


G.Motz, E.Wiqczorek_

' ELECTROMAGNETIC NUCLEON
'MASS DIFFERENCE, SUM RULES

E2 - 7921

FOR DEEP INELASTIC SCATTERING

- AND EQUAL TIME COMMUTATORS -

Submitted to Nuclear Physics

E%’jéwﬁ?:heﬂuml RHCTITYT
| crerEHX BecieRonArHd
ey A EH AT LA



1. Introduction

Beth the usual approach to deep 1nelrastio eN soatteringl.l]
and the theory of electromagnetic mass corrections of nucleons

leading to the so—called Cottingham ,fomula.[z] .
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Electromagnetic Nucleon Mass Difference, i are based on the one-photon exehagge approximation.

Sum Rules for Deep Inelastic Scattering When taking into account the experimental results for deep
and Equal Time Commutators c ‘
inelastio scattering there arises the possibility of a quadratil-
In one-photon approximation the connection between the ! : : R ) ’ :
finiteness of electromagnetic mass corrections and the S cal and a logarithmioal divergence in the expression of the
light-cone behaviour of' the product of electromagnetic
currents has been studied. In the canonical case the com- ; :
plete removal of divergences ledds to two sum rules for the ] consistency oonditions between the above-mentioned two approaches
scaling functions which are .equivalent to vanishing of
certain equal-time commutators. Using the technique of the

Jost~-Lehmann-Dyson representation problems with subtrac- ep-respe. en-— scattering into the virtual Compton. amplitude of
tions are avoided.

mass difference. Therefore two sum rules are found-as the’
inserting the automodel or soaling behaviour of deep' inelastic

(1) and deme.nding finitness of the resulting ma.ss difi‘erence.~

Preprint. Joint Institute for Nuclear Research. During the last ten years many authors have studied the

Dubna, 1974

pn-mass differenoce, respectively its divergent parts only,
obtaining quadratical or logarithmical eiing r;ules._ App;ying-a
Wiok rotation to the Cottingham formula they used dispersion

t relations for T «(y,r) at arbitrary, fixed q? [3] As a rule,
‘ however, these dispersion relations contain subtra.ctions, so
that further assumptions are required, in pa.rticular about the

I- number and the qz-independence of subtractions. In some cesee -
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" these additional assumptions influence the iinal»structure~ .
of the sum rules. Other authors investigating relatiohs between
_the mass divergences and some equal-time commutators have used
‘Aintegral representations for the virtual Compton\amplitodetl 5]
They have not succeeded, however, in establishing a unique
relation between the logarithmical aivergehce and ETC.

In en extension of an earlier‘paperXS} we oill etudy~the‘m
connections between finiteness=of the electromagnetic mass - i
corrections, scaling behaviour and ETC applylng a Dyson-Jost—
~L,ehmann representation[7Jfor the scattering amplitude of virtual
COmpton,scattering'iniforward direction.»Asbasictphysical assunp-
tion which 1s suggested by_experiﬁeht welchooee the canonical
1ight-cone behaviour of the,current commutatorr » -
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For the structure functions \/ (1 r,) of the current commutator

defined by

Wistr,0)= & '.%"Pi SC<psllpejolipes
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the ansatz (2) 1is equivalent to a scallng behaviour
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In the language of the parton picture we take into account both: .
spin 0 and spin 1/2 partons, ‘ ’
Under this assumption we established the following sum

rules A
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which guara.ntee the complete removal of divergences . from the

)

expression of the pn-mass difference [¢ a.lso in that case when
both a quadratloal and a logarithmical divergence exist).In terms
of ETC the first sum rule is eq_uiva.lent to va.nishing of the

operator Sohwinger term
2 <ps II ?nfx} Fo0] l P6> =0 @
(1 spatial (index)._v
In addition we have found a . unique rela.tion between the loge-
rithmical sum rule and va.nishing of a more eoinpl’ica.ted EIC, .

namely,

() | ‘-“(7)

S<rcl (D(gkﬂ'.(") +‘v‘.,y,<m) am}zc Seer =0,
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We remark, however, that this latter eq_uivalence holds onl,v if

fd‘f F"[ué‘)-ﬂ, espeoia.lly, if there does nut appear a quadra—

tic divergence from the beginning, l"..,(f) 0, 1.e. there ‘are

no spin O partons.



