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Summary 

The invariance with respect to the infi
nite-dimensional general covariance group is 
equivalent to the invariance with respect to 
the affine and conformal ·groups simulta- · 
neously. The nonlinear ·realizations of affine 
group (the Po·incare group being the stabili
ty subgroup) ·- lead to the symmetry tensor 
field as the Goldstone field. The requirement 
that the theory also corresponds at the same 
time to the realizations of conformal group, 
.:r:_esults uniquely in the tensor field theory 
which equations coincide with the Einstein 
equations. Thus, it becomes clear that the 
theory of gravitation is that of spontaneous 
breaking of the affine and conformal symme
tries, just as the chiral dynamics is the 
theory of the spontaneous breaking of the 
chiral symmetry. The analogy established . 
suggests some new aspects of possible gra
vity effects in element~ry particle physics. 
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· 1. In~roduction 

. The gravi~a.tionar· field is known to· be. a gauge 
field providing 'invariance of.-- the Einstein gravity theory:,. 
under the group of general coordinate transformations. 
This exhibits a deep- analogy between the gravitational_ 
field and the Yang-Mills fields.- which are,gauge fields .. 
for the internal symmetries. · · -- -· 

·Another ·deep analogy does exist; that one between 
gravitons in the theory of gravitation and pions in the 
SU(2). X SU(2) chirai.dynamics based on nonlinear rea:Ii:.. 
zations of the chiral symmetry. The chiral invariance is' 
achieved via. approprJate interactions with (massless) pion 
field and the general covariance is ensured by .the :appro
priate interaCtions with ' massless gravitation~! field; ' 
These in-teractions are introduced replacing usual deriva- · 
tives by covariant .derivatives nonlinearly dependent on the 
pion field (:ln chiral symmetry) and on the gravitation-al
field. (in. gravity theory) .. The chiral symmetry is spon.::; 

.taneously broken and (massless) pions are the Goldstone . 
bosons. - ' · ·>._ -'' • · -

In the present paper it will be·sllown that the-:general 
relativity is that'of simultaneous· nonlinear reaiizations 
of affine and conformal symmetries. Gravitons prove to be . . * the Goldstone bosons. for these symmet:r;_ies . We shall 

-------------------------* Attempts:'to· consider gravitons as the Goldstone:par
ticles ·were undertaken also · earlier I I,2/. However 
they· were coimected with the hypothetical. spontaneous 
breaking of th~ Lor.entz invariance along a sp~cific direc
tion. In our case the- Lorentz symmetry is unbroken and· 
vacuum is invariant _ under Lorentz transformations. 
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derive the Einstein equations from the requirement of 
· invariance under the affine and conformal groups realized 
nonlinearly .which become linear on the Poincare group.· 
The derivation is analogous with that of the chiral dynamics 
equations in the theory of nonlinear realizations of chiral 
symmetry /3,4/. · 

:· The general covariance group 

ox 
11 

= f 
11 

(x) , (1) 
. . 

where f 11 (x) are arbitrary functions of coordinates xI' 
x 2 , x3 , x 4 =:ict contain an infinite numberofparame.., 

ters -expansion coefficients of f 
11 

(x) as series in powers 
of coordinates. Its algebra includes an infinite number of 
generators: 

nl ·n2 .n n a ·L n In2n3 n4 -. 3 . 4a (a -- ): (2) , = lX l X 2 X 3 X 4 . -a • 
11 11 11· x· 

11 
The nonlinear realization . theory has been developed for 
finite-parameter groups/4~ How. can it be applied to the 
interesting for us infinite parameter!;roup (1)? The key to 
solving this problem gives theorem 1 1 found by one of us: 
This theorem states thatthe infinite-dimensional algebra . 
(2) is a closure of the finite-dimensional algebras of 
SL(4,.R) and conformal groups. (For us here it will be 

convenient to consider the affine group of all linear trans
formations x' =a x + c instead of the speciallinear 
group SL(4,R)f. The 11gerterafor · of special conformal trans
formations in the coordinate space K

11 
,;-i(~ a u-2x

11
x .a ) 

is quadratic in coordinates. Its commutator with the gene
rator - ix 11 a v is also quadratic in x. Commuting these 
co·mmutators with each other we obtain operators cubic in 
x, and so on. In/5/ we have shown thatanygenerator of the 

