally 

exponential 

~(m2 ) --;-- cm Bex p (ma). 
m~oo 

(9) 

In statistical models such behaviour of ? is required by 

bootstrap oonditions[llJ. A very similar as7111ptotic behaviour 

of r was observed in the Veneziano model [l 2], where the 
•/2 4 -.{. 

parameter a. was found to be equal to a= 2Tr ( 101.') = . 7 GeV 

( if we take for o<. 1 the slope of the f trajectory). The 

empirical density of states ftot. (m 2
) in the i:nterTal 

0 ~ rn ~ 1 GeV was obtained by a.Hagedorn [ll] , who fitted the 
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smoothed experimental curve by the exponential 

~lot(rri 2 ) ~ 0.83 (2mf\m!+m 2 )-51~ e.xp(m a), 

where m0 "" O. 5 GeV and a""' 6.25 Gev-1. 

On the basis of these observations _s>cm:> is supposed to be 

asymptotically exponential and the parameter a. can be derived 

from the empirical distribution of resonance levels. To obtain a 

simple analytic form for the potential U('L.) for all 'i we 

use, instead of the exponential, the Bessel functions. Namely, 

we fit the empirical spectral density by the modified Bessel 
1. ) -.z function of the first kind: Atoi.·(2m)- · I.L(ma. &eV • 

Taking into account all well established resonances ( see[l5]) 

we find a good fit in the interval 0.2 ~ m~ l.4 GeV with the 

parameters a "" 4 Gev-1 and A tot"" 18 Gev-1 • The potentials 

corresponding to this spectral function oan easily be oalculated 

for 'l.>a. by substituting 3A,_.(2m)-t I/ma.) in Eq. (4) ( see[l7J, 

( s ) -2.( 2. 2 -1 Chap. 10, Sec.J, eq. (17) ) and is equal to Ltir .. At.ta'l. 'l. -a J . 

This potential, analytically continued to the interval o ~ 'l. <a. 

is singular at the origin and, as was discovered in ref.[61, the 
...... 

corresponding BSE has no discrete spectrum. To obtain a regular 

potential we therefore modify it by adding the t&rm ~ S(m 2
) 

to the spectral function ( alternatively one can use the function 

J1(mo) +lc(ma) instead of I 1(ma), obtaining the potential 

( 4~2)2Atot a(-i"-a4) which is as good as the potential used 

here). Following these considerations, we f:l.nally use the 

spectral function 

G\m2 ) = aA-C2mf1. [I1 (ma.) + 'tma-1 b(m 2 .i} _, (lo) 
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giving the potential 

U('i) =( 814 rr 2 ) Aa-.1 ('l2 -a2Y 1 = f 2 ('lz.-a2 
)-:- (11) 

This potential is singular at the point t =Q
1 

and to calculate 

its Fourier transform a rule of integration over this point is 

required. The most natural one is the principal value prescrip­

tion, i.e. 1 

U(<t) 12 
CP. { -i"~az. J · (12) 

The origin of this recipe can be understood in the context 

of nonpolynomial field theories ( seeflS]and references quoted 

therein). The equation (4) is the Killen-Lehmann representation 

for the effective propagator describing resonance exchanges 

between C and C , and G'(p 2
) • is its imaginary part on the 

cut o~ p2= p.'-- p2 
• Therefore, to find the potential is to find the 

propagator with the exponentially rising imaginary part. This 

problem was solved in nonpolynomial field theories, and such 

propagators ( or, strictly speaking, their Fourier transforms 

into momentum spaoe) are usually called superpropagators x). The 

principal value prescription corresponds to constructing the 

minimally singular [ls] superpropagator having Eq. (10) as its 

imaginary part. 

h...§~!2!L.2L~-1!.!.2!!....!'g!!at!2P_fil!9...J!12!!...g~£!~ 

Using this recipe one can easily calculate the Fourier 

transform of Eq. (12) ( this result can be obtained using[171 
Chap. s, Sec. 5, Eq. Q.2), and analytic continuation in 

plihie): 

x) For example, in the theory with the interaction 

a-

;J.. = G: 'F 'I' €){ p (:J er+ If) I where lf is the massless charged 
scalar ( or pseudosoalar) field, the superpropagator <....T.t.('t)i.(o)) 
is proportional to ~~('t't-a4)-1.~, where a"=9/41r ( see[l9] ). 
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V[<p-c1.J'.] = r J4l'. ei(p-•j,)'l. U("t) =-11T2 f2 f-7Ta. lr-it-
1 

Y1 (a.lp-41), 
(lJ) 

where -Y
1 

is the Bessel function o! the second kind. Now Eq. (2) 

for the pion vertex can be written 1n both coordinate and momentum 

representations. The latter is more convenient for out present 

purposes. Writing Eq. (2) in the Euclidean representation (- p
2 

= 

= p'- p
0
2 =? p2 = p2 + p~, ;J't- 0~ -ol<J,.,) and putting 1n it the poten­

tial (lJ) we obtain after performing angular integrations 
x . 