II. Scaling Behe.viour in the Ffamework of DJL Representation-

In the ome~photon exchange approximation deep inelastic
scattering 1s described by the invariant, causal stiucture
functions V" (7{p)5o_r\”‘-(7(,>)of the- electromégnetic tensor - °
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For the measurable struoture functions W the sce.ling behaviowr

reads

\A/ (V ) { ) Y v ? (’) E L L K . (9)
1 fo 5 Y e 2[,? ..)rao

-1
| S{ % fixed.
) The scaling functions of \/\/‘» and -V’ are connected by

Chotr) - A& - 4{&]

RCURS AS R S )
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Am ’% 4. (3)

Bogolubor et al.‘[.ajproved the caueelity @ these structure
: ‘ft'mction's so that with symmetry and spectrality conditions they »
B could use a Dyson—Joet-Lehmann integral representation for each -
- of the structure functions Vi (qlp) [w,H\ f (4 0,0 o))

Vi G/ =\!ﬂ“ AN &64,) S(%%%’“u’) Suts (2 )“'Hm)

with

(R, Q%) Lled , \*= (‘,(_fr_‘fz‘f 2

On this basis they considered the structure and scaling -
functions as tempered distributions of ? o In the sense of
convergence in the space of tempered distri'butionsl9]the sce.l-
ing behaviour of the etructure fu.notione 1s defined to be ‘the
limit of the sequenoe of integra]‘s fd\f 4(‘?‘) V(v ‘i’) for V-5 0.
with arbitrary 4 6 S '

To cbtain a definite scaling behaviour the following suffi-
cient conditions for the spectral functione of the DJL represen—-

tation have been formula.ted
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reapect to ,P « Note, that conditions I and II. imply a
olassical behaviour of ¥(¥,\*) for large (\? « These
sufficient conditions lead to the following scallng behaviour

for the struoture functions e
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In eq. (14) the nota.tion of generalized derivatives

oot ) o= 7
e PR oo
has been employed[g] b3 Y, ({‘;l) -1s defined as 7

Jl? Yo (151) 5) = jdy s25 () O Ien o
9 e S

Let us consider the structure function \/1{\4 ¥) with the scaling

behaviour

\/«(vl?")"fvr T ohe(r)+ 4, M(%j

Here ho(f) 1s determined by case II ( eqe 15) with $=op.
The determination of Lq[»%} reqnire's‘ further oonditilons for
the spectral funstion in comparison with (12), (13) ( see

Appendix :'). In our speolal oase (s = 0 in (13) ) we demand

' Q’%ﬁ?f‘*H«“f)‘—'“?Z(d)G(u\‘) + 'Y('T,°‘l) . - (18)>
with o : ‘
G, X G) = Xi(R)#0 o

From the analysis of Appendix we. get -

1 ‘ ’
he(s)- 22[6(3’? ¥ (#) (20)

‘and

h(5)=2: 1> ;c,,(m).qu C(f.P % 0091) vz f dssy, (/r/)(f J/
+?u}'>((f?/§

(21)

III. Derivation of Sum Rules

Based on the idea about the electromagnetic origin of the

nucleon mass difference the Cottingham formula (l) determines

the electromagnetic mass corrections in terms of the amplitude
for virtual compton sca.ttering in forward direction ( for proton—'“
and neutron, respectively, ,ave'raged over nudeon eﬁins)'
. - R . -~ R 4 .
Ly . . 1 K ; (22)
’ : = - .0 .
T an=%3 o 2 (pc/ t (ergvn))[Pg)

, Obviously the ‘behaviour of (rc»(% p) as p 0. s important o

»for the _oonvergence of (1), A more detailed a.nalysis shows )

that - just the 'belnviour in the Bjorken region and the properties
of the scaling functions are crucial for convergence. s

