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~isted Eikonal Graphs and Quasipotential 
Struc~ure · 

On the basis of the straight-line path method the 
asymptotics is studied for the twisted·eikonal graphs, 
which violates the eikonal representation with effective 
Yukawa potential for the sum of ladder diag·rams even in 
the lowest orders of perturbation .theory. The re·sults 
obtained are employed for'reconstiucting the asy~ptotical 
quasipotential. · 
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Investigations of the eikonal representation by straight
line path method /I, 2 I have shown that the eikonal for
mula means only the account of the virtual processes in 
which type of particles with large momenta does not 
chang.e. 

Noneikonal contributions to the amplitude appear when 
changing the sort of leading particle/3/, i.e., when allow
ing for the processes with large momenta transferred from 
nucleons to mesons and vice versa. In this connection 
it was mentioned in ref. 131 that one should also consider 
twisted graphs obtained from ladder diagrams by trans:Po
sing two nucleons, ·when investigating, the high-energy 
asymptotics of the two-nucleon scattering amplitude within 
the scalar model. The possibility of transferring large 
momenta by mesons results in that the ·contribution from 
such graphs can dominate over the eikonal ones in the same 
order of perturbation theory. ThiS circumstance leads to 
the fact that the ·local quasipotential in the region of high. 
energies . will be represented by a pOwer-series in the 
coupling constant, each terin -of which gives a correction. 
to the Yukawa interaction, corresponding to the traditional 
eikonal approximation. In what follows we shall consider 
in detail these diagrams· and also will study how to re
construct the asymptotic quasipotential from them~ To the 
second order of perturbation theory the only twisted graph 

, does exist (Fig. l)i · 

q2 

Pl : . . .. I > : 
p2 ql > 

Fig. 1 
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with the known asymptotics ! (recall that s =(pi+ p 2) 
2 
and 

t =(pi- qi )2). 
To the fourth order we have already two such diagrams. 

One of them (see Fig. 2) 

P, : 1- l : 
p2 

q2 

q I 

Fig. 2 

possesses a more weak asymptotics 1/s 2 than the corres
·ponding nontwisted graph. The other (see Fig. 3) 

. Pt 

p.: X : :: 
Fig. 3 

has ·the asymptotics fu sIs that results in. ·the breaking 
of the eikonal representation for the sum of generalized 
ladder graphs in the fourth order /3/ already. Recall that 
noneikonal contributions (of which the possibility was 
pointed out in ref./4/) do appear only in the eighth order 
of perturbation theory. 

In the subsequent order we have six twisted diagrams. 
The diagram drawn in Fig: 4 

4 

'I 

~ 

~ 

PI q2 

p2 qi 

Fig. 4 

possesses the most weak asymptotics ~ 
The next pair of graphs (fig. 5) s 

PI )lr ' ' 
1 ... q 1 P1 

p2 _, I I \ 10 q
2 

p
2 

)lr F · \ .r I _, 

in the limit s _, oo 

Fig. 5 

~ 
with t &ts fixed behaves as S2 

ql 

q2 

i.e., has the same asymptotics as nontwisted graphs in 
this order. The diagrams in Fig. 6 

PI q I PI ql 

p2 q2 p2 q2 

Fig. 6 
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have the asymptotics 1 what is stronger than the eik~nal 
formula gives. 

Finally, the last graph in the sixth order 

P1 ql 

p2 q2 

Fig. 7 

behaves like fu 2s --s 

The consideration of the first six orders allows one to 
conjecture that in the higher· orders the diagrams of the 
shape in ·Fig. 8 · 

P1 q I 

p2 q2 

Fig. 8 

fu n-1 
with asymptotics g2 n · s- will dominate. 

If only the leading asymptotic terms in each order of 
perturbation theory are summed up, as it is usually made 
when· deriving the eikonal representation, then one gets 
the following asymptotic expression for the sum F of 
twisted graphs: 

F I . 
s->oo 
t- fixed 

6 

-i L 8 a(t) 
(277) 4 

(1) 

·:. 

