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Summary 

Within the framework of field theory· 
of quarks, interacting with a scalar (or 
pseudoscalar) field, a series of hadron 
processes are considered, employing the 
consequences of the short distance scale 
invariance (SDSI) hypothesis for the on-mass­
shell processes. A weak bare quark interac­
tion is required for theoretical results 
to

2
be consistent with exp~riment on large 

-q · nucleon electromagnetic form factor, 
high-energy large-angle elastic PP -scatter­
ing. large-q~ pion inclusive production and 
deep inelastic ep -scattering. A number of 
predictions are formulated concerning ana­
logous processes with other particles. · 
A possibility for experimental check of the 
SDSI hypothesis is discussed, as well. 
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I. Introduction: SDSI and physical processes 

The .idea of quarks has turned out to be ruther fruiti'ul t·or 

understanding a lot of experimental data both on the properties 

of elementary particles and resonances and on the relations bet­

ween different reactions 1 ). The question here arises whether 

this idea can help one to explain, e.g., the following properties 

of high energy processes: rapid decreasing of electromagnetic 

form factors and large-angle elastic scattering with increasing 

energy, the Bjerken scaling in deep inelastic scatte_rin{; ·proces­

ses, the _multiperipheral Regge character of multiple production 

and quasielastic scattering in diffraction region. 

We have attempted to investigate the problum formulated above 

v1ithin the frameworj{. of field theory of quarks interucting with a 

scalar i"ieid ("dilaton"): 

I .. t = :J rt,.) r'·1 r1~1 (1) 

assuming the short distance ::icale invariance (:rnsT) (·::hich i::; 

equivalent to the finite charGe renormalization) and ucing the 

consequences of the SD!JI hypothcs_is for phy::iical processe::i. 'i'hese 

consequences are derived by the method vie have developed earlier
2

). 

And the question st_ated above appears to be ans~ered "yes'.'. 

The SUSI hypothesis itself means that far from the mass shell 

,;hen all ·the exturnal momenta are large, i.e. ,1·:hen all scalar 

product::; of the external momenta are as follows: 

, .:t 
P· · r ~ P ~ ""> > ~ ' 
, \ J l 

(2) 
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all the amplitudes (or the Green functions) are homogeneous 

functions of momenta: 
. J.'iin-r ( ) Tn (A!\,• .. j\ Pri) = /\. In Pi,,··· P., (3a) 

the index of homogeneity being defined through the scale dimen­

sions of n external fields: 

2bn = 4 ;-j~ ,; (3b) 
' 

where dq=-3/2-~, d'f =-1-£, are the scale dimensions of quark 

and dilaton, respectively. 

In other words, the asymptotic behaviour of invariant amp­

litudes in region (2) should be 

TCPJ~;J ~ (r)~C(j}'J.. (4) 

This hypothesis, however, concerns the behaviour of ampli-

tudes far from the mass shell. Our method of studying its role 

for physical processes is based on investigation of Feynman di­

agram a~ymptotics of these processes 3). The result of this ra­

_ther complicated investigation (which incorporates the summation 

of logaritbins of divergent parts through the use of renormaliza­

tion group and SDSI hypothesis,- resulting in the.appearance of 

bare coupling constant, g
0

, and anomalous dimensions, c'l, £ Y' ) 

can be formulated as three rather simple rules 2). 

To begin with, let us consider -~iagrams of a process in a 

region where some of variables are larg~r than the others: 

s1 , ••• , sk>>t1 , ••~• tr, m~, and defineafl S-BLOCK, Vs
1 

, •• sim' 

such a block which,being contracted into a point,"k1.lli11 the 

dependence . on the large variab.les_, sl.. , ••• , sl.. • . 
· 1 · m· 

One of the most impqrtant observations made in perturbation 

theory is that. the asymptotic behaviour is connected with such 

blocks. 

4 

It appears to be more convenient, for our considerations, to 

work not with the amplitude itself, but just v;lth its ;,!ell in 

transforu with respect to each of ½he large variables: 
b+,..., ·• Ii, . 

• / iC In o/1,:_(-s .. J ,;:;., . , J TCs,,. .. Sic,l;-)-:{i.}J- s· n'r(l,';-1J':t-'{J1•···J,,,tr • 
"F-io0 /I? J[ t . 