\'Ie remember‘-lo] that the T-product of (22) contai_ns an

: uncertainty at ¥ e

.= o o _
T(dr(k)jvlﬂ)) 9(~¢)7r(~)4\,u)fQ/xf)fv(o)gr(«)f Q,W(x) @

We choose the unknown quasilocal terms Qr\,('x) 30 ‘that the ‘
T—amplitude becomes gauge invariant. Then assuming canonical h

light—oone behaviour ( eq. (2 ) the following DJL-representa—

. tion holds[u']
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with

S SR C T,
T = fJade SHE
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The '}Li[ < \X" are the s’pectra.l flmctions corresponding to
\[‘(7'f/ . Canonical 1light~cone behaviour { egqs. (2) ) can be
reproduced by means of integrable speotral functions Y '(M,..U‘/
( see eqe (13))." To simplify the following oonsiderations we -
w111 assume these sufficlent conditions which, as omne knowsl.lz] ’
are not necessary for the light—oone behaviour ( eqg. (2)).
Theﬁ the representation (24) converges without any subtraotions.
As a matter of fact it 1slpossib1e' to obtailn all our results
without such an assumption, analysing the 1ntegzal (1) in x-spa~

ce ( see final rema.rkin section. IV), : .
:Inserting eq.(24) into eq. (1) and apolying two partial
1ntegrat10ns we get

-y ". ’ -———L—— -2
W= ﬂlu J«k"{yp_)["d )J‘”? 2[’. g{‘ia‘?:}z lz*l] f z[‘:n ->~)1J |

25‘)
(l) [u ‘,\1) are the seoond pr:Lmitivm of the spectra(
functions ‘Y (IT;A?') with respect to A.z .
Now the g~integrals in (25) converge and show the following

where the 'Y’

behaviour for large values of A\
; 34%
g , 3
I PG .2'*

- Co2p i -
Ayy, =1 "% 31-2 @
fd_[{ (7%“’}[7 z_(' ?)"-«1‘\»10]3 "'" 0(}“) o

The asymptotlcal behaviour of the spectral funotions
for large ‘)‘Iv was { see eg. (13), (18), (29) )

10.

= - EF_Z’,(: ' »(26)‘

Yoy (%, wr) \2+X(

; ’\{'(z)("""‘zl'\"}"oz(“-) - ~(28)‘

This means that the integral '(25) ‘contains both a logarithmic
and a qua.dra.tic divergence for large &2 )

Sm 3% f,w da’}[‘r'z-r’).m X{ )](t z}w‘(u)z \z} ﬁJ’clu (9)

We demand finite ma.sa differenoe, con.sequently,
fc(u 'V‘(M ) 0 y . L
lales ’ o 00

f:(u [Vz(d) 2%(“)] 0
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Let us express these conditions in terms of the scaling funotions

h; (%) mo ‘this end, we apply the relations ( see.eqs. (15), (20),
(22))oconnecting the spectral functions with scaling "functions

Lw)%J%pnwm
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" Now we rewrite the conditions (30) into the final form T
t () S o
fds bo(5) = e,

7o

pw / (33
f4f [Y L (\:)+; Yl m-n,/s;j .
The first sum rule gua.rantees the ve.nishing of" the qua.dratio
' divergence in (29) and the second sum rule does so for? the ‘
'logarithmic one. So the divergences in the expression of pn—mass

difference are oompletely removed. o

In terms of the structure functions W4 ( eq. (9) ) rela~

tions 3 read

ﬁ(?[ wf (1) 9; /fm](”" o e

f 7{3 m ?(n(fj ”',(n 9,3 (f)J(”‘"

We .see that the qua.dra.tic sum rule contains 1eading terms of
{9) only. Therefore one can try to compa.re 1t with experi:nental
: ’da.ta. ‘The seoond sum’ rule appears ‘asva ‘relation: 'between lea.ding
and nonleading terms in (9).

We derived the sum rules taking into account the general
case l\ (’}')== %[%: {J?}n{,(’?)]#o From experimental potnt’ of
view it 1s not exoluded that L (?).._ Wi that means

>v~(v%)~_z1(s; Cand L /v?)ﬂ {«m

n this case there is one sum rule only. removing the loga.rithmic

":i{,-

'divergenoe in the expression of pn-mass. difference [ll-g [6]

12.

el B

. Aseto the mathema.tical structure of the sum rules (33),

note that they are well-defined without any . fu.rther ad . hoo

rHY

regularization ‘taking into account that ‘the. sca.ling functions.

