$$
\begin{aligned}
& \text { СООБЩЕНИЯ } \\
& \text { ОБЪЕАИНЕННОГО } \\
& \text { ИНСТИТУТА } \\
& \text { ЯАЕРНЫХ } \\
& \text { ИССАЕАОВАНИЙ }
\end{aligned}
$$

АУБНА

$$
\frac{C 323}{G-18}
$$

W. Garezyński

THE $\tau$-FUNCTIONS OF A SCALAR FIELD
IN TERMS OF THE RELATIVISTIC WIENER PSEUDOPROCESS

## 1924

## ААБОРАТОРИА ТЕОРЕТИЧЕСНОЙ

W. Garczyński *

## THE $\tau$ FUNCTIONS OF A SCALAR FIELD IN TERMS OF THE RELATIVISTIC WIENER PSEUDOPROCESS

* Permanent address: Institute of Theoretical Physics, University of Wroclaw; Poland

In this paper we shall be concerned with some applications of the so-called relativistic Markovian pseudoprocesses $/ 1 /$ to the description of the $\tau$ Puncticns of the Minkowski Quantum Field Theory ( MOFT). Thus, the paper is a further continuation of our formal studies of the stochastio pseudoprocesses $/ 2,3 /$ ( or the quantum stochastio prooesses) based on the assumption of existence of a pseudomeasure needed for the defintition of basio objects of the theory like, e.g., Feymman path integrals ${ }^{\prime}$ !' We shall remark that among various attempts toward the rigerous definition of the feymman path integral the nearest to our needs is that by c.De Witt-dioratte $/ 5 /$.

In the paper we follow closely the known Ginibre' $3 / 5 /$ and Symanaik's ${ }^{\prime}{ }^{\prime}$ works on the Euclidean Quantum Fleld Thecry, ( EGF'C), in whioh they used extensively the theory of stochastic processes. One knows that EQFT deals with quantities not directly physically interpretable and the discussion is restricted to a dimession less than four of underlying space-time manifold. We shall replaoe the Wiener prooess appearing in the Symanzik paper ty the corresponding paeudoprocess and to get the formulas for t-functions of realistio NQFT. Slightly more general Lagrangians than those treated by Ginibre and Spmanzik are oonsidered here, however; the renormalization problems are left untouched. Ye belleva, and it motivates our work, that formulae for $\tau$ - functions given here provide the besic formal expressions which should be at hand when trying to gem neralize them in order to overcome the ultraviolei divergences.

1. The T - Functions in Terms of the Miner Pseudoprocess. Scalar Neutral Case

Let $a(x)$ be a ire neutral scelar fipla with a mass $m$. In order to fix the notation we shall write the relevant formulae in sone details

$$
\begin{align*}
& \left([]-x^{2}\right) a(x)=K a(x)=0, \square=-g^{\mu \mu} \partial_{\mu} \partial_{\mu}, g^{\infty D}=-g^{k n}=1, x=\frac{m c}{\hbar} \\
& {[u(x), a(y)]=-i \Delta(x-y ; x)}  \tag{2.I}\\
& \Delta(x ; \mu)=-i\left(\langle\pi)^{-3} ; d^{\psi} \beta \in(P) \delta\left(p^{2}-A^{4}\right) \cdot Q \mu(i p x) .\right.
\end{align*}
$$

For the $\tau$ - functions of this field we may write formally $/ B /$

$$
\begin{equation*}
\tau\left(x_{1}, \ldots, x_{n}\right)=\frac{\langle c| \Gamma^{*} a\left(x_{1}\right) \cdots a\left(x_{m}\right) S|0\rangle}{\langle a| S|0\rangle} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
S=\Gamma^{*} E \times p\left(i L_{i n t}[a]\right) \tag{2,3}
\end{equation*}
$$

15 the $S$-matrix of a theory specified by the interaction
Lagrangian

$$
\begin{equation*}
L_{\text {int }}[a]=\int d^{4} x[[a(x)] \tag{2.4}
\end{equation*}
$$

A generating functional $][p]$ for the $T$-functions has a form

$$
\begin{align*}
J[p] & =1+\sum_{n=1}^{\infty} \frac{i^{n}}{n}!\left[\left[\left(x_{n}\right) e\left[p ; x_{n}\right] d_{x_{n}}^{4}\right.\right. \\
& =\frac{\langle 0| T^{*} \exp (i a \cdot p) S|0\rangle}{\langle 0| S|0\rangle} \tag{2.5}
\end{align*}
$$

where the following abbreviations for conventence are used

$$
\begin{align*}
& \tau\left(x_{n}\right)=\tau\left(x_{1}, \ldots, x_{n}\right) \\
& E\left[p ; x_{n}\right]=p\left(x_{1}\right) \ldots p\left(x_{n}\right)  \tag{2.6}\\
& d^{4} x_{n}=d^{4} x_{1} \cdots d^{4} x_{n} \\
& a \cdot p=\int d^{4} x p(x) a(x)
\end{align*}
$$

The symmetric $\tau$ - functions may be recovered from $J[P]$ in the usual way

$$
\begin{equation*}
\tau\left(x_{m}\right)=e\left[-i \frac{\delta}{\delta p} ; x_{m}\right] J\left[\left.p\right|_{p=0}\right. \tag{2.7}
\end{equation*}
$$