. n ln2n3 n4 general covanance group ·L · (2) can be repre-
sented as a linear combinallon of repeated commutators 
of generators of the special linear and conformal~grotips. 
Hence it follows that any theory· invariant simultaneously 
with respect to· the special linear and conformal group~ 
will be invariant also with respect to ·the general cova
riance group. In this way,· we arrive naturally at a new 
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approach to the gravity theory which .rests .on the inva- · 
riance of. this theory· under the finite-parameter confor-. 
mal and special linear· groups having a structure essen-

. tia1ly. siinpler than that of the infinite-parameter· generaL 
covariance group. · . . . 

In Nature no conservation laws do exish!orresponding 
to the special· linear . and· conformal transformations. 
Therefore : SL(4~R) and conformal symmetries should be 
dynamical, ·spontaneously broken. Accor9ingly, we will 
consider their nonlinear realizations so that only their 
good algebraic· subgroup - the Lorentz group Cas well as 
translations) will be represented by linear homogeneous 
transformations· of fields. · . 

Nonlinear -realizations of finite-parameter symmetry 
groups including that. of space-time symmetries were 
studied· in 'a nuinber of papers /6-9/in several papers the 
conformal symme'try . was c·onsid~red; the linear group 
was discussed by C.Isham, A.Salam and .Strathdee 171. 

This· paper is planned as follows. The second section 
describes nonlin·ear· realizations of the affine group. Here 

. the symmetric tensor field h v(x) .: is require-d to serve 
as the Goldstone field. In the. definition of covariant deri
vatives some nonminimal terms are allowed, and because 
of this the corresponding theory is .not fixed quite strict-~ 
ly. In the third section the necessary information is given 
concerning dynamic realization of the conformal group. 
The general- realization theory prescribes two Goldstone 
fields, vector and scalar fields ¢ 11( x) and ¢ (x ).Howev:er, 
specific properties of the conformal group make it possible 
to represent .the . vector field ¢

11 
(x) as the· gradierif of 

scalar field ¢ ( x) , so only the scalar field remains to be 
dealt with: When investigating the nonlinear. realizations 
we use essentially the ·cartan differential form's following 
D.V. Volkov /8/. Then in the ·fourth, principal, section we 
show that the consistency requirementfor nonlinear reali
zations of the affine and conformal groups fixes uniquely 
a form of covariant derivatives, and we formulate the rules 

. for writing· down the invariant action. . 
; in' :u1e next sec'tion we identify the theory obtained 

with the Einstein general relativity. T~e analogy establish;.. 
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ed between gravitation theory and theories of nonlinear 
realization of groups of the: internal-symmetries.(chiral 
and other ones) leads to· statement of a series of prob
lems. Solving of them would facilitate more-deep under
standing of the role of gravitation for eleinentarfparticle 
theory, for instance, for formation of particle. mass 
spectra. Some of these problems are discussed briefly 

· in conclusion. 

·;·2. -Nonlinear Realizations of the Affine Group.· 

·Let us proceed to describe the .nonlinear realization 
of the affine group; A (4), that of all linear transformations 
in the four-dimensional space-time x ·, =a v xv +c 11 . . ·The 
affine group is the semidirect ·product of. the group ·L(4,R) 
and that of translations, A(4) = P~ ex ·L(4,R) ~nd contains 
the Poincare group as a subgroup. Its algebra consists 
of generators of the Lorentz group ·L11v , those of the 
special linear transformations including dilatations, .R11 v , 

and generators of translations P 
11 - . •· 

· .1.. [·L ··L ]=o ·L - o' •L -( 11 ->v) 
1 p;v ' p r JlP vr JlT vp 

• 1_, 

-!-T·L , R · ]=o- ·R +o .R -(p. ->v ) (3) 
1 p;v pr pp . vp JlT vp 

. ~ [R ,R ]::0 •L + o · •L +(Jl. ->v) 
1 . p.v pr pp rv. . .Jl.T pv . 

1 -[·L ,P ] =O P -(Jl.->V) i p.v·p llP v ; 

(4) .f-[Rp.v,Pp] =ollP Pv +(p. ~v). · .. 

