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Summary

Within the framework of field theory
of quarks, interacting with a scalar (or
pseudoscalar) field, a series of hadron
processes are considered, employing the
consequences of the short distance scale

- invariance (SDSI) hypothesis for the on-mass-

shell processes. A weak bare quark interac-
tion is required for theoretical results
tozbe consistent with experiment on large
-gq® nucleon electromagnetic form factor,
high-energy large-angle elastic PP -scatter-
ing. large-q; pion inclusive production and
deep inelastic ep -scattering. A number of
predictions are formulated concerning ana-
logous processes with other particles. '

A possibility for experimental check of the
SDSI hypothesis is discussed, as well.
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‘conséquences are derived by the method we have developed earlier

I. Introduction. SDSI and physical processeé

.

The idea of quarks has turned out to be ruther fruitful for
understanding a lot of experimental data both on the probcrties
of elementary particles and resonances and on the ielations bet~
ween different reactions 1). The gquestion here arises'whethcr

this idea can help ohe to explain, e.g., the following prépcrtics

~of high energy processes: rapid decreasing of electromagnetic

‘form factors and largc-angle elastic scattering with increasing

energy, the BJorken scallng in deep inelastic QCdtterlng ‘proces—
ses, the multlperlpheral Regge character oi mult;ple productlon
and guasielastic scattering in diftraction region.

We have attempted to investigate the problem formulated above
within the fréhewonk of field theory of quarks intefaeting,ﬁith a '
scalar field ("dilaton"):

Lop = 400710 ) @

assuming the short distance ucale invariance (5DST) (which is

equivalent to the finite charge renormalization) and ucing the

consequences of the CDSI hypothesis for physical processes. These

2)-

"And the guestion stated above appears to be answered "yes'.

The ‘SDSI hypothesis itself means that far from the mass shell
\hnn all the eltcrnal momenta are large, i.c.,when all scalar

produCuu of the external momenta are as follows:
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all the amplitudes (or the Green functions) are hoﬁogeneous
- functions of momenta:

T.(Ae, AP = A T, (R, Pa) (3a)
the index of homogeneity being defined through the scale dimen-
sions of n external fleldg. )

| 28n=4¢ Z’c/ ' (3b)
where dq_—5/2—éa, d === EY are the scale dimensions of quark
and dilaton, respectlvely. )
In other words, the asymptotic behaviour of invariant amp-
litudes in region (2) should be

TCPP) ~ (Pz)ﬁ"c( ). @

This hypothe51s, however, concerns the behaviour of ampll-

tudes far from the mass shell, Our method of studying ;ts role
for physical processes is based on investigation of Feynman di-
agram aEymptotics of these processes 3). Theyresult of this ra-
ther complicated investigation (which incorporates the summation
of logarithms of divergent parts through the use of renormaliza-
tion group and SDSI hypothesis, resulting in the_ appearance of
bare coupling constant, Bg and anomalous dimensions, 59, gf? )
can be formulated as three rather simple rules 2)."
To begin with, let us oonsider»@iagrams of a process in a

region where some of variables are larger than the others:
Sq1 eses SO0 t1,‘..,, L% ms, and define as 5-BLOCK, Vsil,..sim,

such a block which,being contracted ;nto a point,"k111ls" the

dependence .on the large varlables, Bi 0000y Sy

i ip’
One of the most lmportant observations made in perturbatlon

theory is that the asymptotic behaviour ;s(connected w1th‘suchb
blocks. ) - -

It appedrs to be more convenlent for our considerations, to
work not -with the amplitude ltself but just with its ifellin

trensforn with respect to each of the large variables:

Btrsa
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The SDSI hypothesis then results in the following ruless .
Rule I: The scale regime of every of the sfblocks, vsiq---sim' 4
generates in the Mellin transform the single pole, (jiﬂ+...+jik459,
where E5v-is the scale dimension of s-block, V, given by exp.(3b),
defined by the number end sort of external lines of V.

The “scale regime’” means integretion over the region of small
distances (or, more correctly, over small X -parameters in the
so-called Schwinger representation) inside that block.