involved are defined as»distributions. It.1s well-known., for
example tha.t the. sca.ling funotion "LL(?) at f.- 'beha.ves
like PV f [13]( eonstancy of: the total cross. section of . real '
Compton sca.ttering1). The smgu:l.a.rities of the. other sca.ling
functions are unknown although the symmetry conditionS. h(!) '-tl [3?)
a.lrea.dy lead to :some restrictions. Inithis connection it should
be~ment:goned'~thet:‘d‘ivis_ion by «»‘f’_;‘t,fin‘. »lequationsu (32):,'§nd (34-)
by no means: g:l.ves rise ~to incertainties. since.the scaling 1ifmi:ts;:
'is oonsidered in the sense’-of distributions. . .. - 5 ilen e
.+ An-actual, prohlem is the. possi'ble existence of. singule.r
ogntrihutions of the type S i (Zf} ~ 5(u) )f L)~ J‘(?}
(")~ S$(¥) or. 3/7)

which are not measureahle in deep lnelastic scattering-but" y

o see eq.”(28) ) -and:-oorrespondingly .. h

nevertheless can contribute coneiderably to the eu.m rules.

o F o

The dynnmical origin ‘of such terms wou:l.d be Feynmen dia.grame

. without discontinuity in the s—cha.n.nel. ‘The missed experimenta.l

information oould be obtained_-by measurements,of;pompton pa.ir, -
produotionﬁ;?%+~N‘—'9;¢N,f'?r:?rf},f- B L R A TR

shal RS A R e e R SRR 1oy .Y,m P P

IV, Sum Rules in Terms of Equa.l-'i‘ime Commutators I

Connectlons between divergences o.f e1ectroma.gnetic mass

corrections amd ETC ha.ve been studied by severa.l a.uthorsD-] HJ[SJ

,At first 'Bjorken has established in 1966[3]that ‘some ETC determine

the contrihution from virtual photons of very high momentum to e

I e -

o

|3 Sy



the electromagnetic mass divergences, ‘The quadratio divergenoce

‘in the pn—mass' difference vis*kn'own to be connected with q-number

Schwinger- terms in-the commutator of charge and current density.
As far as we know the loga:rithmio d:lvergenoe was studied: :

in that oase. only, when the qua.dra.tic divergence in the expres~— -

sion of mass difference does not appears Cornwall: and Nortchts]

Qe considered the ETC of current density and. its time derivati-

‘”ve, whereas “Boulware and Deser[4]discussed the ETC’

L2 /}'k[x) A tole) s qk (0)] ' with k ‘spatial index.

Tn order to rewrite our sum rules ( eq. (33) ) in temms of
ETC it 4s neoessary to formulate the relations between soaling
'beha.viour and light-cone singularities.

The scaling 'beha.viour found for the Fourler transform of the
ourrent commutator in the reglon Y =2pg—>co 'f— -7/
ruéa, is uniquely correlated with the ‘asymptotical behavmur

of‘ the commutator
WV[X}f)a- 8:. Z(F,G“:ar(") a’v(o)Jlﬁ‘>

a:(g,.dl 0, 0~)V4{" P)*[Fr?«u*(ﬁ-w‘fl’«apx"a) ?ri(f’a).]'vz(’(f)

near the light cone XZ?=0 s, 12] .
To obtain the light-cone behaviour of a structure funotion V( xp)

(35),

we need the Fourier transform of the DJL-representation for the

structure funotion V(e( el B
(36)

‘ V(x,f )= f,,uz A Dl ]
) with » . . _ )
-D[’f,»\ ) = (.2.: Fff(ti £ 5(70} S}‘cl 'kt (37‘)

A(*Jt )= fd e“‘* YR, \i)

91145’ i Kz a2 by
P, L
N 3‘/ )

For struoture functions of type II(eq. (13) ) one getSLS]the
light-cone 'beha.viour

Vs = W6f~=w~»(xe) o

= b 49? 8)

where

C ("c)-— [{tfdff 0“":"‘ qu{f) ¢2=;(°sz1%%9.\(40)‘ -

Especially, for \/,(x P)‘ >{s:4) :

1

P (41)

Vi (’< P) N m.z G, (xc) Etmo) BOX2) g
with_ Lo S , .
Gz("o) = [fk' _f"‘f? -———m?‘:x" ’5‘: %) . ‘ . - 42

In the ocase of \/{ p} we have to evaluate the next to
leading singula.rity. From our anse.tz  eqe (18), (19) )

Vl(f!"w (W(S’) S(v\‘) + 9& A, 4% ' ' (’4k3)‘

and , | |
Dix\) ;L S(K.)S{x‘) 2L. f(,wé(xz) £ 06 ;("44)

we get finally o |
Vitat) =gy Gt ecir~ 2, Gy 9{#) (45):



where

<

" .
- = ¢ M Py '
G0 o [d3 Tnbr e
o Lo (46)