In a vector representation !Jle generators ·L JlV and -:R JlV 
-· may be defined in the matrix form 

6 
_, 

--~" 

-~ ·.· 

j 

1.-+ 
~ . 

i 

'. 

... 
i-

·.!, ,, 

~~ :' -..... . . ... 

~-,_:· 

-<' 

·c·L ) · ,;, - i (o . o · - o o ) 
.. JlV af3 J1a vf3 . . Jlf3 va 

(R ) .·{3·=._-i ( o 0 {3:_..:;: o .[3-.· :8 )~·· 
JlV a " . . Jl.a. v · Jl .•. va . 

-~· . 

:-

.. 
;:: ~. 

(5) .· 

· Only the PojJ?.care subgroup of the affine group_ is 
algebraic and assqciated with the true conservation laws, 
conservation of total mqmentum and that of total angular 
momentum, hence: the affine symmetry can be only dyna-:
mical. Therefore we. shan consider the nonl,in._~ar reaFza- · -:. 

· 'tions of A{4") which become linear only,on its subgroup
that of Poincare .. The transla_tion group· is 'an. invariant 
subgroup, .so we need to consider the realizations of A(4) 
in .a quotient space, A(4)/L, ·where·L is the.:Lorentz 
group. ·Following ·the general theory/4-9/ we introduce 
a Sym~etriC tensor field hJlV (X) and.define the action 
of a group element as follows: · 

·1 '" ( ) .. R. . • ' • 
....- lu X . • , p I. h , . ( ')fJ I . 'h . )I 
~ pv. ,Jl.V l:Xfl .Jl 2 pv X 'Jl.V ""'TUp;v\ •If> ~Jl.V 

e · ' e ? (6) , . 

ix
11 

P
11

_ 

. : .. g:.ge ·e =e· .. 

.. ~-. ·. ,_ . 

.. where x p_ ·~:are the transforme~f'coordinates, _ hP.v (x ') is 
the tran·sformed field_h 11v(x) and' u 11v (h,g) qependsupon. 
a group element g and field h11v (x·) •. The action of A(4! 
on an arbitrary field 'P (x) is . defined as follows: 

i . 'P 
g·: 'P '(x ') = e 2 u Jl.V (h (x ) , g fL v . 

. Jl 'P (x), 

~ ... :~ 
. ._, .i.~] 

(7) 

-
. . · . .-'1'. '• . ·: :·· .. " . ~,.c. . . .'• 

where L~~- are matrices:· representing the ·generators of 
the Lorentz group for the field· 'P'(x). For instance, 

'P 'P ~ 
·: ·1;/LV =0 _for scalar, ·Lw= j-a 11v :.foraspinor, (Ep;v)a{3= 
· =- i (o o r:rD o J for a vector, etc., and the corresponding 
infiniFes'im~t transformations o'l'(x)7,'1' '(x ')- 'P:(~) '>ar:e 

•· written as · .: · , '~, -: c: · · · · 

o¢ (x)=O (a) o'P (x)= 
4
1.:u ~· (h(x'),g);; 'P (x) . (b)' 

·.. · P;V Jl.V · 

. ·~ .-.-o_ 

7 

,_ 

::: 



oa (x)=u (h(x),g)a (x) (c) 
p. JW v . (8) 

The group_ property of the transformations (6), (7), (8) 
is checked immediately. One can easily , be convin_ced 
that. the _Poincare group is represented by the stand~rd 
linear tran:5formations. For example, for_ translations .we 
have g·=e

1
cp.Pp. up.v=O X~=Xp. +Cp. , h ;_,(x')=hJ.tv'(x), 

'I' tx ') ='l'(x),for. the Lorentz .fransformatio!s · ·· · . : . . 

.• i~{J VL v . . . . .. 
, g =e ·· P. · P. we see that u =13 

p.v JW 

and:does not dependent on . h;Lv(x), i.e:, in accordance 
with (6) all fields undergo usual Lorentz transformations. 
For ·special linear transformations . g · contains the fac-

i . 

tor e yaJWR p.v and u f1V _depends essentially on h IJ.V , 

so all fields but h JW transform through the Lorentz 
group with parameters u p.v (h,g) nonline~rly depem;lent 
on h ( x). In the lowest order in a f1.V.. infinitesimal 

. translformations of h p.v( x) and 'ii p.v (h, g) have the form 

' 
oh =h' (x')-h '(x)= :s b. (hm (x)ah n (x)) . , . (9). 