In other words, the Mellin transform of the amplitude is now

written in the followiqgfﬁyrm: ‘
clJ RY
-~ P, — (/i

where the flrst term corresponds to the scale contribution from

(e)

the block V, the second one is due to the nonscale confribution
from V and is defined by a subtraction procedure. Note, that
both C(j,t) and R (j,t) can possess a singularity due to.the
scale regime of other s-blocks. »

‘From exp.(3a) it is clear that for the leading siﬁgularity

(the most right one) just the s-blocks with pinimal number of

.external lines are responsible. And the more such "essential"

s-blocks (with maiimal dimensions) are simultaneously in the scale
regime, the hlgher the order of the pole.
Rule II: The coefficient for the leadlng pole of (6) is a product

of functions, one of which is determined by V in the scale regime,



depends upon 8o and is independent of t , and the other functions
are determined by weakiy connected parts, Gi; resulting frem the
contraction of V, i.e., _ )

CoCit)= Xy 81 Git) . @
Rule III: Only those s=blocks are allowed to be simultaneously in
scale regime which either have no common lines or are wholly one
inside the other.

Note, that in symmetric asymptotical region (2) the only
essential s-block is the whole diagram. In scale regime (according
to Rule I) it generates the single pole in the sum-of Mellin pa-
rameters .of all variables. Therefore the asymptotics in this re-
gion is of the form of -(4). v

In more complicated kinematical_regione a lot of the s-blocks
can be simultaneously in scale regime. This rises the order of
the pole, and it becomes necessary to sum up over all the pole
or@ers (i.e.,ever 511 poseibilities of‘ecale and nonscale regimes)
and over tﬁe number of blocks x). Rules II and III make it pessib-
le to perform thls summatlon. The summation method is slightly
dlfferent for various kinematical SLtuations (see refs. )) Here
(in Appendlx) we wiil demonstrate the method only by the case of
plon electromagnetlc form factor, in model (1). hs to the other

cases, we confine ourselves only to the flnite results presented

x) , : . . )
This summation is equivalent to summation o0f ' all logarithmié

‘terms for the senior power of large variables over:all diagrams.
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in Section II. And in Section III these results are discussed

from the experimental point of view.

IT. Results

Wlthln the framework of quark model (1), we have not yet
learned how to construct real baryons and mesons as bound states
of quarks, and we are consxderlng them merely as a collxnear
beam of quarks, and anthuarks, progected on tie spin and LuOSpln
states of the particle in question. This suhstitution,of course,
does not influence the -asymptotic behaviour. ApplenB Tules I-III
gives the following results. ¥ ’ ’

Pion form factor, q2;> mg, p'2=p2=m2 .

The block structure defining the asymptotics is given in
Fig.1; where the shaded blocks are two-particle” irreducible oncs.’

Each of the blocks, Vq,‘draWn in Fig.1. gives the pole atka-2—2£lﬁ
. 4

Ply

Fig.1

Ané summiné up efer the poles (for calculation prbcudure sec App.)
results in the following exprescion ifor the pion electromagnetic
form factor: . _(1 2" /- ;(* Gy -k, (34) »
Eq~) Y - a@@Y) aegy), ®
where kw and & are some functrons of 52; 1f we assume that

2 2 2

2
8o <1 then & 4F Bg a(bo) go,' k —12:50 anq'the plon.ioxm



. _ i ) Syi -
factor acquires the form: T(_g'}_),\. ‘)o(z )t -

. 1)
: - y2+003)
2 2 .
F2(9*) ~(9%) © \
Nucleon form factor (Fig.Z2) - 4 4 4£q' (kll-T -1) for FR~TT
In the same manner. for the nucleon form factor w;(;;tam: o where%: & s 5£q_. (kaﬂ_ kﬁ ) Ve s 0(33) for Nm-» Ny
o ' . <t T . P
(7‘)v(?‘) [( 7 4 LT é(—?‘/] e (10 o+ BEg= Uy ” - for MY
when go £&1. The block structure, including also the essential . . ¥or the dlfferentlal cross sectlon, this behavmur corres—-
s-blocks, is drawn in Fig.2. . ponds to the followxng shape: . AR
l'gsp*p ‘ - ‘ . d¢ ~10+O(3H) '
| ! = ~ 3
t X&), (82<< 1),

Lol¢

that is in good agreement with experiment 5), and so does the ’

(q ) -behav:.our of_ the nucleon ,ferm factor 6).
It is of especial interest that SDSI also permits one to

predict the behaviour of ‘f'(s/t)m the region s>>t>> m?‘, m2,

q
“which is defined by the s-blocks, Vs (Fige3): . .
P(S )~ T (< bn2) . (12)
s ————_ Y -
¢ C En S/t

whe:c‘e’Il is thé Bessel function and o 8, < 1. The exberimental
verification of this behaviour is one of the direct tests for the
SDSI hypothesis 7).,

Scattering in the diffraction region, s>»t, mg, ma.

