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l. Introduction 

Recently- a considerable interest has arisen in the 
study of nucleon-nucleon scattering in the nonrelativistic 
energy region on the foundation of the relativistic wave 
equations. · 

For example, Fortes and Jackson /l I have recently 
demonstrated the importance of relativistic corrections 
even at low energies, using some phenomenological po.:. 
tentials in the framework of the Bethe- Salpeter equation 
in the ladder approximation (BSE). . 

But the complexity and the well-known drawbacks of the 
Bethe-Salpeter equation /2/ make it desirable to use 
simpler wave equations to describe a relativistic two­
body scattering. An equation of this type has been derived 
by Logunov and Tavkhelidze /'.l/ and Kadyshevsky /.1 / 
using the quasi-potential approach to the quantum field 
theory. . 

The Kadyshevsky equation in the momentum 'space has 
been used by Dedonder /s/ to describe pion- nucleus 
scattering and also in refs. /<,, 7 / to describe nucleon­
nucleon scattering with some field-theoretic potentials. 
However it is possible to examine the Kadyshevsky equation 
in the configuration space /H/ as well. Using this equation 
it is not difficult to obtain the relativistic phase equations. 
But, in contrast to refs./11 /, where the phase equations 
are the finite-difference nonlinear ones, we /I z/ have 
obtained ordinary nonlinear first order differential equa­
tions for thP :-,c·attei ing amplitide. and for the phase-shifts 
(RPE). Point out, that these equations are the analogs 
of the well-known nonrelativistic phase equations 
(NRPE) /J'.l. 11 1 
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In this context RPE is used to describe nucleon­
nucleon scattering. 

Section 2 briefly reviews the Kadyshevsky equation 
in the configuration spa.ce. Section 3 describes the rela­
tivistic phase equations used for the numerical calcula­
tions. In section 4 we illustrate the importance of rela­
tivistic effects by comparing RPE-phase shifts with 
NRPE-phase shifts for different phenomenological poten­
tials. We then compare the s -wave phase shifts obtained 
with the RPE-equation to the corresponding phase shifts 
obtained in refs. /II with the Bethe-Salpeter and Blanken­
becle:r:-Sugar equations (BBSE) /15/, Section 5 contains 
our conclusions. 

2. The Kadyshevsky Equation in the Relativistic 
Three-Dimensional Configuration Space 

As has been shown in 1101, the scattering problem of 
two spinless particles with the masses m 1 and m 2 and 
the momenta i\ and i\ , respectively, is reduced to 
that of one effective particle having the mass m 0 2) = 
= v m m and the relative· momentum q in the quasi-

- _I 2 (12) . -
potential field. The total energy * of two particles in 
c.m.-system (I\ =-i\=P) is · ·· 

➔ 2 2 · ➔ 2 · 2 
W = · 1 P + m + · v P- + m = 

V l - 2 

ml+ m2 . . ➔ • -- V m m + · 2 · · (2 1) 
m(l

2
) l 2 q (12), • • 

Considering the scattering problem it .is convenient to 
use the fo_llowing parametrization 

➔ 

I P 1 · I = m 1 sh X 1 , P 10 : = m 1 ~h X I ' , 

➔ 

I_ p 2 I = m 2 sh X 2 ' p 20 = m 2 ch X 2 ; 

-----------------------. . 

* We· sh~ll deal with tlie "h = c = 1 system of units. 
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q (12) = I q (12) I= m(12) sh Xo2)' q(l2) 0 = m(12) ch X (12)' 

(2.2) 

Then the_ total energy W and the relative momentum 
4( 12) may be simply expressed: 

W = m 
1 

ch X l + m 2 ch X 2 = ( m 1 + m 2 ) ch X ( 1 2) , 

X l + X 2 

m 
1 

sh x
1 

= m 
2

sh"x 2 , q 02) = 2µ sh --2 

/l = mlm2/(ml+m2). 

(2.3) 

To simplify matters, let us consider only the case ·of 
a local spherically symmetric real quasipotential V ( r). 

Then the partial wave function \JI ~+) ( r, q ) of the con-
L (12) 

tinuous spectrum describing the scattering on a poten­
tial V( r), satisfies the integral equation (which can be 
considered as a relativistic analog of the Lippmann­
Schwinger equation) /8-10 /: 

(+) 
'11 f ( r ' q ( 12). ') = .. s r< r' X ( 1 2) ) + . 