P.~ p.v . ~v ·. mn ~n . . .JW· . 

u (h(x),g)= :S c (hm·(x)ahn (x)) . , (10) 
JW mn mn · p.v 

where 
{hmahn) =h 

JW p.ai 
... h 

a a m-I m 
a h ... h · 

ampi PIP2 pnv 

and coefficients b 
rating functions mn 

and c mn are given by the gene-

a
1 

(x,y) = ~bmn xm l =(X"-y)cth(x-y), 

a .(x,y)= :Sc xmyn'='-.th(x-y). 
2 mn mn . . 2 

(11) ' 

·(12) 

Let us now introduce (in the vector representation (5)) 
the important quantity: 
. . k h {JR~ h · 1 
r (x)= e · a =( e ) = o +h +-h h + ... (13) 
p.v JW JW p.v 2 p.a av 

8 

• I 

. ~ ~ .. 

~_.~-~ 

-;:. 

.. .. 
. ·.t. • 

-~ 

·~· 

.' 

.- ', •'<- ' ·;:f 

and its inv·erse r -~ (x)=(·~ ;-hf . · · · · (14) 
' f:D:: . . p.v • 

According to (6) the infinitE~si~':i.l transforniatib~s of these 
Lorentz. tensors corresponding to (9) have the form 

-t I · ·• ~ . +I +I . . · .. ·. 
or-_.(x)=±"a r- .-r--u· (h,a)~. (15) 
- _ p.v . p.a av ' p.a av · --

. ·The identities equivalent.to (10).(in the matrix form) are: 

+ . .- + 
lu(h,g),r-I(x)} =±[a,r-I] .(16) 

. . . p.v . . p.v 

and they; ensure that .O.r 7:} _ ar~ symmetrical in indi;.. 
ces. It is possible to construCt the functions of the field . 
_transforming linearly. Those quantities are represented .. 
. -- ., . -I . -

"'< ~. 

.. _; .. 

by squares of ' r P.~· and r JW • •. · · .... 

. ) ( 2h . _' p.v. -I -I ·. -2h g . = r (x)r (x = e ) g =r r =(e ) (17) - . 
p.v p.a · av _· . p.v c __ p.a . av JW 

~ ._.:· :1 

o g . (x) = a . g · (x )t g · (x) a ... 
p.v p.a av • p.a av ...... 

(18) 
ogp.v (x )=-a ,, gav - g p.a a • 

. p.a av • -s; .~· 

These . quantities correspond to ihe covariant and contra
variant metric · tensors in the generaF relativity.· This 
.similarity~ is ../ery profound.· By changing the field ~ari
ablfs it is possibl~ to introduce the linearly tran~f~rmed 
contravariant and covariant quantities for any flelds 
with integer spins. Thus, for a vector fi~ld ap. (x) 

A ·(x)=r (x)a (x); Av(x)=r-I(x)a (X)' ·Ap.=gp.v A (19)·· · 
. p. - p.v v f1V . v . v 

·· are ::covariant and c<>ntravariant vectors, respectively;:~ 
With (15) taken .into account from (Be) it follows 

~· . .: .-

a'AI':(x)=-~: Av(x);· BA (x)~a A (x):. -' (20) 
. JW . v p.vv. ·· 

Analogously, for any nU:mber of vector indices they may be~ 
··.:, 

'· 
Y,f 

.9 
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transformed to contra or covariant ones by multiplying 
them by· r it or r fD: , respectively. - _ . , _ · 
- · For fields of the half-integer spin it is not possible to 

pass to the linearly transformed quantities what is due 
to the absence of finite-dimensional spinor repr0sentati

. ons of affine group. Note that the nonlinear
1 
~yinor law 

(lOb) in gravity theory has been found in 1965. 1 
• . 