" Here the essentl.al s-blocks are those of Fig.4 which lead

im.me'diately to a sort of the multiperipheral structure for the
Fig.3 e amplitude.
The essential s-blocks, vst' define the asymptotics in t for e/tqlzc

b
£3) .
Hote here should be made that in the limit 8,20 thls result f t

would turn into the analogous result of the papers if the au-
thors would ‘take notice of the pseundoscalar nature of pions. The
projecting factors,k ?J’(P) a;u(ﬂa— I "eat up" extra powers of
momenta in the processes with pion.




For the Mellin transform of the amplitude the quasi-Regge~type

formula then arises
P(it)- ce)fui)- Blt)] Cee), (13)

where C, B and W are matrices in the spin space of scattered
particles, C and B being known only as & series in the renormali-
zed coupling constant, g, and U(J) having square root branch
pointz;, the pos‘itions of which depend on goa). Hei‘e we point out
but some of the properties of this representation:

a/ In addition to the moving .Regge poles, due to det(U(J) -B(t))=0,
it has fixed square root branch points of the type \/..i—::; .

b/ The factorization theorem holds both for the moving poles and
f}:r the fixed branchA points. .
¢/ The channel with the exchange of fracuum quantum numbers appears
to stand out agéinst the others due to the possible 2)0- exchange.
d/ The channels with the exchange of exotic quantum numbers are
much suppressed. i ) ) . .

- To all appearance, in the limit gﬁ« 1 just the Regge poles
are the leading singularities. 7
Deep_inelastic scatterin ,lqzj ’ s>>m2,' mg .

For W= 5/-q":. 1, the essential-s-blocks are Vqs-blocks of

Fig.5:

‘10
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One can write only the foolowing expression:

S
WLT (Fw) =7 34} (1)“') #h ’KLr(J) (14)

where WL p are the form factors of deep inelastic scattering’
for the longitudinal and transversal virtual photons, Expressi-~
on (14) is equivalent to the sum rule 9,

k
jwncq,w) 42 = (O kG 15)

and breaks the scaling law (automodelity 10)) due to the factor
(-q2) (& (3)-1)- =€q . ‘In the limit 50441 the power of that factor
is small (=~ go), and we have the approximate scaling law.

In the region (0 >>1 those leading singularities of K(j)
are essential which arise due to scale reg_ime of the s-blocks, Vs-,
and prove to be the same oL (o) (orolo) as in exp.(13), i.e.,

‘ K(;j)g(U(;j)-B(O))'1, the form factors behaving here as follows:

km-i-z‘,

W, ~ @™ (-1 (@»1).  (16)

This region also 1s very suitable for expenmental check of SDSI.

>

-

Inclusive processés. For these the modified Miller picture natu-

rally arises 1112) with (U(§)=-B(t))™ instead of (;j—.»((t'))"]

The Feynman scaling of normalized cross section E—i e—l_’—f; f(-‘ “e )
holde automatically for the leading Regge pole and is broken
logarithmically in the pionization region for the fixed cut.
However, SDSI tells nothing about scaling of the abs.olu.te inclu~-
sive cross sections. This scaling is entirely connected with the -

intercept of leading Regge pole,K (0)=1. For the.leading term

of f(s,qc) in the region of large transverse momenta, qf» (21,

1-x,<¢1 (the central region, Fig.6) we can obtain



‘ Fig.6 ) : /
iyt T R lan Fekyt)
4 ) 2. for W, W
r.,_ _ l‘?- kz ’ T
$¢‘= 3 “'16'1(2- *_i)-*(i @ ") for vector mesons, (17b)

2 . i ‘ . for Y,

where y* is the c.m.s. rapidity of particle c, m, = Vmg +qz,
,

n, the number of quarku constituting the partlcle C.
2

“hen 8y <1 the second and third terms. in (17b) are of an

2 X F oD
order of 29 Therefore, for the reaction pp’ﬁorptx;e.g., we
. obtain the expressi
pression _3+0(3%)

fes90~ m. T po- Z;”‘c@)

which is in good agrecment with experiment 2 18).

