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1. In quantum field theory and many-body problem the 
Schrttdinger eq. 

на = EO Ф 

is of great importance. Here Hamiitonian H is some 
rather simple function of the creation and annihilation 
operators. 

1.1. We will conduct our consideration by the example 
of the simplest Hamiitonian (2-4), however, this consi­
deration is valid for any Hamiitonian, e.g., for Yukawa 
and g^ 4 models of quantum field theory. 

1.2. Thus, we take 

H = h + hx (2) 

h = /dpE(p) [ a * ( p ) a + (p) + a*(p) a _ ( p ) ] + 

•)/A<u(k) Ь*(к)Ь(к) + < 3 ) 

+ g / dp«Jqdk A ( p , q , k ) a + ( p ) a_ (q)b(k) в(р+ q + k) 

(4) 

hj . f g ; d P d q d k A * ( p , q , k ) a * + (p) a*_ (q) Ь*(Ю S(p + q + k). 
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Here » + , " + are the annihilation and creation opera­
tors of two sorts of fermlons 

(5) 
[ « a ( p ) , a ^ q ) ] + - 0 , 

Ь , Ь* boson annihilation and creation operators 

[ b ( k ) , b*(») ] = S ( k - e ) w 
[ Ь ( 1 с ) , Ь ( « ) ] _ = 0 , 

E (p) , OJ (к) ba re par t ic le energ ies , Л some function. 

2. We s ta te the ground s ta te П 0 of the Hamiltonian 
(2-4) to have the form 

ПЬ = e"* I 0 > (7) 

к - С 0 1 Ь « П + ; С м ( Р 1 , р , ) а * ( P l ) . M p , ) x 

x S ( P , + p , ) < « P 1 < i P j + ; c 0 1 ( k 1 , k 2 ) x 

x b * ( k 1 ) b * ( k 2 ) S { k , + k 2 ) d k ] d k 2 + ... (8) 

* . +

S

r > o ; C * ' . ' ( p I , , , » , , " P » ; , l , 4 « r - " , » i k l ' k 2 ' - k r > 
n 

П (a* (p ) a* (q ) dp dq ) П (b* (k . ) dk . ) X 
I + i — i i i i * l 

x 8( S ( p . + q . ) + X k . ) = 2 p 2 n ) r ( i * .a*_ ,b*) , 

where 10 > is the no par t ic le s tate 
a + |0> = b | 0 > = 0 . 



2.1. Note, that all the terms of expansion (8) commute 
with each other. 

2.2. In order to explain why the solution of the 
Schrodinger eq. in'the form (7), (8) is just the ground 
state, we point out, that eq. (10) implies С 2 n , r - 0 for 
g - 0 ; but at g = 0 the ground state is | о >; so there exists 
some interval 0 < g < g 0 , where the solution of eq. (1) 
of the form (7), (8) is the state with the lowest energy 
(we suppose both functions E ( P ) , ы ( к ) to be positive). 

3. Now we substitute (7) into the Schrodinger eq. (1). 
Using formulae 

be"* = е~"(- [Ь,кЗ_ + Ь) , 

ae = e ( - [ а ,к ] + a) , 

a + ( p ) a _ ( q ) b (k ) e~K = e _ * ( - [ a + ( p ) , к ] _ + а + ( р ) ) 

( - [ a _ ( 4 ) , K ] _ + a _ ( q ) ) ( - [ Ь ( к ) , к ] _ + b ( k » (9) 

we get rid of the factor e "* and rewrite (1) in the form 

( E 0 + Ьк - hj - 8 ) | 0 > = 0 . (10) 

Here E 0 is the ground state energy, 

S=g/dpdqdkA(p,q,k) (-[a + (p) ,к ]_[ a _(q) ,к ]_[Ь(к) ,к ] _ + 

4 a + ( p ) [ a _ ( q ) , к ] _ [ Ь ( к ) , « ] _ + [ a + ( p ) , K ] _ x ,,,x 

x a _ ( q ) [ b ( k ) , K ] _ ) 

3.1. Getting rid of the annihilation operators in eq. 
(10) with the help of (5), (6), the left-hand side of eq. (10) 
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is represented as a series in powers of creation opera­
tors. Equating to zero the coefficients of this series 
gives the system of equations defining the coefficient 
functions С ,„, г ; this system will be denoted as (10a). 
Because of (11) this system, unlike eq. (1), is nonlinear. 