It is woll known that the generating functional may be expressed in terms of the Fesmman functional integral as foliows $(9 / 3)$

$$
\begin{equation*}
J[p]=N^{-1} \cdot \int \exp \left(\frac{i}{2} q K q+i L_{i n t}[q]+i q p\right) d q \tag{2.8}
\end{equation*}
$$

$$
=N^{-1} \cdot \exp \left(i L_{i n t}\left[-i \frac{\delta}{\delta p}\right]\right) \exp \left(-\frac{i}{2} P K^{-1} p\right)
$$

Fhere

$$
\begin{gather*}
K^{-1}=-\Delta^{c}  \tag{2.9}\\
K^{-1}(x, y)=-\Delta^{c}(x-y)=-\frac{1}{(2 \pi)^{4}} \int \frac{\exp i p(x-y)}{x^{2}-p^{2}-i \in} d^{4} p .
\end{gather*}
$$

5) We refer the reader to this book also for proofa of all functional iaentities appearing in the sequel.

The choice of the causal propagator for $K^{-1}$ is a cousequence of the presence of the regularizing term $-i \in q^{2}$ under the exponential sign in the functional integral which is always tacitly assumed.

Now a part of out next cunsiderations will be valid for Lagrangtans of the form

$$
\begin{equation*}
\left.L_{\text {int }}[q(x)]=\right]\left[q^{2}(x)\right] \tag{2.10}
\end{equation*}
$$

which Inoluies as a speotai case the Lagranglan

$$
\begin{equation*}
L_{\text {int }}[q(x)]=-\frac{g}{4} q^{4}(x)+\frac{\alpha}{2} q^{2}(x) \tag{2.11}
\end{equation*}
$$

considered by Symanzik in his Euclidean Quantum Field Theory. In this case we will have for the generating functional

$$
\begin{equation*}
\left.J[p]=N^{-1} \cdot \exp (i]\left[-\frac{\delta^{2}}{\delta p^{2}}\right]\right) \exp \left(-\frac{i}{2} p^{-1} p\right) \tag{2.12}
\end{equation*}
$$

$\left.=N^{-1} \exp (i]\left[-2 i \frac{\delta}{\delta u}\right]\right)\left.\exp \left(-\frac{i}{2} u \cdot \frac{\delta^{2}}{\delta p^{2}}\right)\right|_{u=0} \exp \left(-\frac{i}{2} p \bar{K}^{-1}\right)$,
where we have used the 1dentyty

$$
\begin{equation*}
F\left[\frac{\delta}{\delta u}\right] \exp (u \cdot v)=\exp (u \cdot v) F\left[v+\frac{\delta}{\delta u}\right] \tag{2.13}
\end{equation*}
$$

which is valid for any functional expandable into the Volterra series.

Now using another identity valid for any symmetrio
operator $R$

$$
\begin{aligned}
& \exp \left(-\frac{i}{2} \frac{\delta}{\delta p} R \frac{\delta}{\delta p}\right) \exp \left(-\frac{i}{2} p K^{-1} p\right)= \\
& =\exp \left[-\frac{i}{2} p(K+R)_{p}^{-1}\right] \exp \left[-\frac{1}{2} \cdot \operatorname{Tr} \ln \left(1+K^{-1} R\right)\right]
\end{aligned}
$$

where we put $R=u$, 1.e.,

$$
\begin{equation*}
R(x, y)=u(x) \cdot \delta(x-y) \tag{2.15}
\end{equation*}
$$

we may write for the generating functional the formula

$$
\begin{align*}
-J[p] & =N^{-1} \exp \left(\left\langle\left(J I-2 i \frac{5}{0 u}\right]\right) \exp \left[-\frac{i}{2} p(K+u)^{-1} p\right]\right.  \tag{2.16}\\
& \exp \left[\frac{1}{2} \operatorname{Tr} \ln (K+u)^{-1}-\frac{1}{2} \operatorname{Tr} \ln K^{-1}\right]_{u=0}
\end{align*}
$$

Furthermore, sing the "proper tine" parametric representatrons $/ 10-12 /$

$$
\begin{gather*}
a^{-i}=-i \int_{0}^{\infty} d t \exp (i t a)  \tag{2.17}\\
\ln a^{-1}-\ln b^{-1}=\int_{0}^{\infty} \frac{d t}{t}[\exp (i+a)-\exp (i t b)] \tag{2.18}
\end{gather*}
$$

which hold for $a, b$ having added small imaginary parts $i \in, \in>C$ we will get the formulae

$$
\begin{align*}
& (K+u)_{y, x}^{-1}=\frac{\gamma}{i} \int_{0}^{\infty} d t \exp \left(-i \gamma x^{2} t\right)[\operatorname{expirt}(\square+u)]_{y_{1} x}  \tag{2.19}\\
& \left.\operatorname{Tr} \ln (k+u)^{-1}-\operatorname{Tr} \ln K^{-1}=\int_{0}^{\infty} \frac{d t}{t} \exp \left(-i \gamma x^{2} t\right)\right] d z[\operatorname{expirt}(\square+u) . \tag{2.20}
\end{align*}
$$ $-\exp (i \gamma t \square)]_{z, z}$.