ITT. Discussion, .-

The general conclusion on the previous section is that the‘
~quark model, with the bDoI hypotheS1s and weak bare coupling
constant, g04(1, pretends not only to the qualitative descrlptlon

of main features of hlgh—energy phenomena but also to the-

_.._....._-.-_-.
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electromagnetic form factors, large-angle elastic scattering and
inclusive productions with large transverse momenta. The natural
question here grises: What comes from the quark model itself -and
what from SDSI? What, for instance, would the asjmptofical free-
dom in the quark model give? The answer is almost evident: The.
results which are conserved in the limit g§;7 O are proper to
the quark model itself (may be, up to some logarithmic factors).
Thus, the real experimental test for SDSI would be discovering
the consistent deviation of the powers from those integer numbers

which arise in the limit ge

-> 0.

The experimental data presently available on the nucleon
formvfactor, NN large-angle scattering, deep inelastic ep-scat-
tering and inclusive pion production seem to testify to a small
value of such extra powers (~0.1 + O.3). However, thé experimen-
tal errors, being of the same order of magnitude, do ﬂét allow
us to distinguish between SDSI and asymptotical freedom. There-
fore, increasing acé:racy, at least, of two of these experiments
may turn out to be crucial (one of these experiments will provide
fhe value of 8o the second will allow the check of theoretical
extrabpowers). Theoretical calculations for these extra powers
are now in progress. '

It is well known that the quark model itself raises a series
of problems: Why is the ratio R=g (e*e™> hadr)/ & (ete™spit")
st111*grow1ng up to s=25? Why can nobody observe quarks ? Why
does the backwardAw*p(n‘ﬁ)-scaﬁte:ing cross section, with the

main contribution from the nucleon quantum number excharige, Slow

‘its decrease 13) from s> (CXN(0)=-1/2), below 20 GeV, to ~s=3/2

13



(:iN(o)zﬂ/4), in the region 20 +. 40 GeV ?

The first question should be hardly considered seriously“l
at the present time, First, our experience on the nucleon form"
factor, viz., its large distinction in the spaceflike and time-
like regions, shows that in the time~like region the asymptotics,
probably, sets in much later. Second, scale.invariance tells
only thet R — const., but does not link this constant limit
with the charges of constituents, like the parton model. Thus,
it seems too early to draw any serious‘conclusion from the growth
of that ratio R.» )

The latter question, however, may turn out to be cruclal for
any quark (and, in general, for any comp051te) model of nucleon.
Really, no high~-lying traaectory w1th nucleon quantum numbers :
which could explaln such a slow decrease of the cross sectlon
is observed now in the resonance reglon. And a sudden curvature
of N, (or Na)etraaectory_ln the region u ¢ 1 GeV 'is also not
grounded wellAenough.FLetvus conjecture for a moment that the
region 20 + 46 GeV is artransitional one and that some NAl—ex-
periment at higher energy will give us the s~V-1aw of decrease(and

absence of the cone shrrnkage) The only e;planatlon for this

would be an elementary gnonrebgelzed) partlcle w1th nucleon quan—

tum numbers. Such a hypothesis even now agrees very well with the
presently available data jq).'This explanation is justified also
by the absence of Machowel symmetry of resonances 1/2%: there are

three resonances 1/2% and only two resonances 1/2° 15) (thé same

is true for A -resonances, but Zl-resonances obey that symmetry)

Then, a tempting question inevitably orises:. 1Is one of}the 1/2+

—resonances,1400 or 1700,the very quark which is so persistent—

~ly searched for? (A nucleon itself cannot be quark because of
very rapld decrease of formfactor and large-angle scattering
cross section and because of the automodellty in deep inelastic
scattering.) Why not ? The integer electric and baryon charge ?
But quarks can be "coloured". Too small mass ? But why must 1t
be large ? And what is more, the attempt to obtain rising Regge
trajectories within the quark model resulted in the quark mass
m°&1 GeV 16) Surely, to explain"the backward pion-nucleon scat-
terlng baryons should be constltuted of two quarks and one anti-
quark as, e.g., in the Van Hove model 17),

We are, of course, conscious of that there is a lot of fan-
tasy above. The matter is that we would lige to draw attention
of experimentalists to the backward 173(7Fn)-scattering and its
great interest for the whole elementary particle physics. The
same can be said about inclusive processes p - T in the re-
gion 1-x < 1/40.