F()() =i7rf2{ \o~ x-J.~2(1t-rr2f.i't'J.x)J1l~) F(~) -t-

+Til~ x-1~2(~z+f2y1 J1(x) YJM) FC11)}) 

(14) 

~ 

where 

x= pa,, ~=ii.a. , f = Mcii, F(p2
) = FCxJ, FCit.n ==-F(~). 

This integral equation is equivalent to the differential 

equation for u(x.) = x1
h F(:><) 

~2 +- [ 1 - t.t ()l.Z T }'-2.)-1- - ~ x-2J l,l(J() = o, (15) 

with boundary conditions 

XV' U(X) -0 )I. -+0 i U(.X) ~XV' ]"1(><.), J<_:,.oo. (16) 

The :ell-known ~ormalization condition for XK (P) ( see [
5
-7]) 

and Eq. (1) define the n~rmaliza.tion condition for u(x) 

00 2. Iclx u:'-(x)(X.z.+f'A2 )- = 811".z.. (17) 
0 

We have solved the equations (15) and (16) by using WKBJ 

method x). For f=O the analytic solution evidently exists, which 

was used to test the WKBJ approximation. The eigenvalue problem 

( Eqs. (15) and (16) ) has the discrete f 2 spectrum. Por small 

~~=~~alues of f'- the WKBJ approximations for f L are: 

x)All numerical results were obtained in collaboration with 
D.Mavlo, I.Puzynin and N.Truskova. 
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t 2 == N(N+i){ i + t J14 2 f f'lcfl/t-2) +1r1 + ocµ"> ~, f'-'<<1, 

f 2 ='2Nf4 -tN 2 +orr-J_), f" 2 »i, (18) 

where Al= l,J,5, ••• , and the lowest eigenvalue corresponding 

to II/= 1 is to be chosen to describe the pion. 

To obtain further information on the parameters f, a 

and Mc we calculated [(Tr-'>f'V) and rrir~n) by using one-loop 

diagrams Fig. 2. For CC~ f1V transition the nonrenormalized 

V-A vertex was used, and CC....,,."//'tf transition was approximated by 

the C-pole diagram w1 th bare . Cl t vertices. The reaul ts of the 

numerical calculations of r (lf -+ )' V) and r(rr ~u) c with 

WKBJ approximation for CCJr vertex) were compared with the 

exper1mental values taken from PDb[l5J. Combining these with the 

eigenvalue conditions for 1t we can estimate all the parameters. 

The results are the following: for C particles with integral 

charges 

a. ::::: ft. 2 Ge V -i,, f 2 
""" 8 , Mc ""' 0. 9 Ge v, (l9a) 

and for fractionally charged C ( quarks) 

CL::::: 5.4 Gev-J. f 2 -:::: 10 Mc ::=.0.4 GeV. 
> J 

(19b) 

These numbers should not be considered too seriously, due to the 

approximations used. Nevertheless, the value of a. is consistent 

with our mass spectrum interpretation of the U- potential. 

In the above discussion we have ignored the spin and isospin 

structure of U • Now let us briefly discuss this problem. In 

meson models with nonexotio quantum numbers the great degenerao7 

of levels, leading to the exponentially infinite density of states, 

is due to daughter trajeotoriesL12J. Then, the highest trajectories 

( f and cv ) with their daughters give the main contribution 
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to the potential ( assuming all CCR ooupling constant of the same 

order) determining its spin and isospin ( or 5~ spin ) 

struoture x). To treat part:l.oles other than the pion a careful 

analysis of .this structure is necessary. In particular, we have 

to explain the absence of tightly bound CC states. This will 

be discussed elsewhere. ( With vector foroes this could probabiy 

be explained). Here we only stress one of the unusual features 

of our approach: the dominant part of the potential is oonnected 

with highest tra~ectories ( as in the Regge theory) rather than 

with lightest exchanged resonanoes ( contrary to the usual 

dispersion ideas). 