~., 

a(t) ~-1+_£_ 1 Y~ 877 2 . . . fu . --t + 1 
V-t (4m2-t). . . • (2) . -' 4 2 v 1 _ _A 1 

t -

With such a summation, the coefficient for s a < t > and the 
expression for a(t) are computed up to.an accuracy of 
g2 only. However, already from (1) and (2)itfollows that 

within the framework of scalar model the sum of ladder 
graphs leads by no means to the eikonal representation · 
proper to the Yukawa potential scattering. Indeed as has 
been already mentioned, the twisted graphs are due to the 
identity of scattering particles. Within~ the framework of 
quasipotential scattering theory the particle identity impli
es necessarily the exchange forces in two-particle inter
actions as it holds in quantum mechanics.· 

The standard method of constructing the local q~si
potential by perturbation theory developed ill works 5,6/ 
can be generalized in different ways when the exchange · 
forces are present. Here we will briefly describe a method 
based. on introducing the normal and exchange interaction 
parts through the expr·ession · · · · 

V(s;p,k)·= <;J(s;p.:...k) +f.(s;p+k) • (3) 

The quasipotential scattering_ amplitude is here represent-
ed by the sum of two terms /7 I . . 

T (s; p, k) = § (s;p,k) = H (s;p,k) , (4) 

satisfying the system of linear equations 

§ 'if ·<J f. (§) 
(H) =(f.) +(f. <J )x H' . (5) 

where the symbol "x"means integration 

I dg 
· V m2 + q2 

1 . 

m2 + q2 _ E 2 
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For a scattering of two identical partiCles we have 

" f.{s;p+k) =P<;J{s;p-k) =<;J{s;p+k), (6) 

H ( s ; p , k) = P § { s ; p , k) = § { s ; p , - k) = § { s; -p, k ) , 

the. two particles. With this, the fucntion § obeys the 
where P is the transpo. sition. operator for coordinates of ~' 

conventional equation by Logunov-Tavkhelidze * . ' 

§=<;J+<;Jx§. .. (7) 

The equation (7) can be used to construct the local quasi
potential '1 over the given perturbation series defining 
the amplitude G: . 

'12 .= [ § 2 ] , 

'14..:H:~4] -(<;J2X<;J2)' (8) 
·: 

'~6 = T § 6] - [ '~2x '14] - [ '14x '~2]- ['12x "2 x '~2] 
and so on. 

The symbol [ ... ] means the "local" continuation off the 
mass shell E2= p 2+m 2 = k2 + riJ2 of an arbitrary function 
A (E; p, k) =A(s, t, u,o), where 

s =4E 2 , t =-(p-k) 2 , U=-(p+k) 2 , 

. 0 = p 2_ k2 
In this notation we have · 

[A(s,t,u,o)] =A(s,t,4m 2-s-t,O). (9) 

The quasipotential constructed in this way makes it possib-

*Eq. (7) follows from (6) if one takes into account that 
in the case of identical particles the integration over 
intermediate two-particle states contains the statistical 

1 " factor 2f , and '1 x § = f. x H , '1 x H = f. x § = P ( '1 x §). 

8 

J 

t 

le, in its turn, to reconstructthe initial scattering ampli
tude on the mass shell. 

We should stress, however, that perturbation theory 
defines the amplitude T as a whole but not § · and H 
parts separately, i.e. 

T2n· (s,t) =[§ 2n (E;p,k) + H2n{E;p,k)]. (10) 

Defining 
~n { S , t ) = [ § 2n { E ; p ; k ) ] , 

B 2n { s, u ) ,. [ H 2n { E ; p, k ) ] , (ll) 
which are connected in the case of scattering of identical 
particles by the symmetry· relation · 

F2n ( s, t ) ... B 2~ s, u) at t -u (12) 

we have 

T 2n (s,t) = F 2n (s,t) + B 2n (s,u). (13) 

In general, the splitting (13) Js not uriique. As additional 
condition fixing this splitting one may employ the analyticity 
properties. In particular, one may assume that the qU:antiti;.. 

· es F2n ( s , t ) and B 2n ( s , u ) are· analytic functions of 
momentum transfer with singularities at .~ > 0 and u > 0, 
respectively, and obey the nonsubtracted dispersion relati
on. 

In this paper, with the main task on reconstructing the 
local quasipotential by perturbation theory in the region 
of asymptotically high energies, we will formulate ~e 
following condition: 

F 2 ( s, t ) is defined by the leading asymptotic term 
n of the amplitude T 2n in the region 

B 20 (s, u) 

s .... ·oo , t -fixed (the forward scatter-
ing). 
is defined by the leading asymptotic term 
of the amplitude · T 2n in the region 
s .... oo , u - fixed (the backward 
scattering). 