Here $\quad \gamma \quad 1 \mathrm{~s}$ some numier mhioh is going to bs suitably chosen. We notice that the funstion

$$
\begin{equation*}
f(t ; y, x)=[\exp i \gamma t(\square+u)]_{y, x} \tag{2.21}
\end{equation*}
$$

solves the following Cauohy problem

$$
\begin{align*}
& {\left[\partial_{t}-i \gamma\left(\square_{x}+u\right)\right] f(t ; y ; x)=0}  \tag{2,22}\\
& \lim _{t \downarrow 0} f(t ; y, x)=\delta(y-x)
\end{align*}
$$

One sees from it that for $\gamma=\frac{\hbar}{2 m}$. we obtain the relativistio Schrödinger equation for the transition amplitude aescribing spinless particle influenced by the potential $-\frac{\hbar^{2}}{2 m} u$. Thus, aocording to a general theory ${ }^{\prime \prime} /{ }_{\text {we }}$ will get

$$
\begin{align*}
f(t ; y, x) & =Q_{0, y}^{t, x}\left\{\exp \frac{\lambda}{2} \int_{0}^{t} u[z(r)] d \tau\right\} \\
& =\int_{\Omega} M_{0, y}^{t, x}(d \omega) \exp \frac{\lambda}{2} \int_{0}^{t} u[z(\tau)] d x \tag{2.23}
\end{align*}
$$

where $\lambda=\frac{i \hbar}{m}, \quad z(\tau, \omega)$ is the W1ener pseudoprooess with values in the Minkowski space and $M_{0, y}^{t / x}(d \omega)$ is a conditional pseudomeasure on the space $Q$ of all trajeotories of the pseudoprocess $Z(\tau)$.

Notice that the functional $\int_{0}^{t} u[z(\tau)] d \tau \quad$ on the pseudoprocess may be witten as $/ 7 /$

$$
\begin{equation*}
\int_{0}^{t} u[z(t)] a i x=\int d x u(x) g(x, t)=u \cdot z(t) \tag{2.24}
\end{equation*}
$$

Where the random variable $\xi(x, \dot{t}, \omega)$-called the local time of the pseudoprocess $Z(\tau)$ - denotes an accupation time of the state $x$ during the period $[0, t] / 7,13 /$

$$
\begin{equation*}
\xi(x, t, \omega)=\int_{0}^{t} \delta[x-z(\tau, \omega)] d \tau \tag{2.25}
\end{equation*}
$$

Therefore we may withe instead of (2.20) and (2.21) the formulae

$$
(k+u)_{y, x}^{-1}=-\frac{\lambda}{2} \int_{0}^{\infty} d t \exp \left(-\frac{\lambda \partial^{2}}{2} t\right) \int_{\Omega} M_{0, y}^{t x}(d \omega) \exp \frac{\lambda}{2} u \cdot z(t, \omega) \quad(2.30)
$$

and

$$
\begin{gather*}
\operatorname{Tr} \ln (K+u)^{-1}-\operatorname{Tr} \ln K^{-1}= \\
=\int_{0}^{\infty} \frac{d t}{t} \exp \left(-\frac{\lambda x^{2}}{2} t\right) \int d z \int_{\Omega}^{t_{0} z}(d \bar{\omega})\left[\exp \frac{\lambda}{2} u \cdot z(t, \bar{\omega})-1\right]
\end{gather*}
$$

Hence, for the generating functional $J[p]$ we will get

$$
\left.J[p]=C \operatorname{conft} \cdot \exp (i]\left[-2 i \frac{\delta}{\delta u}\right]\right) \exp \left(-\frac{i}{2} p A[u] p\right) \cdot B\left[\left.u\right|_{\mid u=0}(2.28)\right.
$$

where

$$
\begin{equation*}
A[y, x ; u]=(k+u)_{y, x}^{-1} \tag{2.29}
\end{equation*}
$$

$$
\begin{equation*}
B[u]=\exp \left\{\frac{1}{2} \int_{0}^{\infty} \frac{d t}{t} \exp \left(-\frac{\lambda x^{2}}{2} t\right) \int d z \int_{\Omega}^{M_{0,2}}(d \bar{\omega}) \exp \frac{\lambda}{2} u \cdot z(t, \bar{\omega})\right\} \tag{?.30}
\end{equation*}
$$

and the constant factor is determined by the condition $J[0]=1$. The $\quad \tau$ - functions may now be easily oaloulated using the formula (2.7) and the identity

$$
e\left[-i \frac{\delta}{\delta p} ; x_{n}\right] \exp \left(-\frac{i}{2} p A[u] p\right)_{\left.\right|_{p}}=0\left\{\begin{array}{cc}
0, n=2 m+1 & (\therefore, 31) \\
\sum_{j_{k}<i k+1} i A\left[x_{j_{1}}, x_{j_{2}} ; u\right] \cdots i A\left[x_{j_{n-1}}, x_{j_{n}} ; u\right] \\
u=2 m
\end{array},\right.
$$