(2.4) 
(+) (+) 

+fGe (r,r',W)V(r',W)'Pe (r',q(l 2))dr', 

Here G<f ( r, r', W) is the partial wave Green's function. 

(+) ,, (1) 
G = we ,r ) [ e e e 

2µ Vf 

(r,x( 12)) S£ (r',Xo2)) + 0\+)], 

{r ') 

w £ (r') 
m (12) sh X (12) 

(2.5) 

D t) = w f ( r ')I 0 (r ' - r) [ ~ ~} ( r', X {1 2) ) S £ ( r, X u 2 )) -
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(I ) 
- S e ( r ', X (I 2) ) e e ( r, X (1 2 )) ] + 0 (- r - r ') x 

A 

(2.6) 

· ·. ' (I){· )S{r' )-
x[2iSe{r,xc12))Se{r,x(l2))-ee r,x(l2) e ,X(I21 

(1) 

- ef (r',x(I2))Se(r,x02))]1 

i,e(r) =(-l)f+I 
I' (- i rm (I 2 ) + e + 1) f' ( i rm (l 2) ) 

---------- , (2.7) 
l'(-irm{l2)) f' (irm(l2) +e + 1) 

" 00 -iz(r·'-r)mo2) z-i( 

O(r'-r)= 
2 17 i 

J(c )/(c -l)dz.(2.8) 
-oo 

( 1.2) 
Sp , Ce and e e are relativistic analogues of the. 
spherical Bessel, Neumann and Hankel functions. Let us 
write them explicitly: 

S = y..!!... sh . f + I e 2 x<12> (-1) 

I -e- -
2 

xP l(chx(l2)) 
i rm{IZ) - 2 

I' ( i r m(I 2 ) + r + ] ) 

I'(irm(l2)) 

-e I'(irm -P} 
{I 2) 

Ce 
17· v - sh x (-i) 

. 2 {12) 
'( 

l'(irm(I2)) 

·6 

X 

(2.9) 

(2.10) 

1 

e+2 (ch Xc12)), X p I 

ir rn(l 2) - 2 

(1,2) = C ± i Sp • 
e e e (2.11) 

The asymptotic form of 'P ?) { r, q 02) )at r ➔ oo can be found 
by using (2.4), (2.5), (2.6) and (2.9). 

<+) 11P 
'V e (r, q (1 2))"' sin (rm02 ) X ( 12 ) - -

2
-) + 

·c 11e) 
I rm (l 2) X (12)- -2-

(2.12) 

+ fe (W)e 

where 

2µ 
f Se (r,x{l2)) X f (W) = -

e m (I •2) sh X (I 2 ) 

(2.13) 
' 

(+)( )dr. 
x V(r,W) "'e r,q(l2) 

is the partial scattering amplitude. 
It is connected with the phase shifts op and with 

the s -matrix element s e by the simple relation 
hips: 

re < W) 

sp(\\) -1. 

2i 

io P < w l 
e sin o e ( \\) · (2.14) 

The total elastic scattering cross-section is expressed 
by f e ( W) and o e ( \\ ) 
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da 2 
a= f--=4rrG(m

1
,m

2
,W ) 

dO 

1 2 
-- }: c2e+n1re<W)I = 

00 

2 £=0 q (12) 

00 
(2.15) 

2 1 2 
= 4uC ( m 

1 
, m 

2
, W ) --- '!- ( 2£ + 1) sin o e ( W) , 

q(l2) £-O 

where 

2 2 , 2 
C ( m 

1 
, m 

2 
, W ) = 2µ / ( m + m ) ( 1 - ( m - m ) / W ) • 

l 2 l 2 

3. The Relativistic Phase Equations 

First of all we should remember that in the variable 
phase approach to nonrelativistic potential scattering /13,14/ 
the functions are introduced, which satisfy simple non­
linear first order differential equations, and those asymp­
totic values give directly the values of the scattering 
amplitude, the s e -matrix element or the phase shift. 