Those, who d% not like this philosophy, are free to disre-
gard the recent experimental points on backward soattering and
can try to put the disobedient quarks into an "asymptotical pri-
son". Who knows, however, how to reach the ideal ?

‘The author is sincerely thankful to D.TI. Blokhlntsev, P.N.Bo-
goljubov, R.N.Faustov, A.T.Flllppov. I.¥.Ginzburg, A.M.Lev1n,
V.A.Matveev, R.M.HMuradjan and D.V.Shirkov for fruitful discus-

-sions.
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ippendix
Here the application of Rules I-IIT is illustrated by cal-
‘- culating the pion electromagnetic form factor. The s-blocks for
< I - . : “
qu>14hre those whose contracting converts the initial diagram

dravn in Fig.?7a into the diagram on Fig.7bv

i : ‘{ :
{ F-0OO-000 =T
(a) &) ' '(c)

Fig.7

Theknumber of external lines of eagb block has to be not less
than five.(including the photon line), i.e.,the leading singu-
larity is»due to scale regime of the blocks Vé drawvn in Fig.7c,
the simplest of them is shown in Fig,.?7d. The dimension of each
of the blocks, according.to (3b), is 55 —3/2-2&, ( éi—o) Ta~
king into account that :

F (g (o) Sp (77 F, 'quq ‘?) "
ve findvthat scale regime of Vq generates the pole (j+2+2£q)"1
in the Mellin t:gspform of F,(qz)..It is easy to understand that
the maximal possible number of b'locl_:s V, is determined by the
‘number of irreducible kernels of Fig.1. Any connected union of
kernels, including the kernel O, -is the s-block, Vq. To take
account of all the poles, we should examine all possibilities of
scale énd nonscale regimes for all the s-blocks. Owing to Rule IIT
all the scaled blocks (i.e.,blocks in scale regime) are wholly

one inside the other.

Consider a diagram with (n+n'+1) kernels (Fig.1). Let the
senior scaled block begins at m-th kernel and ends -at m'-th one

(the union gm,m{f )+ By Rule II, this situation gives the term

1
Gn_m(pz,gz)vg(a,go)Can(p,g ) , where vm is the contribution

from the scaled block m,m' whlch is some polynomial in
(j+2+2£§)'1, and C,_ -y Cpv_pe are contributions from the nonsca-
led ends. Allow1ng for all the p0951b111t1es, we can write

¢) L= Z C,,M(P‘j)'lfmC/g,)C el 4) ¢ RY B

X 'ﬂ,‘l’D
where C o1 and R 1s regular at the point j-—2—26 .

Now let us examine the quantity vﬁ . According to Rule I,
it has the pole (j+2+2£§)-1 the coefficient for which, by Rule II,
is either the product of contributions from the subsequent scaled

s-block, say v:', and from nonscaled ends k and k, ., Tremain-

n-5
ing in fm,m'{ after contracting of {s, s , or .that from the
contracted blocks VO m vm (Fig.1b). Examining all the possibili-

tles leads to

(o202, )8 GT)Thns BT, a:')/rnl,'fsz (2. @2

~ N335 )+ (12028 )80 3)8.207T0)

wherse r corresponds to the absence of internal contractions,
r8;0, k°;1, and the quantity vg should be subtracted in order
to avoid the double counting of contraction: of the whole {m,u'{
block. i ‘ )
Summing egs.(A.1),(A.2) over the number of kernels gives

the equations : ' ) ..

D P /J" - C‘(/J‘s')vﬂj )C(f"z?‘)
(142428 )00G.92)= k4g2)BG,g2) ¢ P Y- VR 2 0*?*257‘/4"0‘15 4)

17



(r2 4285 )093 )= RG2S % rol)- sUE)

the solution of which is y ,
‘ ) r‘(j’_}.p o (./fZifo} . 5 @ 5
. 2 _ 2., bd (1*.!428?122-4')2 rerp’ . .
é(f,f;z/ol J=C(F") j+2+287 +(4- kl(jf)) cteya)+ R

Substituting (A.3) into (5) and integrating over j around the

poles immediately gives result (8).

The other results can be derived in a similar way.
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