Thus we will get for $\tau\left(x_{1}, \ldots, x_{n}\right)$

$$
\tau\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{l}
0, n=2 m+1 \\
\sum_{d_{k}\left\langle j_{k+1}\right.} \phi\left(x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{m-1}}, x_{j_{m}}\right), n=2 m,
\end{array}\right.
$$

where we denoted

$$
\phi\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)=
$$

$=$ const $\left.\exp (i]\left[-2 i \frac{\delta}{\delta u}\right]\right) B[u] \prod_{k=1}^{n} i A\left[x_{k}, x_{k+1} ; u\right]_{\mid u=0}=$

$$
=\prod_{k=1}^{n} \frac{-i \lambda}{2} \int_{0}^{\infty} d s_{k} \exp \left(-\frac{\lambda x^{2}}{2} S_{k}\right) \int_{\Omega} M_{0, x_{k}}^{s_{k} x_{k+1}}\left(d \omega_{k}\right) \varphi\left[z\left(s_{1}, \omega_{1}\right), \ldots, z\left(s_{m}, \omega_{n}\right)\right]
$$

and auxiliary functions

$$
\begin{aligned}
& \varphi\left[z\left(s_{1}, \omega_{1}\right), \ldots, z\left(s_{m}, \omega_{m}\right)\right]=\bar{\varphi}\left[u \cdot z\left(s_{1}, \omega_{1}\right), \ldots, u \cdot z\left(s_{m}, \omega_{n}\right)\right]= \\
& \left.=\text { const. } \exp (i]\left[-2 i \frac{\delta}{\delta u}\right]\right) B[u] \exp \left[\frac{\lambda}{2} \sum_{R=1}^{n} u \cdot z\left(s_{2}, \omega_{2}\right)\right]_{\mid u=0}
\end{aligned}
$$

Expanding $B[u]$ onto the Taylor series and using the identity (2.13) we will get for auxiliary functions the final formula

$$
\begin{gathered}
\varphi\left[z\left(s_{1}, \omega_{1}\right), \ldots, z\left(s_{m}, \omega_{m}\right)\right]=\sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)^{m}}{m!} \prod_{k=1}^{m} \int_{0}^{\infty} \frac{d t_{k}}{t_{k}} \exp \left(-\frac{\lambda x^{2}}{2} t_{k}\right)\left(d z_{k}\right. \\
\left.\left.\left.\int_{\Omega} M_{0_{l} z_{k}}^{t_{k}, z_{k}}\left(d \bar{\omega}_{k}\right) \operatorname{comst} \exp (i]\left[-i \lambda \sum_{j=1}^{m}\right\}\left(t_{j}, \omega_{j}\right)-i \lambda \sum_{l=1}^{n}\right\}\left(s_{l,} \omega_{l}\right)\right]\right) \\
(n-\operatorname{even})
\end{gathered}
$$

Thus we expressed the basic functions of a theory, $\tau$-fundtins, via formulae (2.33), (2.36) by the loos l times of the Wiener pseudoprocess.
3. The Kirkwood-Salsburg and Meyer-Montroll Type Equations for T- Functions. Scalar Neutral Case

Let us consider now a model defined by the Lagrangian (2.11). In this case the $][q]$ iunotional is

$$
\begin{equation*}
J[q]=\int d x^{4}\left[-\frac{g}{4} q^{2}(x)+\frac{\alpha}{2} q(x)\right]=-\frac{g}{4} q^{2}+\frac{\alpha}{2} q \tag{3.1}
\end{equation*}
$$

According to the formula (2. 34 ) we will have for the auxiliary functions

$$
\varphi\left(z, \ldots, z^{n}\right)=\text { canst. } \exp \left(i q \frac{\delta^{2}}{\delta u^{2}}\right) B[u+\alpha] \exp \left[\left.\frac{\lambda}{2} \sum_{l=1}^{n}(u+\alpha) \cdot z c\right|_{u=0},(3,2)\right.
$$

where we denoted for shortness

$$
\begin{equation*}
z_{e}(x)=\xi\left(x, s_{e}, \omega_{e}\right), z^{\prime}\left(x, t_{j}, \bar{\omega}_{j}\right)=z_{j}(x) \tag{3.3}
\end{equation*}
$$

and performed the translation

$$
\begin{equation*}
\exp \left(\alpha \frac{\delta}{\delta u}\right) F[u]=F[u+\alpha] \tag{3.4}
\end{equation*}
$$

Furthermore if we denote

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{\infty} \frac{d t}{\frac{t}{x}} \exp \left(-\frac{\lambda x^{2}}{2} t\right) \int d z \int_{\Omega} M_{0, z}^{t_{1} z}(d \vec{\omega}) \ldots \equiv \int R(d \vec{z}) \ldots \tag{3.5}
\end{equation*}
$$

then the functional Br+ $B]$ becomes

$$
\begin{equation*}
B[u+\alpha]=\exp \left\{\int R(\partial \bar{z}) \exp \left[\frac{\lambda}{2}(u+\alpha) \cdot \bar{z}\right]\right\} \tag{3.6}
\end{equation*}
$$

