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I. The method exploited now for describing the high
energy inclusive processes is .just the phenomenological 

·Regge analysis suggested by Mueller /I, 2~ Also investi-
gations of these processes are undoubtfully of current 
interest within the framework of Lagrangian field theory 131. 

In the present paper an attempt is made to apply to 
these processes the approach which is known now as the 
straight-line path a1mroximation in quantum field theory / 4~ 

As has been showq I 4' s I this approximation results in the 
eikonal representation of elastic scattering amplitude at 
high energies and small momentum transfers. 

The calculation scheme is rather simple. One starts 
with constructing the three-particle elastic forward sca,t- . 

. tering amplitude (in' the above approximation). The dis
continuity of the amplitude in the appropriate energy 
variable gives the inclusive cross section/ 1 , 6 I. 

For simplicity, we consider scalar "nucleons"· inter
acting with neutral vector mesons: f int= -ig I/; a· al 1/1 A 11

• 

Just in this model the eikonal approximation provides the 
. correct high energy behaviour for the sum ora.11 possible 
iadder diagrams /4/. 

We have shown that in the above approximation the 
inclusive cross section appears to be independent of 
energy variables s , t , u in both regions - •fragmentation 
one and that of pionization, and it is only a function of 
q12 ( 91 is the transversal component of momentum of 
tne detected particle). 

II. Consider ·· now the· inclusive reaction a + b ➔ c+, •. 

(Fig. 1). 
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Fig. 1. 

Its invariant cross section when all the three particles . 
a, b, c are scalar (nucleons, t/1 ) can be represented as 
follows * 

➔ da· 
(211) 3 2w(q) cl¾ = f(s,t,u) = 

1 -iqy 
f.dye <a,b{+) lj(y)j{O) la,b{+)>, 

4y'(p p )"2 -m 2m 2 
a b a b (1) 

where j ( x) is the current corresponding to c -par
ticle. This cross section is, in general, a function of 
three variables. The latter can be chosen from four 
variables s, t, u and M 2 where 

2 
s=(pa+pb), t (p -q), 

a 

2 2 
s + t + u = M + 3m • 

2 
u = (pb-q) ' 

The inclusive cross section (1) relates to the elastic 
scattering amplitude·· . T for the process a+ b+ c ➔ a+ b+c 
in the following way /I, 2, 6/ 

-----------------------* The invariant normalization for Qn_~-particle states 
. 3 ➔ ( 3) ➔ ➔ 

<pip'> =(211) 2w(p) o (p-p') is used here. 

4 

- - - -
f(s,t,u) 

!),_ M 2 T(a+b+ c ➔ a+b+c) !),_M2T(a+b+ C ➔ a+b+ c) 

4y'p p )2-m2m2 s:-Ho 
a b a b 

2s 

(2) 

where !),_M2 T stands for the discontunuity of the amplitude 
T in the variable M 2 = ( p a + p b - q) 2 · 

!),_M2T = T(s,t,u,M
2
+if) -T(s,t,u,M 2-i€ ). 

The three-particle elastic scattering amplitude 
T ( P 1 + P 2 + P 3 ➔ q·1 + q 2 + q 3 ) can be found in the eikonal 
approximation using a method developed in papers / 7 / 

for the two-body problems. If in the amplitude T(p 1+p 2+ 
+ p

3 
➔ q] + q2 + q_;one puts 

P1=q1=Pa•P2=q2=Pb• P3=q3=-q, 
then one gets the amplitude for the process a+ b + c➔ a+ h+ c, 
connected with the inclusive cross section via eqs. (1), 
(2). . . 