(5) 

The SDSI hypothesis then results in the following rules: 

Rule I: The scale regime of every of the a-blocks, Vs· 
8

. , 
.t1 • • • .Lm ·f 

generates in the.Mellin transform the single pole, (ji
1

+. • .+jik-~, 

where bvis the scale dimension of a-block, V, given by exp. (3b), 

defined by the number and sort of external lines of V. 

The "scale regime" means integration over the region of small 

distances (or, more correctly, over small Qi. -parameters in the 

so-called Schwinger representation) inside that block. 

In other words, the Mellin transform of the amplitude is now 

written in the following form: 

,;;,:_ J t ) ,,. _c CJ, ~} t-
':i:' ( I • (J;_+•••f-J~',.,-'bv) 

'• where the first term corresponds to 

RvC,/-J, 
the scale 

(6) 

contribution from 

the block V, the second one is due to the nonscale contribution 

from Vandis defined by a subtraction procedure. Note, that 

both C(j,t) and R (j,t) can possess a singularity due to the 

scale regime of other a-blocks. 

From exp.(3a) it is clear that for the leading singularity 

(the most right one) just the s-bJ:ocks with minimal number of 

external lines are responsible. And the more such "essential" 

a-blocks (with maximal dimensions) are simultaneously1n the scale 

regime, the higher the order of the pole. 

Rule II: The coefficient for the leading pole of (6) is a product 

of functions, one of which is d_etermined by V in the scale regime, 

5 



depends upon g
0 

and is independent oft, and the other functions 

are determined by weakly connected parts, Gi' resulting from the 

contraction of V, i.e., 

Cc;U,t)=XvO ,~.,)f1¢c/Ji-,ir). (7) 

Rule III: Only those a-blocks are allowed to be simultaneously in 

scale regime which either have no common lines or are wholly one 

inside the other. 

Note, that in symmetric asymptotical region (2) the only 

essential a-block is the.whole diagram. In scale regime (according 

to Rule I) it generates the single pole in the sum of Mellin pa­

rameters .of all variables. Therefore the asymptotics in this re­

gion is of the form of ·(4), 

In .more complicated kinematical regions a lot of the a-blocks 

can be simultaneously in scale regime. This rises the order of 

the pole, and it becomes necessary to sum up over all the pole 

orders (i.e.,over all poss~bilities of scale and nonscale regimes) 

and over the number of blocks x). Rules II and III make it possib­

le to perform this summation, The summation method is slightly 

different for various kinematical situations (see refs, 2)). Here 

(in Appendix) we will demonstrate the method only by.the case of 

pion electromagnetic form factor, in model (1) •. As to the other 

cases, we confine ourselves only to the finite results presented 

zj . . . . 
This summation is equivalent to summation of a11· logarithmic 

·terms for the senior power of large variables over all diagrams. 

:;f 

"'6 

in Section II. And in Section III these results are discussed 

from the experimental point of view. 

II. Results 

Within the framework of quark model (1), we have not yet 

learned how to construct real baryons and mesons as bound states 

of quarks, and we are considering them merely as a collinear 

beam. of quarks, and antiquarks, projected on t;,e spin and inospin 

states of the particle in ques.tion. This su~st1tut1on,of course, 

does not influence the ·asymptotic behaviour. ApplyLng J;ulcs I-III 

gives the following results. 
. . 2 2 2 2 2 ?ion form factor, q >> ~• p' =P =m • 

The block structure.defining the asymptotics is i::;ivcn in 

Fig, 1; where the shaded blocks are two-particle .. irreducible ones.· 

Each of the blocks, Vq' ·drawn in :Fig,1. 15ives the pole at j=-2-2l"q' 

I 9= p'•p 
. . ,. . V, 

r----L----:, 9 

;;, ~-~~.~-7~1 
I ~----.:J I L_ ________ ...J 

n m ..\ a .s• m' n• 

(a) 
Fig,1 

I 

~ I v, 
r.-L-J;----,. 

~ ~- _!../ , ___ _, 

d> 

And summini::; up over the poles (for calculation procedure sec App.) 

results in the following expresr· ion for the pion electroillat;netic 

form factor: -(.uiEy) ,-k;c,:; i-K,,.t's.') 