Following the idea of Symanzik the $\varphi$ - functions may be recover from their generating functional as follows

$$
\begin{equation*}
\varphi\left(z_{1}, \ldots, z_{n}\right)=e\left[\frac{\delta}{5 \sigma} ; z_{n}\right] \phi\{J\}_{j=0}-\phi_{z_{1}, \ldots z_{n}}\{J\}_{J=0}, \tag{3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.\phi\{J\}=\sum_{n=0}^{\infty} \frac{1}{n!}\left\{\widetilde{R}\left(d_{3}\right) \cdots \widetilde{R}\left(d z_{n}\right) \varphi\left(z_{1}, \ldots, z_{n}\right)\right]\left(z_{n}\right) \ldots\right]\left(z_{n}\right) \tag{3,8}
\end{equation*}
$$

and the "measure" $\overparen{R}(d y)$ is restricted by the condition

$$
\begin{equation*}
\int \widetilde{R}\left(d z^{\prime}\right) \delta\left(z^{\prime}-z\right) F\left(z^{\prime}\right)=F(z) . \tag{3.9}
\end{equation*}
$$

From the formulae (3.2) and (3.6) we will have for this generating functlonal
$\phi[J]=$ connt $\exp \left(i g \frac{\delta^{2}}{\delta u^{2}}\right) \exp \left\{\int R(d \bar{z}) \exp \left[\frac{\lambda}{2}(u+\alpha) \bar{z}\right]+\right.$

$$
\begin{equation*}
+\left\{\widetilde{\mathrm{R}}(d z) J(z) \exp \left[\frac{\lambda}{2}(u+\alpha) z\right]\right\}_{\left.\right|_{u=0}} \tag{3.10}
\end{equation*}
$$

Using the iaentity (2.13) and al. so the formula
$\exp \left\{\int R(d z)\left\{(z) \frac{\delta}{\delta J(z)}\right\} \exp \left\{\int \bar{R}\left(d z^{\prime}\right) J\left(z^{\prime}\right) g\left(z^{\prime}\right)\right\}=\right.$
$\exp \left\{\left(\widetilde{R}\left(d z^{\prime}\right)\right]\left(z^{\prime}\right) g\left(z^{\prime}\right)+\int R(d z) f(z) g(z)\right\} \exp \left\{\int R(d z) f(z) \frac{\delta}{\delta j(z)}\right\}$
we may find for the first derivative of $\phi\}\}$
the expression
$\phi_{z}\{J\}=\exp \left[\frac{\lambda}{2} \alpha \cdot z+\frac{i g \lambda^{2}}{4} z^{2}\right] \exp \left\{-\int R(d \bar{z}) K(z ; \bar{z}) \frac{\delta}{\delta J_{z}(\bar{z})}\right\} \phi\{J z\}$,
where

$$
\begin{align*}
& k(z ; \bar{z})=1-\exp \left(\frac{i g \lambda^{2}}{2} z \cdot \bar{z}\right),  \tag{3.13}\\
& J\left(z^{\prime}\right)=J\left(z^{\prime}\right) \exp \left(\frac{i g \lambda^{2}}{2} z \cdot z^{\prime}\right) . \tag{3.14}
\end{align*}
$$

Now, if we expand the last exponential and perform needed functional differentiations according to the formula (3.7) we will get the set of equations of the Kirkwood-Salsburg type

$$
\begin{align*}
\varphi\left(z_{1}, \ldots, z_{n}\right)= & \exp \left[\frac{1}{2} \alpha \cdot z_{1}+\frac{i g \lambda^{2}}{4} z_{1}^{2}+\frac{i g \lambda^{2}}{2} \sum_{k=2}^{n} z_{i} z_{k}\right] . \\
& \sum_{k=0}^{\infty} \frac{(-1)^{2}}{l!} \prod_{j=1}^{1}\left(R\left(d \bar{z}_{j}\right) K\left(z_{1} ; \bar{z}_{j}\right) \varphi\left(z_{2}, \ldots, z_{n}, \bar{z}_{k}, \ldots, \bar{z}_{k}\right) .\right. \tag{3.15}
\end{align*}
$$

However, after iterations of the formula (3.12) we will end up with the expression

$$
\begin{align*}
& \left.\Phi_{z_{1} \ldots z_{n}}\{ ]\right\}=\exp \left[\frac{\lambda}{2} \alpha \cdot \sum_{k=1}^{n} z_{k}+\frac{i g \lambda^{2}}{4} \sum_{k=1}^{n} z_{k}^{2}+\frac{i g \lambda^{2}}{2} \sum_{1 \leqslant k \leqslant k \leqslant n} z_{k} \cdot z_{k}\right]  \tag{3.16}\\
& \exp \left\{-\left\{R(d \bar{z}) k\left(z_{2}, \ldots, z_{n} ; \bar{z}\right) \frac{\delta}{\delta J_{g_{1} \ldots z}(\overline{3})}\right\} \phi_{i}^{i} J_{z_{1}, \ldots z_{n}}\right\},
\end{align*}
$$

where

$$
\begin{equation*}
K\left(z_{1}, \cdots, z_{n} ; \bar{z}\right)=1-\exp \left[\frac{i g \lambda^{2}}{2}\left(z_{1}+\cdots+z_{n}\right) \cdot \bar{z}\right] \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{z_{1} \cdots z_{n}}(\bar{z})=J(\bar{z}) \cdot \exp \left[\frac{i g \lambda^{2}}{2}\left(z_{1}+\cdots+z_{n}\right) \cdot \bar{z}\right] \tag{3.18}
\end{equation*}
$$

Expanding now the last exponential in (3.16) and putting $J=0$ we obtain the set of equations of the Meyer-montroll type

$$
\begin{align*}
& \varphi\left(z_{1}, \ldots, z_{n}\right)=\exp \left[\frac{\lambda}{2} \alpha \cdot \sum_{k=1}^{m} z_{k}+\frac{i \xi \lambda^{2}}{4} \sum_{k=1}^{n} z_{k}^{2}+\frac{i j^{2}}{2} \sum_{1 \leq n \leq k i s n} z_{n} \cdot z_{n}\right] . \\
& \sum_{k=0}^{\infty} \frac{(-1)^{\ell}}{\ell!} \prod_{j=1}^{\ell}\left(R\left(d \bar{z}_{j}\right) K\left(z_{1}, \cdots, z_{n} ; \bar{z}_{j}\right) \varphi\left(\bar{z}_{n}, \cdots, \bar{z}_{k}\right)\right. \tag{3.19}
\end{align*}
$$

for $n$ - oven.