Above we also ignored the finiteness of range of forces wh1oh 

glue constituents. In fact the forces correspollding to different 

structures 1n Eq. (la) may have different radii. For example, 

the range of Vp must be greater than m;J. whereas that of Vv 

is ~m;1 c correspondingly, G'p(m 2 )=0 for m<m,,. ande'.,(mt)=O 

for m < rn1 , see Eq. (4) ). As far as we consider only tightl,,, 

bound states of C and C ( like Jr or p ) this does not signifi­

oa.Ifti.y influence our results. However, for more massive states, 

or for possible bound states of two C-particles ( which we have 

to forbid) this is quite important. We can understand this by 

considering the shape of the potential. From Fig.J one can see 

that in the "attractive• case ( Fig.Ja)the effect of thes.hort 

range on bound states of the potential is not crucial but for the 

•repulsive" case ( Fig.Jb) the situation changes drastically as 

tightly bound states may exist only for very light constituents. 

x)Therefore, one may suspect that the potential is dominated 

by the veotor ~rt» 'I" structure. 

14 

The easiest way to demonstrate this is to consider the Schrodinger 

equation 11.':[z2 1-lJ('L)]u,where .it 1 =M:-~S'. A tightly bound 

4 .1. <. 
state corresponds to !> ""- Mc , i.e., £"'Mc , but in case b) 

the eigenvalue J!.z must be small. This gives us a possibility 

of explaining the absence of CC states by assuming "attractive" 

vector interaction between C and c. The problem of the existence 

of CCC bound states requires much more delicate considerations 

and is not discussed here. 

2.:...l !I!l!gp ...1U'2.l!!!!iil 

SI 
Here we briefly discuss the fermion propagator F .consider 

the approximate Johnson type equation for s'f which in the 

diagram form, is represented by Fig.4. Suppose that the bare 

fermion mass is zero, and the phisical mass is created by the 

virtual emission and absorption of the resonances, effectively 

described by the superpropagator V[-(p-•ill ( see Fig.4). The 

propagator s~ has the form 
I\ .1-1 

S~=[occ-p2 )-p13C--p2 )J , (20) 

where 01.e0 and ~""1 for the bare propagator SF, and the 

scalar functions ix. and j! satisfy the equations (-p'-. p"-) 
Ew.ct. 

1TQ. ( d4q, 0( (q,,2) 
e!.(pi) =-TS"' ){21d «2+~213.2 

na.. r a'iv ~cq:') 2 

~(p2 ) = 1 - T \ (2n); 0< 2 +q,1 ~ 

Y1 (a.lp-q,!) 

lp-q,,1 

Yi.(a_\p-q,I) (P<f,) 

/p-q,,I q,Z I 

where ~~ = Z c; f.: 
l 

ta = L £~ \ i 1 
( i = s, f', v, A I 'T) 

! 

"P r" !.. -- E P - f 5 ls = t"' = E,. = - i ' 
L p. = LOI = - I' - I' ) °' °' °' 

t. " = £ A = i/ 2 j E ~ = - 2 I 3 
I' ~ 

(21) 

(22) 

(2J) 

These nonlinear equations have a solution satisfying the boundary 

conditions a:-+ 0, ~~1., p'+oo. Then, by iterating Eq. (22) one 

can prove that 13(pz) may be represented in the form 
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-i ( -s;,_ 
13(p:i..) = 1- fl' [4TT2 a.2 pzJ + pa.} Uz(f>a.). (24) 

Introducing the notation 

()((p2) ==: (ptt)-312 u,(pa.), (25) 

and neglecting the terms -u12. and -u; in the denominators of 

Eqs, (21) and (22) we arrive at the approximate linear equations 

for u, and u2 , which in the differential form are ( x =pa, 

1,=-{ .. /4,,-2, f.,_=-f,.!'111 2
, Jl'l·2 =2f.._): 

(26) 
u;' + [ t ---t, (,x 2 -r fl'l'ri -f .x-2 J upo = 0; 

II [ :L .l - f f !) -2.] ) Ll 2 + 1 - h_ ()( -t-.f') - LJ X U2 (X = 0 · 
(27) 

In deriving these equations we have neglected the nonhomogeneous 

term ( in Eq, (27) ) of order -x-~~ The boundary ooniitions 

for Ll1 and u:t are 

u, (x) ~ X Vz Y1 (J<..) , 

u' (:X) -- 0 
' 

Ll
2

(J<..) ~ XVz Y
2 

(x) 
1 

X--"> 00) (28) 

U 2 (x) - 0 )( - 0 J 
J 

illunediately follow from the linearized form of Eqs, (21) and (22). 

