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Introduction 

States of a quantum system are described by normaliz
ed rays (or wave functions) in the rigged Hilbert space 
H with positive definite metric 'Л in thecaseofnonrela-
tivistic quantum mechanics a representation of theGalilei 
group is realized in the space J( . The requirement of 
relativistic invariance means that in the space И there 
is realized a Poincare group representation , / 3 Л 

The nonrelativistic quantum mechanics is now a well 
developed scheme, effective in describing the atomic 
systems. This is due to the fact that the Schrodinger equa
tion exists and the way for introducing the interaction 
potential is known. 

Analysing the two-particle stationary system on the 
basis of the Schrodinger equation, after separating the 

- t 

variables into centre-of-mass coordinate X = —!— 2 and 
-. , 2 

relative coordinate r =x i - x a ' it can be found that the 
dynamical infromation is contained in the wave function 
of the relative motion. Thus the two-particle problem is 
reduced to the problem for one "effective" particle in a 
potential field. 

In the space of "relat ive" wave functions unit repre
sentation of the Galilei group is realized if one is not 
interested in rotations. This also holds in momentum re
presentation, if the momentum and coordinate are cano
nical, i.e., if the wave functions in momentum and coor
dinate representations are connected by the usual Fourier 
transform 

• - * * 

Ф ( P > = - 4 / 5 / « l^e 1 > Г Ф ir). (1) 
(2ir) 

The case of equal masses in chosen here. 
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Formula (1) is an expansion oi the "Galilei boosts" group 
representation in momentum space over the irreducible 
representations in coordinate space l / • 

In the variant of quasipotential approach proposed by 
Kadyshevsky / 5Л on the basis of Hamiltonian formulation 
of quantum field theory, relativistic analogs of Schodinger 
and Lippmann-Schwinger equations were obtained.The only 
difference between the nonrelativistic and relativistic ca
ses is the change of the three-dimensional Euclidean mo
mentum space by the three-dimensional Lobachevsky space 

P 2 = - P 0

2 - P 2 - n . s . 

i.<£., by the mass shell of one "effective" particle in the 
Miakovsky space. The Lorentz transformations in the 
Lobachevsky space play the role of the Galilei boosts in 
the Euclidean space. An analogous to (1) expansion in the 
relativistic case'' 6 ' ' permitted to introduce the relativis
tic relative coordinate ^ 7 , / , that led to the formulation of 
a quasipotential theory in the relativistic coordinate space*. 

Formulae of type (1) in group theory are called Fourier 
analysis / 4 - 8 - 9 Л 

The relativistic Fourier analysis formulated in a sui
table for quasipotential approach parametrization (see the 
first of the papers' ' 1 4 '^, was successfully exploited for 
parametrization of the nucleon form factor^ 1 0 ' ' . 

In the present paper the analogy between nonrelativis
tic and relativistic Fourier analysis is studied inorder to 
obtain some physical consequences. 

In Section 1 the formulae of nonrelativistic Fourier 
analysis are discussed from the group-theoretical point 
of view ^.п.э.ч/ a n c | a j s o a formal derivation of the un
certainty relation between momentum and coordinate is 
presented / , 2 - 1 3 / . 

The formulae of relativistic Fourier analysis (Fourier 
analysis on the Lorentz group• / " i / ) are given inSection 2. 

* In ref. - ' ' a complete list of references on the quasi-
potential approach is given. 
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In Section 3 the radial dependence of the relativistic 
wave functions of particle with arbitrary spin is studied 
as a methodological example of application ofsucha tech
nique. Further, a formal derivation of theuncertainly rela
tion between the rapidity and the relativistic coordinate 
is given. It should be pointed out that an example of similar 
uncertainty relations is actually following from the soluti
on of the potential well problem </7<lThe idea of the paper'",' 
that the rapidity and coordinate are relatedby the Fourier 
transform, was also used in connection with the parton 
model in papers / 1 5 . 