When constructing the three-particle amplitude we pro -
ceed, following papers 171, from the corresponding Green 
function which use allows one to define the S -matrix 
element through the reduction formula 

Iii 

<ql,q2,q3(-) IP1•P2•P3(+) > = 
3 . 3 

= i ( 2 11) 
4 o ( I p. - I q . ) T ( p + p + p ➔ q + q + q ) = 

i=l 1. i=l I I 2 3 I 2 3 

6 -3 3 -iy Pk + ix q 2 2 
~ i Z. f, Il dxkdyke k k k(ox +m )(oy +m ). 

k=l k k 

< T ( if, ( x I) if, ( x 2) if, ( x 3) if,* ( y I ) if,* ( y 2) if,* ( y 3) ) > 0 ' (3) 

To simplify our consideration, all the three. particles 
a, b, c are treated to be nonidentical and the vacuum 
polarization effects are not _taken into account. In this 
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case the three-particle Green function in the r.h.s. of 
eq. (3) can be written as: 

G ( x l ' x 2' x 3 ; Y1 'Y 2' Y 3 ) = < T ( ifl a (.x I ) i/Jb ( x 2) ifJ c ( x 3) x 

.. 
xifl* (y) ¢* (y ) ifl* (y )) > = 

a I b 2 c 3 
(4) 

. 3 i 8 C 8 3 IA I =(1) expl-fJ,d[ 1df2 ---D ---Ill G(xhyi )A-o' 
2 8Aa(e-1>a:8A/f2)i=l _ -

where G ( x, y I A) "is the Green function of a "nucI.eon" 
in the external field Aµ (x) obeying the equation 

2 2 . · 
[(ia -gA (x)) -m ]G(x,ylA) =-o(x-y). 

/l µ 

A solution to this equation can be written in the form 
of Feynman path integral /8 / 

00 • 2 

G(x,yl'A) =if 
0 

-1m r 4 r . 4 ,\ 
dr e [[ o v] 

0 
exp I- ig f d z j ( z) A,\ ( z) }. 

( 4) T 
o (x-y-2f v(7])d7]), (5) 

0 

where the classic current j A ( z) of nucleon ~~ has the 
form 

;\ T ,\ ( 4) . r 
j' ( z) = 2 f. df v ( t) o ( z - x + 2 f v ( 77) d 1J) ; 

0 r f 
4 r exp f - i fo v 

2 
( TJ) d 1J } n7Z d 4v ( TJ) [ 0 V] = _______ __._ ___ •· 

0 r 2 4 f exp I - i f v ( TJ ) d TJ I Il d v ( 77) 
0 1J 

On substituting (5) into (4) the variational differentia
tion is easily performed and the Green function achieves 
the following form 

3 • oo -im2rk 4 rk 
G(x1 ,x 2,x 3 ;y1 ,y 2 ,y 3 ) = Il (if drk e f [o vk] x 

-- k=I o 0 

6 

(4) . rk g2 3 c 

x o ( x k - y k - 2 f v k ( TJ) dTJ ) ) exp I - i - 2 2 j D j I . 
0 I n m 

(6) 

Here the conventions are used: 

• • C • .a ~ .p 
J .D.•J =ffdz

1
dz

2
J (z )D (z 1 -z2 )1 (z 2). 

n m ' n I u_p m 

When going over to the mass shell in eq. (3) it is 
convenient to replace the Green function G by the 
following expression: 

G ( x 1 ' x 2 ' x 3 ; YI ' Y 2 ' Y 3) = G ( x I' x 2' x 3; YI' y 2' y .3) -

3 · 3 
- 2 (-i)G(x.,y.)G(xk,xn-;yk,yn) +211(-i)G(xk,yk). 

i/k¥f I I [. t k=l 

Here we employed that the difference 

G ( x I ' x_2' x .J ; Y 1 ' Y 2' Y 3 ) ·..:.. G ( xl ' x2' x a ; y I ' )' 2 ' y 3 ) 
d 

is zero on the mass shell, p ~ = q .
2 

= m 
2
( i - I, 2,:3). This can 

be easily demonstrated if one keeps in inind that the 
one-particle Green function C ( p, q) riear the mass shell 
is of the form 