To obtain these equations it is essential, that the 
asymptotic value of the nonrelativistic wave function 
should begin where the potential is "cut off". On the 
other hand; the asymptotic of the relativistic wave 
function begins only at r ➔ oo (see Appendix). Thus for the 
relativistic partial scattering amplitude, on the basis of 
(2.4), we obtain the system of the equations /I 2/: 

d . {l) 
--;i-;-fe(W,r) = we {r) V(r,W)[<I>e (r,q(l 2J) + 

( 2) 

+ fe (W,r) <I>e 
2 

)] ' (r,q(l2) 

(I) C r {+) (l) 
<I>e =Se+ f De (r,r',W)V(r',W)<I>f (r',q((2))dr', 

0 

8 

l 
I 

( 2) (1) r { +) ( 2) 

<I> e = e e + f D { r, r ', W) V ( r ', W ) <I> e ( r ', q ( 
1 2

) ) d r '. 
0 

(3.1) 

However, as it was shown in / 12 / in the example of the 
exactly soluble model with a square well potential /9 I 
the sufficiently accurate approximation to (3.1) is the 

. following equation: 

d 0) 2 h ff (W,r) = wf {r) V(r,W)[Se+feee ] • (3.2) 

It is possible to derive the analogous equation for the 
phase shift by using (2.14). At e = o it looks quite simple 

d 

dr 
o (W,r) 

0 

2µ 2 
. V ( r) sin [ r m

0 
2 ) X ( 

1 2
) + o 

O 
( r, W)] • 

q(l2) 

(3.3) 

It is not difficult to show that in the nonrelativistic 
limit ( rm 0 2} » 1, x O 2) << 1) we obtain from (3.3) the 
well-known phase equation /I 3, 14/ 

J 
d a;- 8

0 
(r,k) 

2µ . 2 
-k- V{r) sin (kr + o

0 
(r)) , (3.4) 

where 

k = y 2µ E 

4. Results 

In. our calculations we· used the ordinary Yukawa 
potential 

NK . 
V ( r) = - ,\ exp ( -a r) / r , (4.1) 

(or the superposition of (4:1)) for the NRPE-equation 
(3.4) and a relativistic analog of the Yukawa potential/~/ 
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V R(r) 

1 
-,\--

4rrr . 

- ,\ 
1 

4 rrr 

2 2 2 
ch[rm(l 2 )Arcos (a - 2m02 )) /m (12)] 

sin(rrrm(l 2)) 

2 2 
if <7 <4m(l 2 ) 

cos [ r m0 2) Ar ch ( a 
2 2 2 

- 2m (I 2)) / m O 2)] 

sh ( 77 r m ( I 2) ) 

if a 
2 

> 4m 02) 

(4.2) 

.(or · the · superposition of (4.2)) for the RPE-equation 
(3.3). Let us emphasize at once the fact that V 11 ( r) is 
more singular than the Yukawa potential ( v1\r), r- 2 when 
r ➔ 0 ). 

Both (3.3) and (3.4) equations were solved numericall~ 
by means of the Runge-Kutt method with m 

1 
= m 2 = .i, 7S8 fin- • 

In Fig. 1. we plot the phase shifts as a functions of labo:­
ratory energy for the attractive potential with A.= 0.54583 
and a= O.'i fm- 1 • 

We note that the phase shifts calculated with the 
· RPE are generally larger than those calculated with 

NRPE even at the laboratory energy which might be well 
considered "non-relativistic". The average difference 
in the phase shifts is 0.4%. The direction of the relati­
vistic effect is quite different from· that of Fortes and 
Jackson /I/ found in their comparison of the Lippmann­
Schwinger phase shift with the BSE and BBSE phase 
shifts. 