We shall not discuss these equations and their consequences here since it is a separate subject.
4. The T- Functions in Terms of the Wiener Pseadoprocess, $K-S$ and $M-M$ Equations for $\varphi$-Functions. Scalar Charged Case

## All the previous considerations may be easily translated

 into the case of complex scalar selfinteracting field with the Lagrangian$$
\begin{align*}
& L_{\text {int }}\left[a, a^{+}\right]=\int d d^{4} J\left[a^{+}(x), a(x)\right] \\
& K a(x)=K d^{x}(x)=0 \tag{4.1}
\end{align*}
$$

$$
\left[a(x), a^{+}(y)\right]=-i \Delta(x-y ; x)
$$

The generating functional for the $\tau$ - functions

$$
\begin{equation*}
\tau\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}\right)=\frac{\langle 0| T^{*} a\left(x_{1}\right) \cdots a\left(x_{m}\right) a^{+}\left(y_{1}\right) \ldots a^{+}\left(y_{n}\right) S|0\rangle}{\langle 0| S|0\rangle} \tag{4,2}
\end{equation*}
$$

may bewrittenin one of the following forms
$J[p, \vec{户}]=\frac{\langle 0| T^{*} \exp i\left(a \cdot{ }^{*}+a^{+} \cdot p\right) S|0\rangle}{\langle o| S|0\rangle}=$

$$
\begin{equation*}
=\sum_{m, n=0}^{\infty} \frac{i^{m+n}}{m!n!} \int d x_{m}^{4} \int d d_{n}^{4} \tau\left(x_{m}, y_{n}\right) e\left[p^{*} ; x_{n+1}\right] e\left[p ; y_{m}\right] \tag{4.4}
\end{equation*}
$$

$$
=N^{-1} \cdot \int \exp \left\{i q^{*} k q+i L_{i n t}[4, \vec{q}]+i{ }^{*} q q+i p q^{*}\right\} o l q d q^{*}
$$

$\left.=N^{-1} \exp (i]\left[-i \frac{\delta}{\delta u}\right]\right) \exp \left[-i P^{*}(K+u)^{-1} p\right] \exp \left[T r \ln (K+u)^{-1}-T r \ln K^{-1}\right](1+7)$
$=$ canst $\left.\exp (i]\left[-i \frac{\delta}{\delta u}\right]\right) \exp \left(-i p^{*} A[u] p\right) B^{2}[u]_{u=0}$, (4.3)
where $A[u], B[k]$ are given by the formulae (2.29) and (2.30) respectively while the constant factors are determined by the normalization condition

$$
\begin{equation*}
J[0,0]=1 \ldots \tag{4.9}
\end{equation*}
$$

The $\tau$ - functions may now be recovered from $J[\rho, \stackrel{\tilde{\phi}}{ }]$ using the formula (4.6) and

$$
\begin{equation*}
\tau\left(x_{m}, y_{n}\right)=e\left[-i \frac{\delta}{\delta p} ; x_{m}\right] e\left[-i \delta^{\delta} ; y_{n}\right] J[p, \vec{p}]_{p=p=0} \tag{4.10}
\end{equation*}
$$

and also the identity

$$
\begin{align*}
& e\left[-i \frac{\delta}{\delta p+i} ; x_{m}\right] e\left[-i \frac{\delta}{\delta p} ; y_{m}\right] \exp \left(-i p^{*} A[u] p\right)_{\mid}={ }_{p=0}^{*}=0 \\
& =\left\{\begin{array}{l}
0, m \neq n \\
\sum_{\pi \in S_{m}} i A\left[x_{1}, y_{\pi(1)} ; u\right] \ldots i A\left[x_{m}, y_{\pi(m)} ; u\right], m=n .
\end{array}\right.  \tag{4,11}\\
& \text { From this we infer for the } \quad \tau \text {-functions }
\end{align*}
$$

$$
\tau\left(x_{m}, j_{n}\right)=\left\{\begin{array}{l}
0, m \neq n  \tag{4.12}\\
\sum_{\pi \in S_{n}} \phi\left(x_{1}, y_{n(3)}, \ldots, x_{n}, y_{\pi(n)}, m=n,\right.
\end{array}\right.
$$

where we denoted

$$
\begin{equation*}
\phi\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)= \tag{4.13}
\end{equation*}
$$

cont. $\left.\exp (i]\left[-i \frac{\delta}{\delta u}\right]\right) B^{2}[u] i A[x, y, j u] \ldots i A\left[x_{m}, y_{n} ; u\right]_{u=0}$.