In Section 3C an attempt is made to interprete the 
transition of exponential to power dependence of the diffe
rential elastic scattering cross section with increasing 
transfered momentum as an effects of transition of the 
Euclidean geometry to Lobachevsky one. It appears that 
in the Born approximation this always takes place for some 
class of quasipotentials satisfying the Jordan lemma l f i ' 
in coordinate space. 

1. Nonrelativistic Fourier Analysis, 
д . Piancherel's theorem and its group-theoretical 

sence 

The Plancherel's theorem " ' ' 

Let a function Ф ((>) be square integrable ! 

/ d a p \ф{р)\2 : - . . 

Then there exists a function и (V ), such that 
/ d : , ? | , H r ) | 2 < -

and 

* The same symbol is chosen to denote functions in P 
and г -representations. 
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^ ( Г "*>=-Лт7-Г d 3 p e , p r ^ (p). (2) 
Си)" 

Moreover 

/ d ; , ? | 0 ( ? ) | 2

= ; d 3 ? U M p ) ! 2 . (3) 

and we have 

0 ( P ) = - — ; d3?e~ "" 0 ( ? ) . ( 1 ) 

(2ff) 
We would like to emphasize some group-theoretical aspects 
of this theorem. 

Let in p -representation a representation of the Galilei 
boosts be given 

T q 0(p)=iMp-q). (4) 

The Casimir operator of this; representation is the 
usual three-dimensional Laplace operator. With the help 
of formula (1) and the "addition theorem" for the pline 
wave 

— h . t I q . r — i (p— q) . r 
е е 4 =е ' (•-,) 

one can obtain that the representation Tq i sdecomposed 
in terms of irreducible representations TV' which act 
on functions in coordinate space in the following: way 

T [ r l фО)=е^-'' ф(7). (6) 
ч 

The orthogonality and completeness conditions 
1 . а - '(р-ч)г"* ^ 

J J re - , S ( p - q ) , 
(2n>V 2 (7) 

i 3 , i p . ( r - r ) 

i2*V 
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follow from eqs (1) and (2). As is well known in quantum 
mechanics, the formu.ae (7) can be proved using the expan
sion 

с i p ' r = 2 (21 + l ) i ' j , , (pr)P. (p.r) (8) 

and orthogonality and completeness conditions for Bessel 
and spherical functions. It is interesting to point out that 
the usual exponent is the generating function (see (8)) of the 
boosts matrix element (the Bessei junctions) if the basis 
functions are chosen to be the spherical functions. 

B. Parseval's theorem and its group-theoretical sense 

The Parseval's theorem states that if the functions 
..'/( p), ,/,(p)and their convolution fiPp'JTp) 0(p-q ) are 
square integrable, then 

/d'"f i,'/(t) 0 (r)e " ! ' r -, |" d 'p ф (p)0( p'-q) . 

That is, the Parseval's theorem is "isometric" statement 
for p - and г -spaces with resepct to the boosts 

f cl'V ,.'/ (r ) 1 ,,' </, (г') , f d V v K ? ) T,, <h ( p ) . (Э) 

С Uncertainty relation 
Formally, the uncertainty relation is a consequence of 

tiie fact that the commutator of the momentum and coordi
nate operators is а с -number 

fp.VI —i , (И» 
and that the integral ' l ; , / 

J d ; , r ' | («F + ip),A(K)|2, 
where « is an arbitrary positive number, is positive 
definite. 

On the other hand, commutation relations (10) can be 
derived making use of the diagonality of momentum and co
ordinate operators i n p - and г-representations, respec
tively, and that the wave functions in p - and г -represen
tation are connected by Fourier transform (1). Thus, for-
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mally, commutations (10) are a consequence of the type 
of the plane wave. So, the uncertainty relation, from such 
formal point of view, also results from the type of the 
nonrelativistic plane wave 

£ W (D ?) = e 'P-'"* $ m V P . f - e 

2. Relativistic Fourier Analysis 

A. Fourier transforms connecting p -space with the 
relativistic r -spsxg 

Let the function <//„ (p) be relativistic wave func
tion of a particle with spin s, spin projection p , mass 
m and momentum p" belonging to the Lobachevsky space. 