F,; (92.) ~frt.) . _'ft) . - Q{l: J(:,9
1
) &,c-r1l, (B) 

where k,. •and E are some funct.ions of' g2• If we assume that ., q . 0 

g2 ~<. 1 then E ~ g2 ; a ( 1/) ,;,:, g2, k2-1 ~ r,2 and the pion form. 
0 ·1 0 0 0 0 
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factor acquires the form: 

F1r Cf·) ""(:92.F1 .. o(
3:J (9) 

Nucleon form factor (Fig.2) 

In the same manner, for the nucleon form factor we obtain: 

-<.h·3£fl ,.1r£ . ,-1r -i-+otroJ 
~('f~·..,tf) Zer) + Cl,)t)(-t) '!n(-rJ}zf92J O 

(10) 

when g~.C<.1, The block structure, including also the essential 

s-blocks, is drawn in Fig,2. 
I 'I• p •- p 
I 
I 

r r===:-17V -- 7 v., 
%~·-··1··'·~ 

. ,_~-------.J ___ ..J 

.Fig,2 

~

'Ii 
P'/;s 
P'/-!, 

Large-angle elastic scattering, s, t >>m2, m~ (Fig, 3). 

Y, .,,,,------- ----- --
---------

t 

- . -----------

s 
Fig.3 

The essentials-blocks, Vst• define the asymptotics int for s/t,;1_t 

X 
Note here should be made that in the limit g -, o this result 

would turn into the analogous result of the pa;ers 4 ) if the au­
thors would.take notice of the pseudQscalar nature. of pions. The 

projecting factors, Y-(f') t,uc,J- fflr, "eat up" extra powers of 
momenta in the processes with pion. 

8 

)) 

•' 

.s -'b 
TC s ,t ) ~ 'fC-t: ) l (11) 

. 4 + 4lq- (k 7i -1) 
{ 4 -1}~ for 1r1r ... ~li" 

2 2 where ~:: 4 + 5c.q..., (k 7f kN 11- + O(g;) for N7i ➔ N;;-

· 4 + 6fq- ci4 -1> for NN •-; mr. 

• J!'or the differential cross section, this behaviour corres­

ponds to the foilowing shape: 

:: ~ t-/O-t-0{3f)J(¼,) ' (g;.::< 1 ), 

that is· in good agreement with experiment 5), and so does the · 

( 2)-2 ha . · . 6) q . -be viour o~ the nucleon.form factor • 

It is of especial interest that SDSI also permits one to 

predict the behaviour of Y,(S/t)in the region s >>t :>> m2 , m~, 

~which is defined by the s-blocks, Vs (Fig-3): 

'f(~ ) ~ _ .. I:1. C°'.o Br,,¾) c12) 
t. • .· ·£,,,, s /t. ' 

where· I 1 is the Bessel function and o< 
0

~ g
0 
~ 1. The experimantal 

verification of this behaviou~ is one of _the direct tests for the 

SDSI hypothesis ? ) • 

Scattering in the diffraction region, s :>> t, m~, m2• 

Here the essential a-blocks are those of Fig,4 which.lead 

immediately to a sort of the multiperipheral structure for the 

amplitude. 

t 
- • 1 L: - - _.:..... 1 - L" - - - VJ . __;;:::::,-

~ ;•------- ·: 

Fig. 4 
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For the Mellin transform of the amplitude the quasi-Regge-type 

formula then arises 

q>(f iJc ((t) [uUJ-- 8{tJT$C(t), (13) 

where c, Band U are_matrices in the spin space of scattered 

particles, C and B being lmown only as a series in the renormali­

zed coupling constant, g, and lI(j) having square root branch 

point~, the pos.itions of which depend o~ g
0

8 
), Here we point out 

but some of the properties of this representation: 

a/ In addition to the moving Regge poles, due to det(U(j) -B(t))=O, 

it has fixed square root branch points of.the type Vj--ot; . 
b/ The factorization theorem holds both for the moving poles and 

for the fixed branch points. 

c/ The channel with the exchange of vacuum quantum numbers appears 

to stand out against the others due to the possible 2'f- exchange, 

d/ The channels with the exchange of exotic quantum numbers are 

much suppressed. 