The phase shifts (a), and (b) in Fig. 2 represent 
a similar calculation for the 1 S0 · soft-core potential 
of Reid /16/, but (c) and (d) are taken from refs. /I/. We 
can see that aNRPF is larger than f> RPE by 19.8%, 
26.5% and 46.4% at 25, 105 and 185 MeV, respectively~ 
while o BSE. and o BBSE are smaller than D.NRPE at 
an average by 30%. 
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" Fig. 1. S -wave phase _shifts as a function of lab. energy 
for one-Yukawa attractive potential. Curves (a) and (b) 
correspond to RPE and NRPE, respectively, while curve 
(c) is the BBSE phase shifts· and curve (d) is the BSE 
phase shifts from ref. /I ~ . 
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Fig. 2. Phase shifts calculated with the parameters of 
Reid's soft-core potential in the 'So channel. Curves (a) 
and (b) correspond to RPE and NRPE, respectively, while 
curve (c) is the BBSE phase shifts and curve (d) is the 
BSE phase shifts from ref. /1 I, 
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· .. ,, 

Finally, Fig. 3 represents our results for the phase 
shifts versus energy for the 1 SO soft-core potential of 
Malfliet and Tjon /I 7~For this potential again a RPE is 
larger than a NRPE and differs by 5.98%, 11, 59% and 33.09% 
at 25, 105 and 185 MeV, respectively. It is seen that the 
curves (a) and (b) (see Fig. 2 and Fig. 3) describe the 
experimental data well /1s~ 

Conclusion 

Relativistic generation of the variable phase approach 
given in /I 2 / on the foundation of the quasi-potential 
approach, has many important features common-to the non­
relativistic potential theory. The types of phase equations 
have much in common. They are simple differential equa­
tions of the first order and they can be solved numeri­
cally with any parameters. In order to illustrate the 
method which is developed in this article, the solutions 
are given here of some problems of nucleon-nucleon 
scattering in the mo"st simple case e = o. For this purpose 
equation (3.3) ·has been numerically solved. This equation 
is a first order approximation to the system of relativis­
tic phase equations. The results of computation were 
compared with the correspon_ding data of other studies 
in this field. The fact that relativistic phases of scattering 
for all values of energy are larger than the non-relati­
vistic phases can be explained by the great power of 
relativistic potential of interaction as compared with the 
non-relativistic ones. It has been shown (see Appendix) 
that in principle it is not ·difficu~f to achieve sufficiently 
accurate. results for the relativistic phase equations. 
Here it should be pointed out that consistency in expres­
sions for relativistic wave function (A.2) in solving the 
problems of scattering can give favourable results not only 
in making the relativistic phase equations more accurate 
but also in the deeper understanding of the interdependence 
of the differential and integral formulations of th~ Kady­
shevsky equation in the configuration space. 
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Fig. 3. Phase shifts as a function of lab. energy for the 
parameters of the I s 0 soft-core potential of Malfliet 
and Tjon.Curves (a) and (b) correspond to RPE and NRPE, 
respectively. 
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Appendix 

Let us investigate formula (2.4) for the purpose of 
finding some differences between relativistic and non­
relativistic asymptotics of wave function. For this, using 
the explicit form of fi-function (to simplify matters here 
m = I )* 

(12) 

"' -2rr(r-r') ~ - 2rrn ( r-r') 
0 ( r - r') = l /(] - c b ~ c (A.I) 

n~o 
we rewrite equation (2.4) in the following form 

(+) (I) 

'V p ( r, q ( I 2 ) ) = Sf ( r , X(l 2 ) ) . 4 f f ( \\ ) i· f ( r ' X I I 2 l ) I 

X) 

• . ( I) (:I) -2m n ➔ I ) r (I) 
+ l Is e ( r' X ( I 2) )[' d; n p I 

(r)+c;;nf ( r) • r A l • 
nf n=O 

(A.2) 

(2) (4) -2rr/n.1J)r (2) 
+ e 

(I) 

p 
(r,x )l,!: 0 (r) + ,!, 0 

( 12) n l n r 
( r) , ,. \ f ]I , 

· where 

<;6(1) (r) 
. n p 

0 

r , ) -2;, ( n + I ) r 2 17 ( n + I ) r ( I ( , 
rd , C f,)( 

c r e f · (I 2) 
) X 

• A 

· Representation of o -function from (2.4) in a form 
of infinite sum (A.I) is valid for all r, r' except r'/ r . 
However, it may be shown, that this limitation is not 
essential because D t r. r'. x ) has no singularities 
when r = r'. · · (I 2) 
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(+) 
X W f ( r') l}J f ( f,, q (1 

2
} ) , 

(2) -2rr(n+l)rr 2rr(n+l}r' 
¢ n (r) = e f d r ' e x 

llL 0 

x Sf (r', X(l2)) Wf (r') '¥(;> (r\q(l2)), 

(3) 2rrnr 00 -2rrnr' (l} 
¢ ( r) = - e f d r' e e 11 ( r ', X ( ) ) x 

nf r L 12 

(+) 
xW

0 
(r')'l' 11 (r',q ), 

L t:. (12) 

(4) 

¢ nf 

2r.nr oo -2rrnr' 
(r)=e fdr'e 

r . 
Se ( r', X (12) ) X 

(+) 
x W £ ( r') 'P £ ( r ', q(l 

2
) ) , 

(1) 00 . 