The representation of the Lorentz group 

T q 0 ( s ) ( p ) = D ( s ) [V(q,p)] 1 A ( s ) (рТ=П|). (11) 

wuere the Wigner rotation V(q,p) is 
•v(я .p ) -B;>B q в , , ,_ , - "v - 1 (p.q) ( i2) 

and 
D 1 + P - -
в,, • ••.•:.—— • E =Pa- P o " P , C T • 

V2(Up 0 ) ( 1 3 ) 

_1 ( РЧ 
р ( - ) ч - л ч р - P f l + p q 

" ! +40 ' 
is unitary, if the scalar product is 

d 3 : ^ ^ ) С ? ) К Я ) ф - (14) 

In spherical coordinates one has 

i s hy n* i 
or ' 

p 
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г - Pi» p 
From eq. (13) and (15) it is clear that the transformation 
of the rapidity 

xv •xv- >4 • * . , - > „ 

corresponds to Uie Lorente boost 
P > p(-^ 4 • 

The reduction of the representati -n (12) into irredu
cible l v . r 1 representation is given by the formulae 

V>(1

H ( p b — ~ r i ( r 2 + r'')ilr d"7 .;" J , (p,f) . / v (r) ,(isa> 

(2 А ^ Р " ' 
where , ,. .. , , 

/ sin 0 cos о 1 
d"r'.= siii()d(kl0, r'= ni" , n" =. ) sinfl sin.:') > 

\ COS»' ' 
and 

(p , r l ^ ( [I — p.tl) _ ,., , r . , .,.,.. 
Ill ' ' I I r H|' ' ' III ' 

where (П) 

t , (p . П " ( р -p .n) U ( г ( - )рЫ (|),r)l) ( r (-)p). 

r ( - ) p - r n ( - ) p , n ( - ) p ---• -— ( п - p — - - P - — ) . ]>i\ = p - ;•!. il . 
[ I I I 1 ; ;• " 

..(-> ,.. . The function i / ( 1 . (p,r) plays the role of "reUmvistie 
plane wave". The orthogonality and completeness condi
tions for '£fH'(p."*r) have the form 

1 r,..2 . , ! 1 J ( j 2 - i 4 ; Л * 1 , 

T j ( , . 2

 + r2 )dr dV<£ (p . ^O ' (4 .^-2^,8 (pTTqV 
(2ir)" 

(18) 

^ ^ ' " ' " " ' " ' ^ ^ • ^ 



As in the nonrelativistic case, these relations can be pro
ved on the basis of the expansion 

(я) о» J [l'«f] + ( l ) _ (J) _. 

V Ф Л = ,LS^ d J4.<*Witf> D i I i (1) (19) 
using the orthogonality and completeness relations for the 
matrix elements of rotation group D<J> and Lorentz boosts 

Unlike the addition theorem for usual exponents, the 
addition theorem for the relativistic plane wave takes 
place under the sign of integral 

/d r£ (p,r)£ ( q . r b D |V(q,p)lfd qf (pv->q,r)D (r). 
(20) 

The nonrelativistic limit of formulae (16) is just (up to 
the rotations in ' -space) the usual Fourier transforms 
(1) and (2) for every spin projection component. The limits 
of formulae (18) and (19) are exactly formulae (7) and (8). 

The space conjugated by means of formulae (16) to the 
Lobachevsky space is called •'"•' the. itivistic coordinate 
space. The scalar product in this space has the form 

( ( r ^ r S u l r d V ^ r U l r V ) . (21) 

B. Plancherel's theorem 

In relativistic Four 
theorem is the equality 

In relativistic Fourier analysis ' the Plancherel's 

n„ 2

+r 2)drd 2rv< ( s ,rr)i 2=; i^-i^'tp)! 2. 
2p 0 -

This can be obtained easily from eq. (16) and (18). 