Because of the nonlinear dependence -of transformation 
laws on the Goldstone field h Jll'(x} one should define 
the covariant field derivatives, which transform under 
the affine_ transformations . through the representations 
of Lorentz group with parameters dependent on" h pv in 
the same way as the fields themselves do. Usual deriva
tives are not suitable. The covariant derivatives are 
defined much easy with the help of the Cartan differential 
forms /2,8,9,1l/. We introduce the ·notation 

. ~ ha{Jx) Raf3 . 
G=e 

1 
x fl. Pfl e and consider the transforma-

tion properties of the expression G-d G where differen
tial d acts on x and h ,Ix).. From (6) it follows that 

. fl. ap 
i . 

-1 "2 u IIV' L fl.V -1 . 1 _·..1- u . L 
G' dG'=e ' G gd(g-Ge 2 flV fl.V·)= (21) 

.!._u L _!...:, u vi i u L . i 
=e2 fl.V' fl.V (G-1dG}e 2 fl. f1V+_e'2 fl.V Jll'de -'2uf1VL/LV 

- . -1 
as g does not depend on -x. Expanding G d G over the 
generators of affine group 

-1 p · R i . L (d) L G dG=iw (d)P11 +
2
1 w (d)R + -

2 
w · 

f1 . r fl.V fl.V fl.V f1.V 
(22) 

we obtain the Cartan differential forms 

w P(d)=r Jx)dx (a) w R (~l} = ~ ! r - 1 (x), dr(x) I (b) 
fl. fl. v f1.V f1.V ~~ 

w11~ (d)= -I [r-1(x), dr (x)] J1V (c), 

where the m~tr_ix notation is used, for instance, [r -
1
, dr]llV = 

= r;C:drav - :drfW' r;;:;1 . The generators .RJll' , P 11 and 
Lflv form representations of Lorentz group. Therefore 

from (21) it follows that under action of affine group the 
Cartan forms undergo the Lorentz transformations with 

10 

0 

I. 

,, 
I 

' 

I 

~--

parameters u '!! v (h{x), g ) , · th~ fonii w ltv (d) 
also the additive contribution · 

getting_ 

L .1. u L · L . _j_u L 
(•L w (d))' = e 2 · af3 af3w (d )'L ·- e _2 af3 af3-

f1V fl.V fl.V fl.V (24) 

-2ie ~0h{3Laf3de -- fu~f3 Laf3 . 

This additive term allows one to "obtain the· covariant 
differential for ·an arbitrary field lJI (x). From (24) and 
(9) it follows that unlike. the usual differential the cova-
riant one · · · · · ; - · · .. · . 

. L lJI 
DlJI(x)=(d+ ~w rL · ) lJI (x) (25) 

~ .fl.V _fl.V . 
transforms by the same representation as the field lJI(x) 

i . 
u· L H 

itself, (D lJI (x)) '=e '2'"_ fl:V fl~DlJI (x)). · The form w f!-V (d) (23b) 

is· identified with the covariant differential of. h pv (x ). To 
construct covariant derivatives the use should be made 
of the_ Cartan form ~ f-1-(d) (23a) as ju_st this one _(and not 
dx

11 
· ) has appropnate transformation properties. The 

covariant derivative of the preferred field h 11v(x) is 
defined as (a

11 
= k ). 

wJlv(d) ~ -1 · -1 
V,\h. = -J::--,; -2 r Ar (x)! r ·(x), aT r (x) I /1)/ • (26) 

fl.V W ,\p (d) • . r 

The minimal covariant derivative of an arbitrary field is 
written in the form · · 

DlJI(x) -1 · i min ·· lJI" 
V,lJI(x)=-p-=r a lJI(x)+ -

2 
v , ·L lJI(x), (27) 

1\ W ,\(d) ,\r T fl.V ,A fl.V 

·where 
min_ 1 -1 -1 . 

v \ (x) = -2 .r, (x)[r (x), a r(x)] 
fl.V , 1\ 1\ T T . fl.V 

(27') 

Transformation properties ·of . a covariant deriyative, 
V 'lJI ( x) do not change if one will replace vm 11~,. by 

1\ > fl.V•I\ 

V , = v , . + c 
1

- ( V · h , .-:- V . h ,· ) + 
fl.V, 1\ fl.V ,A . fl. VI\ V fl./\. 

u· 



l-.: .... 