4 (4) z ( 2 77) 0 ( p - q) 
G (p,q) = 

p2-,q2 ➔ m2 
m 2 _ p2 

that gives 

lim (p2 _ m 2) (q 2 _ m2) G(p,q) o. 
p2,q2 ➔ m2 

To obtain c; without contribution from the vacuum 
polarization it sufficies to ·change in (6) the expression 
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I 

3 

{ . 2 "C' • DC .• I exp -1 g ,.,, 1 • • 1 
1 n . m 

by the following sum 

3 l 

II (-ig
2

j .De. j,, J d,\exp{-i,\g 2 j .nc•je }) + 
l k t o · · k 

k < e 

l 

+ TI (-ig\l.nc.jkf:d,\expl-iAg
2
j1•Dc·jk })+ 

k= 2,3 0 

+ II ( - i g \ • D c • j j d ,\ exp I - i ,\ g 2 
j 

2 
• D c • j k l ) + 

k=l,3 2 ko 

l 

+ II _ ( :- ig 
2 

j 3 • D c ~ j k f,. d,\ exp 1-i ,\ g 2 j 
3 

• D c • j k }) . 
k = 1, 2 · 0 · · 

Passing over onto the mass shell is realized then by 
the standard method / 7 / _ As a result the three.particle 
forward elastic scattering amplitude appears to consist of 
four terms. First of all, a ·term is present describing. 
interactions. of pairs of all the three particles· a, b and c: 

6 == - 3 +oo 4 -1;<><> 
T0+-+2, l+-+3, 2+-+3) =(2g) Jdxdx II ( J d(kf[o vk],)x 

. k=l -oo -oo 

f1 
C == 1 -

x[v1 (( 1)-p1 ]D [-x- 2 . x +2 ! v
1 

(71) d77 -2p
1

(
1
]x 

(3 
x[v2(0)-p2Hv1 (0)-pl]Dc[:...~+ ~x-2 { v~(17) ~77~2p3(3]x 

f2 . 
X [ V 3 ( ( 3 ) - p 3 ][ V 2 ( ( 2) - p 2 ] D C [ X + 2 J V 2 ( 77 ) d 77 - 2 pi 2] X 

0 l 

X [ v3 (0) -,p3J J, g,\ld,\2dA3,exp{-ig2,,\lj-l .n c•j2-· 
.. ,.. 0, ' . . . ' .,. . . 

8 

. 2 ,\ . DC .: . 2 ,\ . • D C • I 
ig 211· •13-ig 312" •13' (7) 

where the nucleon currents are as follows: 

+oo 
j.(z) = 2 J da[v. (a)-p.0(-a) -q.0(a)].x 

I ' I . I I -oo 

(4) a 
x o lz - x.-2 J v.(71) d71+ 2a[p.0(-a)+q.0(a)]}, 

I o· l I I 

and 
== 

Xl- x 2 ==-X 

(i=l,2,3), 

== 1 -
- 2x' x

1
-x

3
=-x 

x 2 -x 3 = x. 

1-
+ 2x' 

(8) 

(9) 

· The Feynman graphs corresponding to (7) are drawn 
in Fig. 2a. 

~ T\T:' ~xrr ~, 
~ n; 1:xs:~i 
~ if, ~J 

aJ 8; 

!?IX[ <J, 

1XIIi3 
Pz. . 9-2. 

d; 

Fig. 2. 

,, 

II :xJT'f.t P,:.rx~ 
1- ·. ~ 

c) 
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The remaining three terms of the scattering amplitude 
describe the diagrams without meson exchange between 
any one of pairs of particles a, b, c (Figs.· 2b, 2c, 2d):. 