Introduoigg new auxiliary functions ( different Prom those of the previous section)

$$
\begin{equation*}
\varphi\left[z\left(s_{1}, \omega_{1}\right), \ldots, z\left(s_{n}, \omega_{n}\right)\right]= \tag{4.24}
\end{equation*}
$$

$=$ const. $\left.\exp (i]\left[-i \frac{\delta}{\delta u}\right]\right) B^{2}[u] \exp \left[\frac{\lambda}{2} \sum_{i=1}^{n \cdot} u \cdot z\left(5_{t}, \omega_{l}\right]\right]_{u=0}$
we will get using ( 2.26 ) the result

$$
\phi\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=
$$

$=\prod_{k=1}^{m} \frac{-i \lambda}{2} \int_{\dot{b}}^{\infty} d s_{k} \exp \left(-\frac{\lambda x^{2}}{2} s_{k}\right) \int_{\Omega} M_{\theta_{i} x_{k}}^{s_{k}, y_{k}}\left(d \omega_{k}\right) \varphi\left[\gamma\left(s_{1}, \omega_{1}\right)_{2} \ldots, z\left(s_{m}, \omega_{m}\right)\right]$.
Finally, expanding $B^{2}[u]$ in the Taylor series and using the formula ( 2.13 ) we will get for the adolilary functions

$$
\begin{align*}
& \varphi\left[z\left(s_{i}, \omega_{1}\right), \ldots, z\left(s_{n}, \omega_{n}\right)\right]=\sum_{m=0}^{\infty} \frac{1}{m^{m}} \prod_{k=1}^{m} \int_{0}^{\infty} \frac{d t_{k}}{t_{k}} \exp \left(-\frac{\lambda x^{2}}{2} t_{k}\right) \cdot\left(\alpha z_{k}\right. \\
& \left(M_{0, z_{k}}^{t_{k}, z_{k}}\left(d \bar{\omega}_{k}\right) \operatorname{const} \exp (i]\left[-\frac{-i \lambda}{2} \sum_{k=1}^{m} z\left(\xi_{k}, \omega_{k}\right)-\frac{i \lambda}{2} \sum_{j=1}^{m} z\left(t_{j}, \bar{\omega}_{j}\right)\right]\right) . \tag{4.16}
\end{align*}
$$

Furthermore calculations will follow ciosely the Symanzik work valit for the Japranglan

$$
\begin{equation*}
L_{\text {int }}[q, \stackrel{*}{q}]=-\frac{q}{2}\left(\frac{*}{q} q\right)^{2}+\alpha \stackrel{*}{q} \cdot q=J\left[q^{*} \cdot q\right] . \tag{4.17}
\end{equation*}
$$

Uist nf the previous notataion (3.3) we will get now
$\varphi\left(z_{1}, \ldots, z_{n}\right)=$ const $\exp \left(\frac{i j}{2} \frac{\delta^{2}}{\delta u^{2}}\right) \exp \left[\frac{\lambda}{2} \sum_{e_{1}}^{n}(u+\alpha) \cdot z_{k}\right]$.
$\cdot \exp \left\{\int_{0}^{\infty} \frac{d t}{t} \exp \left(-\frac{\lambda x^{2}}{2} t\right)\left\{d z \int_{\Omega} M_{0,2}^{t_{1} z}(d \bar{\omega}) \exp \frac{\lambda}{2}(u+\alpha) \cdot \bar{z}\right\}_{\mid u=0}\right.$.
Comparing this formula with the corresponding formula (3.2) for suxiliary functions in the case of neutral field one notices that they agree arter the substitution

$$
\begin{align*}
& g \rightarrow \frac{g}{2}  \tag{4.19}\\
& R \rightarrow 2 R
\end{align*}
$$

In the neutral case formulac.
Therefore we may get dmmedately relevent Kirkwood-Salgburg and heyer-hontroll type equalions for our new functions performing the above substitution in the formulae (3.15) ant (3.19) respectively. Namely, we will get the $K-S$ type integral equations

$$
\begin{equation*}
\varphi\left(z_{12}, \ldots, z_{n}\right)=\exp \left[\frac{\lambda}{2} \alpha \cdot z_{1}+\frac{i g \lambda^{2}}{\delta} z_{1}^{2}+\frac{i g \lambda^{2}}{4} \sum_{k=2}^{n} z z_{1} z_{k}\right] \tag{4.20}
\end{equation*}
$$

and $M-M$ type cquations
$\varphi\left(z_{1}, \ldots, z_{n}\right)=\exp \left[\frac{\lambda}{2} \alpha \cdot \sum_{k=1}^{n} z_{k}+\frac{i g \lambda^{2}}{8} \sum_{k=1}^{n} z_{k}^{2}+\frac{i g \lambda^{2}}{4} \sum_{i \leq u \leq k^{2} i_{n}} 3^{3} z_{k^{\prime}}\right]$.
$\cdot \sum_{l=0}^{\infty} \frac{(-2)^{\ell}}{\ell l} \prod_{j=1}^{\ell} \int R\left(0 \bar{z}_{j}\right) K\left(z_{1}, \ldots, z_{n} ; \bar{z}_{j}\right) \varphi\left(\bar{z}_{1}, \ldots, \bar{z}_{1}\right)$,
wher n notation are the same BB in (3.3) and (3.17).
We constder derived formulae for $\tau$-functions as a starting point of a battle with the divergenctes which siould be undertaken from the probabilistic standpoint.