·.·.· 

+C (o, v h _::~o\ v h.):+_ c <~.~··v. h :._o ·, v-_h >: 
2 flA v aa Vll fl. aa . 3 ~-"'' · r vr·· . Vll T· flT 

(28) 
Nmiminimal terms added contain the fir.st derivatives of 
h as well as . v ~i). do. Therefore the general form 
ofa covariant dertfafive -. . . · 

-~ .. . . . . . 
-I . . 'I'• 

VA'I'(x) =r,.\r aT 'l'(x)+y.VflV,~.·LflV'I'(x) ~29) 

is not well fixed and contains arbitrary constants ~ ·: c.2,: .• 
i..a_. It will. be shown below. that values.of these constants · 
are . defined by the conformal . in variance .requireriumt. 

·The invariant volume element is given by the outer 
product: 

d'V=-i~~ (d)Aw~ .(d)Aw
3
p (d) Acu 

4
p(d)= 

=det II r (x)]ld4x o:e spllhpvll d4x. (30) 
fl v ' 

The action f ~ (x) det !lr11v lld4x.will be invariant relative_ to 
the affine group if the Lagrangian density~('l'(x) , .. 
VA 'I' ( x) , V Ah v (x) is a usual scalar of the Lorentz .. 
group. Indeed; all fields 'I' (x), their covariant derivatives · · 
and that of h v (x) transform . by representations of the 
Lorentz group~(though witl! parameters u flV (h, g) depen
dent on h flV · ) •. A further specific~tion of the theory 
is achieved through imposing the conformal invariance 
requirement. . 

3. Dynamical Conformal Symmetry . 

.· ·Realizations of th'e conformal.group. )n the Jtuotient 
space over the Lorentz group were considered in -B!Fo.r. 
us the following facts ·are needed: _The conformal group 
algebra includes generators of the Poincare group, L 1w 
P-v (their com~utators are listed above, see (4)), and 

generators of the scale and special conformal transforma-
tions, D and K . . · 

fl 

12 

~· ~ 

'. 

[~ 
l 
~ "i-.~. 

I 
,i 

;.l. 
r(:.,. 

) ·; 
! .' 

·-

, ... \· 

I ,. 
I•' 
I. 
) 
I 

t' 
j 
i' 

··I-
I 
I 

t ' 
I 
'\ 

-\; 
I 

~· ... 

.. 
~.~;. ·,, 

[·L . ;D]=O, [·L ,K 1=io' K --(w·•v) [K ,K ]=0~. 
·flV · flV.p ·flPV .• fl V 

(31) 
[P ,D]=-iP'~ [K ;D]=iK , [P ,K 1=-2i(o D-'L ). 

JL . . fl fl. . fl JL ::. V. flV . flV 

A conformal group element g C'an be represented as 
follows: · . . , . 

:~ 

_ . iCPPJL i{JflKfl i{JD }f3flvLjw . ·' 
. g =e. e e , e . , (32) 

. ~·.M, 

~here c p. ; f3.JL' {3 and {3 flV are transformation parameters. · 
Now- we introduce the Goldstone fields.¢ (x) and a{x) ·, 

· and denote fl · 

G{x) = e ix ~P fle icp fl~x)Kfl i<r(x)D. . . e .. (~3) 

The action of conformal gr6up is defined as (quite analo-
gously to (6)) · ' · ' 

.. - . i - ... 
g: 'g_G(x) =G '(x ')e 2° flV (x ·~fl • a, g) ·L~~ (34). 

'The infinitesimal special conformal and scale transforma:- ;. , 
tion~·of x·, ¢fl_(x)· andt(x) are the foliowing: 

. 2 c .. 

ox =X {3 -2({3•X)X ~AX 
'fl ··p. fl·· fl. 

oa(x) =2({3·x) +A ~·; 

. (35) 

o¢ (x) = [1+2(x¢(x))]{3 +2(x. Q)¢' (x):-2(Q.-1.(x))x·:_·+A:.I. (x). 
fl . fl fJ fl . - . fJ 'f' fl . '~'p. 