T 
4 = - 3 4 -too +oo 

(i<-> k, k .... e) = i(2g) f dxdx II f[ o JI ] f d( 
i ;/k ,/. e . m=l·· m -oo -oo 

i,k,e=l,2,3 

[ i, . ( O ) - p . ] D c ( x . - x k )[ Jlk ( 0 ) - p k ] x 
I I I · 

e-
x [ J1k ( () -pk]Dc[ xk-xe+ 2[ Jlk (77) d77-2pk(][J1e(O)-:-pe]x 

1 1 

x f, d ,\ 1 f, d ,\ 2 exp { i g 
2 

,\ j n • D c • j - i l,\ j . , D c, j k } , 
o o L k 2 1 

(10) 
where the currents j . ( z) are given by (8) and .. x i , 

. I - - . . 
• x k · ·ate expressed via' x , x by (9). , 

In eqs. (7) and (10) the forward scattering is conside
red, i.e., pi = q i ( i = 1,2,3) is put and the radiation 
corrections to the lines of 1/J -field are omitted. 

Note' also should be made that among the diagrams of 
Figs.~ 2b, 2c, .2d such, diagrams are pres~11t,. as well, 
which· do not contribute to th'e three-particle scattering 
amplitude 19 1. In, these diagrams . one particle resulting 
from an interaction of any pair of the initial particles, 
is incoming for the process of scattering where a third 
particle· participates (see F·ig. 3). 

.,. P1 

Pt 
P3 ~ f-- P3 

Fig. 3 

·~ IO 

l 
I 
I 
! 
\ 
I 

I 
l 
I 

ii 
I 

! 

! 
J 

! 

l 
j 

As a result, additional divergences of -the type of 

2 
1 

2 (p 2=m 2) do appear which are not present in the 
p -m 

two-particle rea~tions. 
Nevertheless, in what follows it will not be required 

to subtract the contributions of these diagrams from 
eqs. (10) because, as will be shown, the diagrams of this 
type in the eikonal approximation do not contribute into 
the inclusive cross section. 

To c,alculate exactly the functional integrals over 
paths in formulae (7), (10) is. not possible,, thus we employ 
the .straight-line path approximation 1 4 / or the eikonal 
approximation in one of the most simple variants: we 
omit the functional variables JI i ( 77) and Jlk ( TJ) in the 
expressions j i • D c • j k ,_as was made in investigations of 
the Green functions and two-particle scattering amplitu-
des / 5 , 7 1. · 

Let us take the c.m.s. of colliding particles, a and 
.h: p = _ p h = p and direct the axis z along the 
mom~ntum p . In this system the variables s , t and u 

are, correspondingly, equal to: 

2 2 
s :a(p +pb) =4p0' 

J a 

t = (pa -q)2 = 2m2+ 2po( :z qz-qo)=-2po(-qz+qo), 
0 

2 2 
u = (p - q) = 2m + 2p (-

b O · 
~ q - q ) = -2p (q +q ) ' 
p z O O z 0 

0 ➔ 

q O > 0' P = I P 1- (11) 
z 

Consider now the fragmentation region for the particle 
· b, i.e., the region where s, -t ➔ oo and u = canst (or, 
more exactly, s ➔ 00 , s /M 2 and u fixed, i.e., the so
called one-reggeon limit). This means that q 0 - q z =Vs, 
q O + q = canst, i.e·., q z < 0 (the particle c is emitted 

, Z , , I , 

'.'along the direction of moti_on of the·pa.rticle · h0 
); 

. : ' .· First we examine equation (7) in this region. 
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Omitting the functional variables 11 i (i = 1,2,3) in 
all the expressions j i • D 0 - j k we get: 

d 4k c ikb1 
. 2. D c • • 24 J 

-I g J • • J = - 1g p • p b . ---4 X 
I 2 a ( 217) 11 2 _ k 2 

+oo 
x J. dt1dt2 e 2ik(pat1-Pbt2) 

-oo 

= -ig2 4pa Pb J, 
d

4 
k 

( 2 11)2 

ik bl 
e 

2 2 o ( 2p k ) o ( 2 P k) 
µ - k a b 

g2 
= - - KO (µ b Il ) ' 

217 

bl 

For j 
1 

• :D c • j 
3 

we have 

= 1 -
X + -X • 

2 

-i 2 • ' D c • 4 g J1· ·J =+i 
2

4 dk 
3 g paq I · 

( 211) 4 

+oo 
x J , d g 1 d g 2 e 2 ik ( p a g 1 + q g 2 ) 

-oo 

4 - i kb 
e 2 

i k b2 
e 

(12) 

µ 2 _ k 2 
X 

ig2 4pa q J. 
d k 

( 211)2 
µ 2 - k 2 o(2k pa) o(2kq)' 

= 1 -
b =x--x. 