To all appearance, in the limit g~ 4::, 1 just the Regge poles 

are the leading singularities, 

Deep inelastic scattering, 1q2J , s >>m2 ,' m~ • 

For w = 'f,/-~z. ,z 1, the essential· a-blocks are V gs-blocks of 

Fig,5: 

''1r- --------
' I 

I 
·p~ ~: '01 IQ L':....;.-~J ., •. ~ ,., 

/, .... ---_-:.:: ... -:..= .:.·..:.. - :.a__J . ·. - ·. ' ·, '. . . _;/. 
f ~ · .. - _,. ~-.·· · ... . ----s 

Fig, 5 

'10 

{ 
t. 

l 
~ 

,' 

I 

I 

l 
I 

l 

one can write only the foolowing expression: 
· "• ;,; lc(jH-£7 j · 

WL T (1~w)-= f j ttj (-1') w KL,f(J ), (14) 
• '?-i .... 

whereWL T are the form factors of deep inelastic scattering· 
• t 

for the longitudinal and transversal.virtual photons, Expressi-

on (14) is equivalent to the sum rule 9): 
, "IA) c • kti )-1-i1 kc. 
jv.lL,i (~\w) c:..;it!-=- --'l) \ I) (15) 

i 
and breaks the scaling law (automodelity 10)) due to the factor 

(-q2)(k (j)-1)-Eq • In the limit g~Lc:.1 the power of that factor 

is small (~g~), and we have the approximate scaling law. 

In the region u.l >>1 those leading singularities of K(j) 

are essential which arise due to scale regime of the a-blocks, Vs• 

and _prove to be the same ol. (o) (orot
0

) as in exp, (13), i.e., 

K(j)z(U(j)-B(o))-1 , the form factors behaving here as follows: 
k (.,.J .. 1.-t

1 
· 

W ~ lv.,( (-'f 1J {cJ>>1), (16) 
L,T . 

This region also is very suitable for experimental check of SDSI. 

. 
Inclusive processes. For .these the modified Muller picture nat~-

rally arises 11 , 2), with (U(j)-B(t))-1 instead of (j-o<(t))-1 , 

The Feynman scaling of normalized cross section :c ~~t"" = fcs.'i..) 
'iut "' I, 

holds automatically for the leading Regge pole and is broken 

logarithmically in the pionization region for the fixed cut. 

However, SDSI tells nothing about scaling of the absolute inclu­

sive cross sections, This scaling is entirely connected with the 

intercept of leading Regge pole,<X (o)=1~ For the.leading term 

of f(s,qc) in the region of !!!:rge transverse momenta, q~~> m~, )1,1~ 

1-xJ. ~" 1 (the central region, Fig.6) we can obtain 
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C 

6 

a 
_: Sr, L~---Sa~- · - lcl- ____,.-

So1: S 

Fig.6 J . ,, 
5 ( S, 9,J ~ (M: j"o'- 'fc (j .. -. 

2Jt C hf') 
(17a) 

»,~ [: \ + ie, <cr'° •i)+ (,- k'..k'..J 
·for N, 7f

1 

for vector mesons,(17b) 

for r, 
where y"' is the c.m.s. rapidity of particle c, m,= Ym2 +qZ: 

- C Jo 
nc the number of quarks constituting the particle c. 

\':hen g~ <::<. 1 the second and third terms. in (17b) are of an 

order of g~. Therefore, for the reaction pp-;r;orp+X, e.g., we 

obtain the expression 
- 8-+ 0(3.2J 2. rn J, 

fcs.'f,J~ m.1. 'f(1- rs"'c y'') 
which is in good agreement with experiment 12•18). 

J:II. Discussion,.· 

The general conclusion on the previous section is that the 

quark model, with the SDSI hypothesis.and weak bare coupling 

constant, g~<{1, pretends not only to the qualitative description 

of main ~eatures of high-energy phenomena but also to the 

guantitative description of small-distance effects. These are the · 

12 

electromagnetic form factors, large-angle elastic scattering and 

inclusive productions with large transverse momenta. The natural 

question here arises: What comes from the quark model itself and 

what from SDSI? What, for instance, would the asymptotical free­

dom in the quark model give? The answer is almost evident: The­

results which are conserved in the limit g~-, O are proper to 

the quark model itself (may be, up to some logarithmfo factors). 