3.2. The main advantage gained by the transition 
from linear form (1) of the SchrSdinger eq. to nonlinear 
form (10), (10a) is that the coefficient functions of expan­
sion (8) are nonsingular as follows from (10a). Therefore, 
none of the homogeneous translatlonaUy-Invariant polyno­
mials p 2D ,r of the series (8) contains the part equal to 
the product of two homogeneous translationally-Invariant 
polynomials (such a product necessary gives the singula­
rity for the function С 2 o , г )• In this sense the coefficient 
functions of the expansion (8) will be called irreducible. 
Let us consider for comparison another representation 
of the state (7): 

П 0 = A|0> , 

A - l + y 0 1 b* (0 ) + / y 2 0 ( p , - p ) a* (p ) a * _ ( - p ) d p + ... 

( l i ; 

= о Д > 0 / У 2 » , г ( Р 1 ' Р 2 ' - Р

П

; < 1 1 , Ч 2 - Ч 1 п ; к , ' - к г ) 

n г 
П (a* ( p . ) a* ( q . ) d p . d q . ) П (b*(k. ) dk . ) x 

, (13) 
x 8 ( S ( p . + q . ) + S k . ) = I , 2 B i I . 

Evidently, we have 

1 0 1 = - P 0 1 ' 4 2 0 = - P 2 0 * 

1 2 G 4 > 

4 4 0 " _ P 4 0 + T ( P 2 0 ) * -
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Eq. (14) and the irreducibility of coefficient functions 
С 2n,r imply the coefficient functions of expansion (13) 
(e-g-, у 40 ) not to be irreducible. 

3.3. Thus, the ground state representation (7), (8) is, 
in some sense, the simplest possible one. 

3.3.1. Note, that the representation (12), (13) in quantum 
field theory gives the Tamm-Dankoff equations for the 
coefficient functions у 2Е,г• 

3.4. The ground state energy E 0 is separated from 
the essential part of eqs. (10a); it enters only the first 
of these equations. So, one has to determine functions 
С 2n, r from the second and subsequent equations of 
system (10a); then the first eq. (10a) gives the value of EQ. 

3.5. The nonlinear form (10) of the Schrodinger equa­
tion defines irreducible coefficient functions of expansion 
(8) for ground state (7). 

In this sense eq. (10) itself in the title of the article 
is called irreducible. 

4. One has to search for excited state of Hamiltonian 
(2) in the form of product 

Q = Ufl 0 (15) 

of the ground state (7) and the operator I!, which is 
a series in powers of operators a*± , b*. 

5. The exponential transformations of the type (7) 
are at present known well enough. 

Thus, e.g., to get irreducible Green functions one 
must take derivatives with respect to the source j (x) not 
of the generating functional 

/ e x p [ i S + / j 4 x ) ф{х)Ах1Н, 

but of its logarithm ( S is the action). 
However, we are the first obtaining the exponential 

transform of the ground state of the second quantized 
SchrSdinger equation. 

5.1. We have used the method described for investi­
gating «Ф * and Yukawa models in two ' ^ з / and three-
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dimensional space-time /2 ,4 / am} for studying the 
scalar electrodynamics in two-dimensional space-time /5/. 
In the first papers Л «2/ we were able to deal with boson 
quantum field theory only; now we have succeeded in 
generalizing our method to the case of Fermi par­
ticles ' 3 ' *'. 

5.2. In these models it appears to be possible to 
simplify, equation of the type (10) and to reduce the order 
of nonlinearity in this equation to the second one. The 
way is as follows: one should use the representation 
where the boson field operator <MH is diagonal, then 
substitute, in expansion (8) <MM for Ь*(Н , the state 
of fermion vacuum for |0> and in the Hamiltonian 
-iS/8<f>Ck) for the momentum n(k), canonically conju­
gated to <#(k) • 

5.3. By the present method we have succeeded in 
investigating strong coupling limit in g[$ 4 ] 2 model /' 6> 7/. 
We have also shown /V that there is no necessity to 
introduce the term -%(ф*ф")'1 into Lagrangian, in order 
to get the vacuum degeneration in scalar electrodyna­
mics. This result contradicts the basic works / 8 • 9 Л 
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