2 2 

Using o -functions the integration over k O and k z can 
b.e performed: · q l k L 

k = k = . 
0 z q - q 

0 z 
Since in the region under consideration q0 - q = ..,;-;;-, then 
one may put k o = k z = 0 . This gives the following result 

12 

2 
• 2 • D c • • g K. ( b ) 

-I g ] . • •.] = + I -2 - . Q /1 2•1 • l '3 .·•17 ·~- (13) 

The expression j 1 • D c • j 3 with p 3 replaced by · - q 
describes the scattering of a -particle on c -antipar
ticle, therefore formulae (12) and (13) differ in sign. 

Analogously, for j 
2 

• D c • j 
3 

we obtain 

d 
4
k 

ik ( b 
1 

_ b ) 
e 2 . 2. 'D c • - ig J 2 • . • J 3 2 f - --2 ig 4pb q . (21r) µ2- k2 X 

2 
2. d kl 

x o(2pbk) o(2qk) = ig f -
< 2 7T )2 

➔ ➔ 

x exp { i 
kl ql 

qo + qz 
( h

0 
+ b z) l. 

e 
ik l ( b 1 - b 2) 1 

2 k➔ 2 
µ + l 

X 

(14) 

In the integral of eq. (14) there is the fast oscillating 

. kl q l 
function exp l i . ( b 

0
+ b ) l, as q O + q is the fixed 

q + q z z 
0 z 

quantity and one integrates over b 0 and b z in formula 
(7) from .., °" to + 00 

• . . . • 

Therefore in the approximation under consideration 
. ' ~ .... 

one may set: . 2. DC . 0 
-:•g ]2· "]3= • 

Now we examine the expression before the integral 
over d>. i in eq. (7): 

2 3 3 + 00 

(2g ) (2pa pb) (2paq) (2pb q) f.d4bl f d4b2 II f dt. x 
j = I -oo l 

4 
d k. 2 2 -I . . . . , 

x f, 4 (µ -k.) exp{1k1 b 1 + 1k 2 h 2 +1k
3

(h
1

-·h
2
)+ 

(21r) . J 

+ 2 i pa k1 g 
1 

+ 2 i q k 2 g 2 - 2 i p bk 
3 

g 
3 

} • 
t < .~ _: •. ' ~ ' ; • • ' , : 
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Integrating over dt° i ( i = 1,2,3) and over db °k 
db k ( k = 1,2) gives the following o -functions: 

and 

z z 
o(2p

8
k

1
) o(2qk

2
) o(2pbk

3
)o(k~ +k 0

3 )o(k 1 + k 3 ) x 

z z 
xo(k~ -k~ )o{k

2
-:-k

3
), 

whence it follows that 
k~ = k.Z= o, i = 1,2,3. 

I I · As .a result the considered expression is rewritten in 
the form 

2tu f 
d 

2
_kJ_ 

211 

-ikl b 11 2 
2 · 2 g · 

S(k,q )f dblle -K 0 (µbll)x 
1 211 

2 + ik lb 21 g 2 
xfd b2Je -· Ko(µb2J), 

2" 

where -

2 2 
S(k,ql) = g 

o(k1 ;i.) 
__ 2 ___ 2_· 

kl + µ 

(15) 

After integrating over d>.. i ( i 1,2,3) formula 
(7) can be represented as follows: 

d 2 k 2 
T(a._.b, a ..... c,·b.-.c) = 2tu f--S(k,q )F b(k) F _(k), 

2 11 l a ac 

(16) 

where 

F ik ( k) = I d 2-b c i k b ( e i X ik ( b) - 1) , (17) 

X ik and S ( k , q f) are defined in eqs. (12), (13) and (15) . ... 