9 



The following Table exemplifies the method of const
ructing the local quasipotential proceeding from the setof 
twisted and usual eikonal graphs on the basis of the condi
tion stated above. 

10 

Normal graphs F -contributions 1 B -contributions p,Iq, 
p2 q 2 P,rrq· 
p2 q 2 

PI---v--q I 

p2~q2_l.• 

Twisted graphs 

P,Iq' 
p2 q I 

PITTq2 

p~qi 

p·xq· 
p 2 q I 

g2 T 
4 fu( -s)TI -g -s 

4 f'n s, ;TI g_-s-

F -contributions 

0 ( ...l) 
s ·' 

--~ 

0 (-1) 
s2 

g4 fu s 
s 0 

0(-1 ) 
So 

0 ( _!~ 
s 

4fus_7\ 
g -s-. V 

B -contributions 

PT 
-g -s-4 fu ( -s)p". IT 

g4~ 
s PIT 

Here the following notations are used: _ 
· · correspondilig, in the language of 

T- 1 
6,2 + 112 

.L 

IT 

quasipotential graphs, to the ·single 
scattering on Yukawa potential at 
high -energies and fixed momenta 
transfer 

- d 2 k..l. 

- f ( k f + p.2) [ ( 6.-J..-+-.k-L-) 2.+ ll 2] 

is the two-dimensional contraction corresponding to the 
double scattering on Yukawa potential 

·o -.2 .. .d k.t 

. :- f ( k 2 + .m 2 ) [ ( Ll . + k ) 2 + m 2 ] , 
:.l. :J. . :J. ' 

that corresponds to the contribution to· scattering from the 
exchange by nucleon..;antinucleon pair: 

The action of operator p tunis, obviously, into the 
substitution 

" " Pill. == P (p-k)L -.. (p +k)L _. (14) 

Summing the usual eikonal and twisted graphs we get 
for the scattering amplitude: 

-y- n· D 2 4 i 1T . . 4 en s . 
[ g - + g ,,s +g ~ +:··~·(15) 

" T=(l+P) 

Making use of' the above procedure the local quas:ipo~ 
-tential can now be reconstructed ov~r perturbatio.n theory 

~2 -I T· (16) 
s .... 00 

t-fixed 

II 



.. -II + X+IDC>I 
g.;" TI 4fus v s .... 00 

g-- (17) s 
t-fixed 

and so on. 
As has been indicated above, ~ 2 represents the 

conventional Yukawa potential in the phase of eikonal re
presentation. The relation (17) defines the correction of 
non-Yukawa type which originates from the graph in 
Fig. 3. In the momentum space this correction to quasi
potential is given by the formula 

d2 
~ (q2) = fu s g4 J k.l (18) 

4 s 2(277)7 (k[+m~[(~.l+kL) 2+m'2] 
2 . 2 

where the replacement ~ L = - t -> q should be performed 
after integrating. 

Introducing a -representation we obtain from (18): 

~(q~=~~} da .(19) 
4 4 (277) 6 s 0 a{l-a) q 2+ m 2 

The representation (19) allows one to calculate the 
quasipotential in the coordinate representation 

4 1 i q r 
~ (r) = g _fu_s_ fda Jdq---e-~ 

4 4 (2 77) 6 s . 0 a (1-a) q 2+ m 2 

g4 ~ Ko(2mr) (20) 

2(277) 4 s r 

12 

We see that ~4 is asymptotically smaller than the 
leading term (Ywcawa potential) of quasipotential indepen
dent of s. However, even in the fourth order ~4 gives 
larger contribution to the scattering amplitude than the 
second iteration 'of Yukawa potential that results in break
ing of the eikonalJormula. At short distances this poten
tial behaves as r r ; i.e., it is more singular than the 
Yukawa potential. The connection of noneikonal terms with 
increasing of singularitylf }he quasipotential corrections 
was pointed .out in refs. S.9 · . . 

To conclude we note that the method described above 
can be applied to calculations ofthe asymptotical quasi
potential in higher orders of perturbation theory. · 

The authors express their deep gratitude toN .N .Bogo
lubov for interest in the work and valuable remarks and 
also to B.M.Barbashov, A.V.Efremov, A.A.Logunov, 
D. V .Sii.irkov and V .S. Vladimirov for fruitful discussions. 
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