G le)=yn [dep P08 o (o)
. ’ . [/ -

,)(c_

In such a way we have reproduced the 1light-cone behaviour of the
current commutator from eq. (2) relating the G' ()(c) to the

asymptotical behaviour of the speotral functions. Relations (31),'

(32), (46) constitute a definite connection between the soaling
functions a.nd the coefficient funotions of the light-cone
representation. .
. Let ﬁs now discuss the quadratic sum rule glven in terms

of the spectral functions (eq. (30) ) ’

- 4 . . .
. 21 47
jd}"} 1{‘_(‘;)‘;_—:’0 ‘ .
From eqe. (46) we get ’ )
(48)
Q) =

We see that the'quadra.tio sum rile is equivalent to Ga(o}:o
In the following we use the formulae

Y LEcasonly o, = 2=dee)
’ f)D ls(‘e) e(kl)j/korc = (0 ,
' D [ 5(“0] 9((2)] = [{ (c(Ko) c')‘(,('t/

(49)

and obtain at once

/%

The removal of the quadratic divergence h the pn-mass difference

Z(P6|[3 (r)j /o)]lrg)» = 4‘3( GG(O)‘Q"'S(»?)‘ .. (5o

1s therefore equivalent to vanishing of the operator Schwinger

“ term !

E‘(p,sl[at'o(z),@';fo)][ﬁ5>/ =0 1)
5 ) d X, <0 . St

°

To obtain the conditions resulting from the logarithmic sum
rule ( eq. - (30) )

ftff‘fzi’%‘ (t)-2x(1)]=0 O
which is equivalent to . - ' -:
-GZ(O) —'?G,((o) =D (53),

we ‘oonslder the commutators

WBL3 ), @] wa9D[f 00, 4]
From eq. (2) we get ’ -

T‘RGILND 4ot frfoﬂfro £ 000 T, [6, )z Sy iope]
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,_

L 80 Lokl 52) s o 6L ) 0 /0)5(( )] | <54,>’

=424 Go /0) O(DL\S(K) ""‘1 D,og é(k)[G?(u &'4/027

and for a3k

E <(=,sl (%D gk(x)g mj“;‘>

2‘ (D( vk 9 a [‘f 65[9)5[&)5(1(‘){- G,(x;,}é'{'q) B[r‘)j (55 )
= 24 GCII(U) a,ox( gf:() +(‘4 91 S[x) G {0)

7



Finally we obtaln ’ . ) Obviously there As no equivalenoe to expression (53),even if C Lr.) C.

;4(96[ [ﬂ(pqu(f) t 90,3;“(,()) , 3‘,’.10):( l r6>/x< o = The ETC m"&k(')d. (0)]/ mentioned in ref.Dﬂ-'I is essentia.lly

56) ,
2 Cet 9 g c. ( identical to Eq.(58) since from Eq. (2) for k*t a contri- ) .
-_ ‘(’ r [0 _— . . ) s‘:;
A e ) K ( ) l“ [( {o) 26’ /°)j ”“"‘\ e(x ) ‘bution of GL(O) does not appear.A,gain there is no equivalenoe :
If there 1s no quadratic divergence from the very beginning, that looked for. Tee . : S

_ means that Qalo)= 0 , ko(¥)=0 ( or in other wordsy 1f there But,in general,a quadratic divergence has to ‘be supposed

are spin 1/2 partons-only) we bave (57) " in the mass difference and consequently G (0) *0 R SO

= ) : this general case it turns out to be impossible to express the
YZP*» l[n(akgc(«) nsg !K(\()) ?, (o;][fa> -‘h [G,(c) ?6 /o__}m v '
. ‘ logarithmio sum ru:l.e (52) by means of a.n appropriate ETC