14 

According to (I) and (2) the corresponding contribution 
to the inclusive cross section is equal to: 

2 
2 2 d k ➔ 2 

f(s,t,u) =(m +ql )f,--S(k,qJ) F b(k) F-(k) = 211 a ac 

2 re ql) • 

(18) 
t• u 

Here the equality -
8

- =m 2 + q 1 is taken ·into account. 

Thus, in the region under consideration the inclusive 
cross section does not depend upon variables s, t, u and 
is a function of q 1 only. 

The Regge analysis of inclusive reactions 11
2 

2/ in the 
fragmentation region leads in addition to the q J depen
dence of f also to the dependence on the Feynman 

variable x = 2r. ( 0 < I x I < 1) • That this dependence 

is not present in eq. (18) is accounted for the approximate 
calculation of the eikonal phase, eq. (13) (i.e., terms of 

k..j. q..j. 
the order ~---

2qz 
were dropped out and p = p 

0 z 
was 

assumed). , 
In an analogous way one can examine formulae (10) 

describing the diagrams drawn in Figs. 2b, 2c, 2d. Thus, 
e.g., for T(n ,_. b , b ._. c) we have 

T(a ,_. b, b...,c) =-2isF (0) S
1
(u), 

ah 

where F is given by eq. (17) and 

(19) 

+oo 2 +oo 
2 2 4 4 

Sl(u) = 2ig (-u-2m) f dt"J d x JI f [o vk] x 
'-"' k =l -oo 

~ 1 2 C 

x D c [ x + 2 f v ( T/ ) d T/ - 2 p fl f d ,\ exp I - i g ,\ j 
2 

• D • j 
3
1 , 

0 2 b 0 

The currents j 2 and j 3 dependent on the functional 
variables v 2 and l' 3 are given by (8). 
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Additional divergences connected with diagrams pre
sented in Fig. 3 are included in S 1 ( u) • Consequently, 
the amplitude under consideration is a product of two 
functions one of which depends only on s and the other 
upon u only. Therefore, T ( a - b, b ._. c) does not depend 
upon the third variable M 2 -and does not contribute to 
the discontinuity in M 2• Note that· such a factorization 
results from the use of the straight-line path approxima
tion. In general case, the diagrams drawn in Figs. 2b, 2c 
and 2d depend upon s , t and M 2 • 

The same answer can be received for the amplitudes 
T ( a .... C ' b <----->. C ) and T( a - b ' . a <-----> C) • . 

Formulae (16) and (19) obtained for the three-particle 
scattering amplitude are rather similar to the Glauber 
representation for the amplitude of high-energy scattering 
on a weakly connected system, e.g., on deuteron /IO~ As 
is known, in the nonrelativistic limit this representation 
is as follows: 

➔ 1 ➔ ➔ 1 ➔ ➔ 

F ( q) · = S ( - q) f ( q) + S (- - q ) f ( q) + 

+ ---
2 77k 

2 n 2 P 

➔ 1 ➔ ➔ 1 ➔ ➔ ·2➔ 
f S(q') f (-q +. q') f (- q - q') d q', 

n 2 2 

where 

477 . 477 
ad = - Im F ( 0) , a. = - Im f . ( 0) , 

k l k l 
= n, p; 

•➔ ➔ 
➔ 1qr ➔- 2 ➔ 

S (q) = f. e I <I> (r) I dr - is the deuteron form factor. 

Next we proceed to the pionization region, i.e., that 
region where all the three variables s , t and u are 
large, which results in the condition q O ± qz ""ys ➔ 00 in 
accordance with (11). Now one cannot put j 

2
• D c. j 

3
,,,, o and 

formula (14) gives: ( 
2 -ikl bl - b2)l 

. 2. c . . 2 d k..L e 
-1g J • D • J = 1g f __ _._ --------

2 3 (277)2 µ2+kl 

16 

*'"' 

g2 
= i- KO(µ I (bl - b 2) l I) • 

277 . 