C.Fourier transform of the Lorentz boosts 

In nonrelativistic case the irreducible representation 
of the boost group was derived by calculating the Fourier 
transform of the function 
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Т(||,Ир) = Ф (p-q). (4) 

Analogously, in the relativistic case the type of the irredu
cible representation in г -space can be derived from the 
conditions 

(s) -» 1 о о 9-»'**(н) . ,. U ' . r ] (я) -» 
v " ( р ) W 2 ' (" ] '*> ( р ' ) т < | 0 - ( г ) > 

4 ^ ( г ) " г ^ ; " 2 ^ - * > ( р ' г У г ч * . < ( р 

The invariance of the measures 
, 3 ' d : lp(-)q 

1( = Ш ; ' ' - M d r H 4 ( 2 2 ) 

and the properties of the Wigner rotation (12) permits one 
to obtain 

tl ' .rl («) J°> -. -. (H) • 
T ( | Ф,. (r)=f (p, r ) 0 ^ (r(-)q). ( 2 3) 

Thus, the Lorentz boosts do not change the spin projection 
and modulus of relative coordinate, but change its direc
tion. 

D. Parseval's theorem 

From formulae (16), (18) and (22) it follows that: 

f (,^ +r 2)drd 2r,/y' s ,(r)T ф (T)-

/ (, 2

+г 2)ага 2г 1А'" ,(г ,)^ 1

<; ) ( Т Ш * ( 0 , (q.7)= 

'о 
/ - ; — " С (P)D;;[ 'V(q,p)]^> (p(-)q) 



••= г -Ф^ФМ(Р)1Ч <A(,;vp). (24) 

in agreement with the nonrelativistic case (7). 
However, one can note that in the relativistic case the 

Fourier transform of two wave functions in r -space is 
not the convolution of wave functions in p -space. This 
is connected with the fact that the Lorentz boosts change 
the direction of the relative coordinate,andthewave func
tion is multiplied by the spin zero plane^wave ^ (p\?) 
and not by the spin s plane wave £ ' s ) (p,? )(see(23)). And, 
finally, the integral over г -space of more than two plane 
waves is not fi -function in contrary to the nonrelativis
tic case. 

3. Some Physical Consequences 
A. Radial dependence of the relativistic wave 

function of a particiri with arbitrary spin 

Let us examine formulae (16) under the assumption 
that in theright-hand side the wave function in the integrals 
has no angle dependence. Then, taking into account for
mulae (12), (22) and expansion (19) and integrating over 
angles, one can obtain that the left-hand sides of eqs. 
(16) are equal to zero when the spin projection is non-zero. 
This contradiction is an illustration of the intuitively 
obvious physical fact that the wave function always has an 
angle dependence when the spin is half integer or integer, 
but the projection is non zero. 

B. Uncertainty relation for the rapidity and the 
relativistic coordinate 

Let s = 0 and ф ("г) = ф (г) . After integrating eq. 
(16a) over angles one obtains 

Ф (p) = ~zz—- / г dr siny г ф (г), 
SJ2IT~ P о Р 

where (15) 
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1 l>n P ' » + P 
p p ° " p 

Further on, the rapidity operator x is diagonal in P -
representation and the coordinate operator r is diagonal 
in r -representation. Proceeding in the same way as in 
Sect. 3, we obtain the form of rapidity operator in r -
representation / 1 2 / 

X--U3, + f >• 

Therefore the commutation relation between the rapidity 
and relativistic coordinate operators are of the same form 
as the commutation relation between nonrelativistic mo
mentum and coordinate operators 

ix .'J» - i • 

From here, in complete analogy with quantum mechanics 
(see Sect. IB) the uncertainty relation formally follows 
for the rapidity and relativistic coordinate 

AxArS-L-b—. (25) 
2 me x ' 