(1) d ' [ 2· S ( ' X ) - e A = f r l e r ' (12) e (r',x )]x 
( I 2) 

nf 0 

-2rr{n+n r' (+) 
X e W £ ( r ') 'I' £ ( r , , q (1 2) ) ' 

(2) 

An£ 

00 = J ,dr'S (r' -211{n+l) r' 
0 e ,X(l2})e X 

(+) 
X W£ (r')'I' £ (r',q(l 2) ); 

; . 

W £ { r) = ( v £ ( r) V ( r) ) / sh X { l 2 ) • 
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(A.3) 

(A.4) 

In potential "cut off" point ( r = ,\) we obtain from (A.2) 

(+) (1) 
1¥ ( .\, q ) = S 11 (,\, X ) + f II e 11 ( ,\, X ) + 

£ (12) t:. (12) Lt:. (12) 

00 -2rr(n+l),\ (1) (2) (1)] 
+ I . e [ B n£ Se + B nf e £ , 

n=O 

Here 

(1) (1) ,\ 
(1) 

En£ = An£ + f dr e £ 
0 

(r, X ) 2rrr(n+l) 
(12) e 

X 

(+) 
X W £ ( r) lJI £ ( f, q(l 2) ) , 

( 2) ( 2) ,\ 2 11 r( n + 1) 

B n £ = An£ - ! d r S £ ( r, Xo 2) ) e x 

( +) • . 
xWe(r)'Pe (r,q,(12)). 

It foUo:ws. from here that for nonambiguous setting of 
asymptotics of relativistic wave function 'Pj +) one should 
know . not only scattering amJ?litude f e .< W) but also 
all the.constants B.~V ~nd B~e at n!e = 1,2, ... , 00

• And 
only at r ➔ oo . . 

( +) ) 
·'I' (r,q(l2) e . 

(I) 

"'Sf <.r,x(l2))+fe(W)e£ _(r,x02)'), 

Let us point out one of the opportunities of finding 
solution of relativistic equation (2.4). 

Having differentiated equations (A.3) over r we 
have 
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d (I) ._ (1) 
--¢ =-2rr(n+l)¢ + 

dr nf n£ 

(I) ( +) 
+ Wo (r)e 0 (r,x ) 'Vo (r, q( ) ) , 

I'.- I'., (I 2) I'., 12 

d (2) (2) 
-- ¢ = 2 rr( n + 1) ¢ + 

dr nf nf 
(A.5) 

t W0 (r) S 0 (r, X ) q,~+) (r, q( )) , 
t r ( 12) L l 2 

d (3) (3) 
-- ¢ =c - 2rr n </> + 

dr ne nf 

(J) ( +) 

+ \1, e ( r) c f ( r ' X ( l 2) ) 'I' f ( r' q ( I 2) ) ' 

d (4) (4) . l+l · 
-¢ =2rrn¢ +\\ (r)S 0 (r,x )'I\ (r,q ). 
d r n f n f f r ( l 2) I'., ( l 2) 

Sunstituting (A.2) into (A.5), (A.4) and (2.13) we obtain 
a system of coupled differential and algebraic equations 
for function in search O < lo) ,1.. ( 2J ,1.. ( 3 l ,.i. ( i l 

() { ) . nr ''I-' nf ''1-'nf ''+'. f ' 
A ~f , AJ and fy (\\}. Thus, we have subsh'tuted 
equation (2.4) by an mfinite system of equations. Being 
limited in expansion of (A.l) by N terms we will get, 
according to the above scheme, the finite system of 
7N equations, which is easily integrated numerically and 
might appear to be useful for the qualitative study of 
relativistic equations. 
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