Therefore the three-particle scattering amplitude 
T ( a - b, b .... c, a .... c),eq. (7), can be represented in 

the pionization region in the following form: 

2 2 
T (a+-+ b, b <-> c , a .... c) = 2 tu f d h

1 
f d b 

2 
f 

➔ ➔ ➔ 

2 ➔ ➔ 

~ o(kl ql] x 
211 k2+ 2 1 µ 

iklCh 1 -b 2 >i 1 ' i,\x<h1-h2) -ixCh1 ) ixCh 2 > 
x e f. d,\ e ( e · -1) ( e -1) , 

where 

0 

g2 
x(b) = -Ko(µb). 

277 

Unlike (16), in this formula the additional factor 

1 i AX ( b l - b 2) 
f. d,\ e has appeared and the contribution to 
0 

the inclusive cross section in this case is as follows: 

2 . 

f(q.J.2) = (m2+ q 2)fib fd2b. ~ S(k 2) ik 1<h1-h2~ 

l
. I · 2 ,q e 
. 277 l X 

' 

I i,\ X (l,_-h.i) 
x f. d,\ e F ab ( k) F ac ( k) , (20) 

0 

For the diagrams plotted in Figs. 2b, 2c, 2d in the pioni
zation region formulae analogous to (19) can be derived 
and it can be shown that these do not contribute to the 
inclusive cross sedion in the pionization region as well. 

Thus, the eikonal approximation within the framework 2 .. ➔ 
of qu~tum field model f int = - ig tf,* a

11 
tf, AJl results 

in the inclusive cross section dependent only upon q 1 both 
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in the fragmentation, eq. (19), and pionization, eq. (20), 
regions. 

To complete the paper we make the following remarks 
concerning the scheme suggested for studying the inclusive 
processes. 

The type of diagrams, Figs. 2, we have considered 
corresponds to those inelastic processes where only two 
particles of the type c (two nucleons) are produced. It 
_would be interesting therefore to apply this approach to 
such an inclusive reaction in which the detected particle 
is just a meson A. 

Throughout all the calculations, in fact, the disconti
nuity of the three-particle scattering amplitude in M 2 was 
not calculated, as it was assumed that the amplitude, 
being a function of three variables s , t , u (or t, u and 
q j in eq. (16)), has the discontinuity in M 2 of which 
the high energy behaviour_ is the same as for the amplitude 
itself, that, of course, is not proven assertion. The high 
energy behaviour of the three-particleamplitudeandofthe 
corresponding inclusive cross section depends essentially 
on the choice ·of interaction Lagrangian f int • Thus, for 
instance, if one takes the scalar model f int = g 1/J* t/J ¢, 
then all the eikonal phases, x ik, will turn out to be pro-

portional to ( 
1 

) 2 , i.e., these will decrease with 
pi+ pk . 

growing s, t or u. 

Unlike this, if one considers the exchange not by 
virtual particles but via reggeons (such an interaction 
can be modelled, within the framework of field theory, 
by the infinite sum of ladder diagrams /I 11), then the 
eikonal phases will be complex and equal to: 

Xik(b, 77 ik) 

where 

d 2kl 'kb 2 -i rra(-/) 
const J-~ e 1 

( t<-_kl )-1 1 + e 1 
( 2rr ) 2 77 

ik 

2 
TJ ik = (pi -+ p k) 

sinrra(-k
2

) 

? l 
a (- kj_) -

- is the Regge trajectory. 
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In this case, the three-particle scattering amplitude 
and. inclusive cross section possess a different behaviour 
as depending on the value of a ( o) . (i.e., a(O)<l , a(O)= 1 
or a (0) > 1 ). 

The authors express their deep gratitude to n~LBlok
hintsev, · K.V~Efremov and B.V.Struminsky· for their in
terest in work and stimulating discussions .. 
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