Under this condition the vanishing of the ETC ( eq. (57) ) 1s ( because it is imposeible to separate the term with (.\ (u) ‘

by mea.ns of higher—order time derivatives ) Suoh an equiva.lence

pn-mass difference. T L T . vwith the ETC of Eq.(56) would ‘be valid however,if G (o,-m&\zx htﬂ) b
Let us compare our result with those of [4], [5] s where - - EI

equivalent to the removal of the logarithmic divergence in the

P

the following ETC ha.ve been considered ' ‘- : \ R L e R o
As has already-been remarked there is another approach,t

f“/(“’ [? ’gk(‘) 6’k(0)] P6>Af E — ; o (s8) . . o to our.. results ‘whioh avoids assumptions about classical
= ?_ Dc(ﬂtpk )[‘(é {x,)gg + & (xo) Sejﬁ(-a + % [Q,{(,);gj/k ‘o : . asymptotic behaviour of the spectral functions. o
- & é (o) B‘u S(x/ 4_,(24 (r 7o) 5. : - ~ Starting with the singularities of the commutator,Eq. (2),we
and ) k % (i()q‘. f(:[é,,(c) 62(0)] S(x.} immediately get the singularities of the T—product near- the
'Z( ¢ e ’ 1 light oone taking into account the correspondenoe
ee ] 'c?xgr (x) 1k“’)”f">/» W= 9 . 7 o™,
' L %) &xny - -
Z Z CK 9 [(\‘6{ (K:)E.S t G,(KO)SGJ/ o 2_ 9 3 [(‘ (’")593/ ‘ and ' | : Xl
. i o ’ Exa Gy —> Loog (xr4i )
= &, )2 g(»(), , ‘ G T
[ Consideration of the Fourler transformed. Cottingham integral
The ETC proposed in ]is the oombination ) . o
: > . v
Z"/ Pl L0 f %)= X #e m) 3k lo):HPOA = ey a { ,f:o Vv 9

= 24 64"0) SR + 44 §< ) [G,/o)~6;/o/7 CREERE B




shows that the divergences now arise at x,‘—o +Analysing this integral
in Euclidean metric we' directly derive Eqs.(48),(53) as the _
neoessary comrergenoe conditions.Obviously these conditions :Eollow

- without any assumption about the. spectral :Eunctions. ]

In order {o get the sum rules in the form (33) it is useful
to refer to the technique of the quasi—limitc uwhioh establishes
the asymptotic beha.viour in the ‘Bjorken region ( i.e.
the asymptotics of the funotional Hmvwn dx Cfor v— o )
starting from the singula.rities on the light cone if oefined in
the sense of the q-limit It 1s crucial that the oon.nections '
between sca.ling funotions »"\’.‘553 and coefficient functions G:(x)
given by Eqs.(Si) and (46) remain true in this a.pproe.ch_and
therefore allow t‘o‘rewrite theoonditions (48) and (53) in the
. form (33).0ur deriva.tion on the basis of the restrioted class
of spectral functions ( thls one oconsidered in ref. [42} is
& more general class ) has’ been chosen for the reason' of mathe—~

matioal simplicity only.

The authors gratefully acknowledge the fruitful discussions,_
with A.N.Tavkhelidze and V.A.Matveev. ' '

Awéiac_"_ ST e

To £ind the mext term with ;4—1_ _ in the asymptotic beha—

i viour of struoture functions

(A1)

;\4(»»,; ~ L(?)* mé ([)

we make the a.nsa.tz

(L(g“,{y.\z Y. (s &[‘\1)1,\/(SL(1) with /Y)/S"(z)"Y/?) (A'Z)V

This condition for ‘X(S*\ )is caused by the. assumption we made
that the next term in (A.l) decreases by an integer power in

comparison to ’;H Lo (%),

On the ‘basis of condition (A.2) we consider the scaling 7 ¢
beha.viour in the framework of‘— _Sas a’ sequence of the distribu~’¥’
‘tions-structure functions in Y- ~with .\{(}‘) as a test funotion

of S‘ We' get. the decomposition :

Javende = T+ 30

" The integra.l e ’ ' o »

‘} (V) J;[ff' (f)ﬁ{u(?j:{f ‘((BHL 43”/‘ """ A+ f)[v’u (Snl]/

"[_6,, _6 2 expressions which remain bounded fory~—>'f MJ/

we evaluate in an analogous manner as 1T was done in the case )

" of speotre.l functions in[B]with 1” c ’ taking into account

additiona.’lly the (s+1)—deriva.tive of .‘{(F, and all the terms
which contribute to the next order in 47 . We get

= 3 [ 4/r}}[mmnj e [337.,(131)1 |
I wm)](“’ ““”[:« ’/o(lfl)]“ "f
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