Thus, the real experimental test for SDSI would be discovering 

the consistent deviation of the_Eowers_f'rom those intes.er numbers 

which arise in the limit g;_;t_Q• 

The experimental data presently available on the nucleon 

form factor, NN large-angle scattering, deep inelastic ep-scat­

tering and inclusive pion production seem to testify to a small 

value of nuch extra powers (,-0.1 -t o. 3). However, the experimen­

tal errors, being of the same order of magnitude, do not allow 

us to distinguish between SDSI and asymptotical freedom. There-

' fore,increasing accuracy, at least, of two of these experiments 

may turn out to be crucial (one of these experiments will provide 

the value of g
0

, the second will allow the check of theoretical 

extra powers). Theoretical calculations for these extra powers 

are now in progress. 

It is well known that the quark model itself raises a series 

of problems: Why is the ratio R=6 (e+e-~ hadr)/ 6 (e+e--/'~/<-) 

still growing up to s z 25? Why can nobody observe quarks ? Why 

does the backward 1rtp(~-n)-scattering cross section, with the 

main contribution from the nucleon quantum number exchange, slow 

its decrease 13) f'rom s-3 (o(N(o)=-1/2), below 2o GeV, to ~s-3/2 

1~ 
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(c(N(o)dl/4), in the region 20-+ 40 GeV? 

The first question should be hardly considered seriously ·· 

at the present time, First, our experience on the nucleon form 

fact?r, viz., its large distinction in the space~like and time­

like regions, shows that in the time-like region the asymptotics, 

probably, sets ½1 much later. Second, scale invariance tells 

only that R ➔ const., but does not link this constant limit. 

with the charges of cogstituents, like the parton model. Thus, 

it seems too early to draw any serious.conclusion from the growth 

of that ratio R. ,, 

The latter question, however, may turn out to be crucial for 

any quark (and, in general, for any composite) model of nucleon. 

Really, no high-lying trajectory with nucleon quantum numbers-­

which could explain such a slow decrease of the cross section 

is observed now in the resonance region. And a sudden curvature 

of N,,i(or N~)-trajectory in the region u < 1 GeV is also not 

grounded well_ enough. Let. us conjec·ture for a moment that the 

region 20-+ 40 GeV is a transitional one and that some NAL-ex­

pcriment at higher ener~ will give us the s-1-law of decrea~~(and 

absence of the cone. shrinkage):. '.£!!:~~!!!L~~lanation for this 

would_be_an elementary_{nonreGGeized2_Earticle ~ith nu~leon_guan­

tum numE~E~· Such a hypothesis even now agrees very well with the 

pre~ently available data 14). This explanation_is justified also 

by the, abse~ce of Macllowel symmetry of resonances 1/2!: there are 

three resonances 1/2+ and orily two resonances 1/2- 15) (the same 

is true for /i -resonances, but I-resonances obey that symmetry_). 

Then, a tempting question inevitably arises: Is one of_ the 1/2+ 

-resonances,1400 or 1700,the very quark which is so persistent-

14 

-ly searched for? (A nucleon itself cannot be quark because of 

very rapid decrease of formfactor and large-angle scattering 

cross section and because of the automodelity in deep inelastic 

scattering.) Why not? The integer electric and baryon charge? 

But quarks can be "coloured". Too small mass ? But why must it 

be large? And what is more, the attempt to obtain rising Hegge 

trajectories within the quark model resulted in the quark mass 

mq~~ GeV 16). Surely, to explain.the backward pion-nucleon scat­

tering baryons should be constituted of two quarks and one anti­

quark as, e.g., in the van· Hove model 17). 

We are, of course, conscious of that there is a lot of fan­

tasy above. The matter is that we would like to draw attention 

of experimentalists to the backward 11p(,r-n)-scattering and its 

great interest for the whole elementary particle physics. The 

same can be said about inclusive processes p ➔ 71'" in the re­

gion 1-x < 1j 40. 

Those, who cfo not like this philosophy, are free to disre­

gard the recent experimental points on backward scattering and 

can try to put the disobedi!3nt quarks into :9-11 "asymptotical pri­

son". Who knows, however, ho_w to reach the ideal ? 

The author is sincerely thankful to D.I.Blokhintsev, P.N._Bo­

goljubov, R.N.Faustov, A.T.Filippov, I.F.Ginzburg, E.M._Levin, 

V.A,!.iatveev,_ R.M.Muradjan and D.V.Shirkov for fruitful discus­

-sions. 