The solutions of Eqs. (28) and (27) give a good approximation ...... 
to those of Eqs. (21) and (22) for large x and not too much 

deviate from them for small x • Therefore we consider the 

solution of the linear equations (26) and (27) as a reasonable 

approx:l.~ation to the solution of thenonlinear equations (21) 

and (22) for all x x). The solution of the linear problem 

was found numerically ( in collaboration with I.V.Puzynin) and 

the result is 

.f,=&.35 h. = 9.25 , ~ = 4. 30. (29) 

N0 te that the possibility of determining the parameter fA. is 

due to the relation between fl and fz. resulting from the 

nonlinear nature of the original problem, 

16 

Let us disouss the physical interpretations of the solution. 

If the coupling is a purely vector ( or axial-vector) one,Eq. 

(26) is identical to the equation for the massless pion vertex~ 

if r-i-Mea and f 1 = f • This is a oonsequence of the general 

theorem on the spontaneous breakdown of ts- symmetr;r[2l] ,if 

the pion is treated as the corresponding Goldstone particle, This 

interpretation is strongly supported by the striking coincidence 

of the parameters f 1 and JA given by Eq. (29) with the values 

given by Eq, (19a). Therefore it is not unreasonable to suppose 

that c-partioles are something like bare nuoleons, as in the Fermi­

-Yang mode1f22J, This conclusion is supported by the fact that 

CClT coupling constant ( i.e., F (-M~)) is found to be of the 

order 20f25 ( this result was obtained in collaboration with 

D.Yavlo and N,Truskova) and favours the vector forces giving 

the repulsive oore of a radius a.. ""- 0,8 fm. for CC-interaction, 

~hioh in qualitative agreement with nuclear physics data [2Jj, 

2w.C?&~!!.!Hl 
Finall7, we mention another remarkable feature of our model, 

which can be tested experimentally: the pion electromagnetic 

form-factor G .. (4~)has oscillating terms in the space...J.ike 
:I. -..:i. 2. as7ffi~totio region q,r = <i-t + 'h-1-+ + o0 • We have shown this in the 

static non-relativistic approXimation for 6-,,.- in which ('r.,=O, -tZ..t') 
00 . -& 

G ra.2.)- ( J.,_ 2sc.n (~t't/2) it-2("t.) = G (a2.) +c.(~,a) 'c.o~C<J,a/2.) +: .. 
ir~'vr - t <i-'l. o rt 

where G
0 

1s a amoothl7 decreasing function of 'Vi , determined 

by the behaviour of u.<'(> near 't=O , and the second term 

W~~,L.1nfinite barrier at 't=a.. x:~ For our potential 

x)For potential with a marginal singularity or for regular poten-
1-J ) tiala there are no such oaoillating terms (see, e,g, • 
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II 

8, oe J and c1 is of order 4+5 ( for M.,_.., 1 GeV). This a11111pto­

t1c expansion is valid for ftt'ra. »I, or 'Vt~ o. 5 GeV. The static 

nonrelativistic approximation is of course very orude but the 

principal qualitative fact, the existence of oso11lations with 

the period of order 1 GeV, survives also in better approximations. 

The experimental discovery of such osc11lations would be a very 

serious evidence in favour of the composite model disoussed above. 

The approach to the composite meson models presented here 

was proposed in refs.[241. The author is ~reatly indebted to 

N.N.Bogolubov and V.A.Yeshcheryakov for their constant interest 

in this work. 

Tb.• author is also greatly indebted to Drs.s.Gerasimov, 

A.Efremov, V.Ogievetsky, L.Ponomar~T, Ya.Smorodinsky and R.Faustov 

for useful discussions and comments and especially to D.Mavlo, 

N,Truskova and I.PJxzT!lin for fruitful collaboration. The results 

of §5 were obtained during the visit of the author to the Rujer 

Boskovio Institue ( Zagreb, Yugoslavia), the hospitality of the 

Theory division staff of which is kindly appreciated. 
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