The author wishes to thark Professor D.I. Elokhintsev for his kind hospitality during tac : ay at the I luoratory of Theoretical Physics in Dubna.

## APPENDIX

In order to arrive at the usual perturbation expansion for the $\tau$ - functions one has to perform the following typical operations
$\Delta_{1}=\frac{-i \lambda}{2} \int_{0}^{\infty} d s \exp \left(-\frac{\lambda x^{2}}{2} s\right) Q_{0, x}^{s, y}\left\{z\left(x_{1}, s\right) \cdots z\left(x_{m, s}\right)\right\}$
and
$\Delta_{2}=\int_{0}^{\infty} \frac{d t}{t} \exp \left(-\frac{\lambda x^{2}}{2} t\right) \int d z Q_{0,2}^{t_{1} z}\left\{z\left(x_{1}, t\right) \cdots z\left(x_{n}, t\right)\right\}$

In the basso formulae ( 2.33 ), ( 2.35 ) and (4.15), (4.16). A0oording to the main formulae of the Markovian relationvistio psoucoprooesses $/ 1 /$ Te may Trite

$$
\begin{equation*}
Q_{0, x}^{s, y}\left\{g\left(x_{1}, s\right) \cdots z\left(x_{m}, s\right)\right\}= \tag{A.3}
\end{equation*}
$$

$=\int_{\nu}^{5} d \tau_{m} \int_{0}^{\tau_{m}} d \tau_{m-1} \cdots \int_{0}^{\tau_{2}} d \tau_{1}\left(0, x ; \tau_{1}, x_{n}(1)\right) \cdots\left(\tau_{m}, x_{n(-1)} ; s, y\right)$,
where the transition amplitude is
$\left.\left(\tau_{k}, x_{n(k)} ; \tau_{k+1}, x_{\pi(k+1)}\right)=(2 \pi)^{-4} \int d^{4} p \exp p \frac{\lambda}{2} p^{2}\left(\tau_{k+1}-\tau_{k}\right)-i p\left(x_{\pi(k+1)}-x_{\pi(k)}\right)\right\}$.
The time integrations may be easily performed by changing
the variables $\quad \tau_{k+1}-\tau_{k}=\sigma_{k}$ and taking into account
that $x^{2}$ has a small negative imaginary part. As a resh., :. will get for $\Delta_{1}$
$\Delta_{1}=-i\left(\frac{2}{\lambda}\right)^{n} \sum_{\pi \in S_{m}} \Delta^{c}\left(x-x_{\pi(1)}\right) \Delta^{c}\left(x_{\pi(1)}-x_{\pi(2)}\right) \cdots \Delta^{c}\left(x_{n(n)}-y\right)$.

In the calculations of $\Delta_{2}$ one should tare into adoourl
that $S_{n}=\operatorname{cycl}(1, \ldots, n) \times S_{n-1}$ and that it 13
easier to find first the derivative of $\Delta_{2}$ with respect to $x^{2}$ and then to solve elementary Cauchy problem. "ic elma in this way the result
$\Delta_{2}=\left(\frac{2}{\lambda}\right)^{n} \sum_{\pi \in S_{m-1}} \Delta^{c}\left(x_{m}-x_{\pi(1)}\right) \Delta^{c}\left(x_{\pi(1)}-x_{n(2)}\right) \cdots \Delta^{c}\left(x_{n(n-1)}-x_{n}\right)$.

It 1 s clear that the all troubles of the Suantim Field Theory will appear when some of the points $X_{k}, x_{j}$ coincide and it is just the case when interaction Lagrangian is a local one.

1. W.Garozyński, Relativiatio Pseudoprocesses for Spinless Particle, Comm. of the JINR, Dubwa, 1974.
2. W. Garczyński, Quantum Stochastic Processes and the Feynman Path Integral for Eingle Spinless Particle, Reports on Math. Phys e, 4, 21 (1973).
3. W.Garczyágici, on Boundary Value Problems for the Schrödinger Equations and Simplest Boundary Value Problem for the Schrödinger equations. Commun. of the JINR, P2-7471 and P2-7484, Dulna, 1973.
4. R.P.Feymman and A.R.Hibbs, Quantun Machanics and feth Intograls, New York, 1965.
5. C.De Yitt-Morette, Commun.Math. Phys., 28, 47 (1972).
6. J. Ginibre, J.Math.Phys., 6, 238 (1965).
7. K.Symanaik, Euolidean Quantum Field Theory, in Proo. Intern. Sohool of Physios (Varenna, 1968), Ed. by R.Jost, Acad.Press, New York and London, 1969.
B. N. N. Bogoluboy and D.V.Shirkoy, Introduction to a Theory of Quantized riélds (in Russian), Mosoow, 1957.
8. J.Rzewuski, Ficld The ory II, PNN-Polish Scientific Publ., Warsama.

11.R.P.Feynman, Phys.Rev., 80, 440 (1950).
9. J.Sobwinger, Phys.Rey. 82, 664 (1951).
10. H.P.NoKean, Jr.; Stochastio Integrals, Aoad.Press, N.Y.-Iond on, 1969.