15 · 



• 

ilJ2Ecndix 

Here the application of_Rules I-III is illustrated by cal­

culating the pion electromagnetic form_ factor~ The s-blocks for 

q2,,--~are those ·whose contracting converts the initial diagram, 

drawn in Fig,7a into the diagram on Fig,7b 

I 
I 

0 
ca) 

- ~-000 
c I, ( c) (d) 

Fig,7 

The number of external lines of each block has to be not less 

than five (including the photon line), i~e.,the leading singu­

larity is due to scale regime of the blocks v
4 

drawn in Fig,7c, 

the simplest of them is shown in Fig,7d, The dimension of each 

of the blocks, according.to (3b), is '2>v=-3/2-2t,1 (ci=O), Ta-

king into account that .f fl 

Frr(92)(r•fJ,.z Sf(a's- F,f.r,'ff rs) 
we find that scale regime of V generates the pole {j+2+2E )-1 

. q q 

in the Mellin tras~form of F~(q2). It is easy to understand that 

the maximal possible nUlllber of blocks Vq is determined by the 

_number _of irreducible kernels of Fig,1, Any connected union of_ 

kernels, including the kernel O, -is the s-block, V q' To take 

account of all the poles, we should examine all possibilities of· 

scale and nonscale regimes for all the s-blocks, Owing to Rule III 

all the scaled blocks (i,e,,blocks in scale regime) are wholly 

one inside the other. 

I& 

Consider a diagram with (n+n'+1) kernels (Fig,1), Let the 

senior scaled block begins at m-th kernel and ends at m'-th one 

(the union fm,m•j ), By Rule II, this situation gives the term 

Cn-m(p2 ,g2)V:(j,g;)cnLm{p~g2) , where V:' is the contribution 

from the scaled block m,m• which is some polynomial in 

(j+2+2Eq)-1 , and Cn-m' Cn•-m• are·contributions from the nonsca­

led ends. Allowing for all the possibilities, we can write 
n n' n' 1. • m' , · 

¢nU,P~I" J=I. cn-r,,lP~1)'1f,.,(J,~:)cn:.,.,,(.,:tJ~ ~:, (A, 1 ) 

mr'•o 
where C

0
~1 and R is regular at the point j=-2-2tq. 

Now let us examine the quantity V:'• According to Rule I, 

it has the pole (j+2+2eq)-1 the coefficient for which, by Rule II, 

is either the product of contributions from the subsequent scaled 
s• s-block, say vs, and from nonscaled ends km-sand km•-s• remain-

ing in fm,m•1 after contracting of ls,s•I, or .that from the 

contracted blocks v!, ~• (Fig.1b), Examining all the possibili­

ties leads to 

(j .. 2 ♦ 2 '-f )rf ';,1
(1): )=,l-k,,._$ c3;J1f/(~'3.')k,,,!.~; (j. ') + r:: ( ~o l) - (A. 2) 

- ?5':..
1 

( i,3/) + (i+.z;.U~)lf"';'tll!}v:(/., .. J 
f / I "' ,11• f 

where r! corresponds to the absence of internal contractions, 

r~;O, k
0
a1, and the quantity V:' should be subtracted in order 

to avoid the double counting of contraction of the whole fm,m• / 

block, 

Summing eqs,(A.1),(A,2) over the number.of kernels gives 

the equations .. 
,-f... • 2 tl ( 2 ') -✓-/ql}C(O'~ql.J ~(J, l',IJ ) :s .,C f', 3 Z) v,<f• . , , t/ /· 

( j.i ➔2£1 JV-Ci.~.2)= k 2<2.tJvU,3;) + rc3,'J-v(/J.'J-dJ+z-1~E,J~(juJ c'j} 

;17 



(j.-2+2c1J15°(.i,,:J-= kCJ/)v 0
+ r,:,lj.')- 1>

0

(1,3:) 

the solution of which is 
roil.{ /~2 •2. ~1) 

r'"~) .......,..---,.~r.-,""".t :I. 
L 1.,/. -4- {j,1,.t+lf/_tU.•/;"J) (:(p'~) 

q>(i,l'~f',1')=C(P,~
1J j-t-2..,J.21+(i-k"{9:J) ' t 

f?.. (A.3) 

Substituting (A.3) into (5) and integrating over j around the 

poles immediately gives result (8) • 

The other results can be derived in a similar way. 
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