С Interpretation of the behaviour of the elastic 
scattering amplitude as a geometrical effect 

Let us consider for simplicity the case s = 0 . The 
plane wave, with all dimensional constants has the form 

, • mc „ г V m 2 c 2 + p 2 - p - n expl-iiii-—r b i [ - - ] | 
><°> , - л h m c 

f (p,r)= 
уттс* +p - p . n 

mc 
The nonrelativistic limit | p | « m r of the plane wave 
is the usual exponent 
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lim £ ( p , r ) = e (26) 
} !>]<•' m r 
in Born approximation, if the quasipotential is 

given, the elastic scattering amplitude has the form 

T ( P \ q b / d a r / ( , »(KOV(? .E) ( < 0 ) (4 ,"?) • 

The addition theorem (20) permits one to obtain 
. . ;i . '" ( o i - , i -. > 

T(p,<i)- fd r f (pRq,r)V(r) . (27) 

Let us introduce the Mandelstam variable t = (p-q) 
Then we have 

(P(-)4)„ - 1-1/2, l p ( - ) q | = V - t ( l - t / i ) , 

i.e., the condition |pv-)q|<- 1 is equivalent to the condi
tion \i}« 1. Therefore when 14 « 1 one can take 
limit (26) and amplitude (27) will be a nonreiativistic 
Fourier transform of the quasipotential. This is in 
agreement with the statement that the local geometry 
of the Lobachevsky space is Euclidean. 

If we choose the quasipotential in the form 

V ( r ' . F ) - - ^ — T , (28) 
г " + ;i *" 

after the integration over angles in (27) we obtain ' ' 

T(p\q) = - i ^ e ~" V i ' ( -»4 . 
!p(-)q| 

Finally, in terms of the variable t we have 

|' _ n \ - l ( l - t , -t) 
e at ! 11 ••.•: 1, 

(29) 

[ l - t / 2 + V - t ( l - t / 4 ) ] ~ a at | t | > 1. 
T ( s , t ) = - nh 

V - t d - t / 4 ) 
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Formula (29) explains qualitatively the proton-proton 
elastic scattering experimental data''13''. 

The power behaviour when the momentum transfer 
is high was obtained by many authors. We would like to 
mention thr paper / 1 9 /, where the dimensionality arguments 
in the picture of composite hadfcns lead to the power 
behaviour of the differential cross section and the paper / 2 0 , / 

where this behaviour was obtained in the framework of 
quantum field theory with constant curvature momentum 
space. 

In connection with the possibility of quantitative des
cription of the experimental data.the following remark is 
interesting. Let the quasipotential do not depend on the 
angles. Then the calculation of the amplitude in the Born 
approximation is reduced to calculation of the Integral 

J r dre' Y ' V(r). (30) 
— oo 

If the function rV(r) satisfies the Jordan lemma and has 
some finite set of poles (for definiteness in the upper half 
plane) the residues theorem gives oscillation power beha
viour. From formula (30) it is clear, that the form of the 
quasipotential does not influence the change of the exponen
tial behaviour г > the power one when 111 is increasing. 

Conclusion 
In this paper an attempt has been made to discuss the 

analogy between nonrelativistic quantum mechanics and 
relativistic theory on the basis of the Fourier analysis. 
We found that the fundamental role plays the fact that the 
relative momentum space in the nonrelativistic case is 
Euclidean and in the relativistic case is a Lobachevsky 
one. 

The author is grateful to Drs. V.G.Kadyshevsky, 
R.M.Mir-Kasimov and M.D.Mateev for constant interest 
and numerous critical remarks. The autor thanks Drs. 
N.A.Chernikov, R.N.Faustov, V.R.Garsevanishvili, 
A.N.Kvinikhidze, V.A.Matveev, V.A.Meshcheryakov, 
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Ch.D.Popov, A.N.Sissakian, N.B.Skachkov, L.A.Slepchenko, 
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