:Note. that ¢ <x> -t~ansforms by the same law as.-t-a a<x). 
, · All otheJLfields transform according to their repr~sen-: 

tations of the Lorentz- group (see eq. (7)) but now with 
parameters uflv . The i~~initesirpal transfoi_"mation (with 
g given by eq. (32)) results in:_. .. ·· · :-··-::., .-' .. · 

... 
U =.f3 + 2({3; X -;-{3 -X ). 

flV . JLV . fl V V fl 

. '~ 
~ ..... ' 

(36)' 
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· For instance, for a vector field 

oa (x)=a, (x')-a (x)= ii a (x) = 
p . p - p pv v 

(37) 
=f3 a {x)+2f3 {xa(x))-2x ({3a(x)). 

flV v p p 
. . - ~-- -·· 

Now we decompose G- (x)dG ( x)into the generators 
PIL , ·L pv , D and K and find the Cartan differential 
forms: IL 

cijP(d)=ea{x) dx {a) 
(L IL 

k -a(x). 2 
;;:; p(d)=e (d¢/L (x)+ ¢ ~x)~ -2(¢(x)dx)c!p (x) (b) · 

w0 (d)=da (x)-2dxll ¢/L (x) (C) 

w,;(d)=2(dxp ¢v(x)-~¢1L(x)),. (d) (38) 

The covariant derivative of field a (x) is defined as 
- . wD(d) -a(x) 

' V a{x)= -::-p-- =e (a a{x)-2¢ (x)). (39) 
p . w (d) IL - IL 

Let us make now an important observation. From (39) it 
follows that the Goldstone field, ¢ (x) , is nonessential 
and may be dropped out. Really, l~t us put the covariant 
derivative Vlla{x) eq. (3_!)), 'be zero, which is a cova
riant operatiOn because VIL a(x )_transforms like the Lo-
rentz vector (with parameters u fLV ). The field ¢ (x) 
turns then into the gradient of field a (x) *. P 

. 1 . 
V a (x)=O .... ¢ (x) = -

2 
a a(x} (40) · 

IL IL 1L 

* If 

where 

vector 
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---------------------- . a v a(x) is not put zero then¢ = L
2 

a, a+e v p . p r p 
v (x) transforms according to (37) like any other p . ' -

field and, consequently; is nof the Goldstone field. 

Cw: _(d) I -w: (d) . gives the _Lorentz tensor c~~posed of 
aflaVa(x) , afl a(X) , a(x)). 

The covariant derivative of an arbitrary field, 'I' (x) 
transformed according to the representation of the Lorentz 
group with generators ·L ~ is constructed with the help · 
of the Cartan form (38d) 

_ d'P(x)+ri wL ·L 'P(x) v 'I' (X)= f-l.V J1V 
A wx(x) (41) 

=e-o<x{aA 'P(x)+2i¢v·LAv'i'(x)). 

Or, on substituting ¢v = ~ av a 

-O'(x) 'I' v 'P(x)=e · (a\ 'l'(x)+ia a(x)•L\ 'P(x)); (42) A 1\ v ' 1\V 

For instance, for a tensor field, haf3(x) 

- ) -a(x){ 
VAhaf3 (x =e a,\ haf3·+4- a(x)(oaAhrf3 (x)+ 

(43) 

+of3Ahar(x)- oar h.Af3(x)- of3rhaA (x) l. 

The scalar volume. element, dV '(x ')=dV(x) is written 
as · 

dV(x)=-iwP Aw P AwP A C:l = e 4a (x) d 4x 
- 1 2 3 4 • (44) 

4. Simultaneous Realizations of the Affine and Conformal 
Symmetries 

Let us require now the simultaneous invariance with 
respect to conformal and affine groups. Then, as was 
discussed above in Introduction, from the theorem proven 
by one of the autho.rs/5/ it follows that invariance under 
the general covariance group has to emerge and we arri-
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~>.,:' 

.•, 

:~ .. 

ve ,; at the Einstein general relativity. Let us look into 
this in detail. . , 

Obviously; the trace of affine generator, R f1V . is connec-:- . 
ted with the generator of scale transformations D via the 

. relation *.R 1111 .,;20. Hence, we shou~d identify the -trace 
of affine Goldstone field h f1V ' with conformal Goldstone 
field a(x) 

a(x)~ -!- h 
1111 

(x) · (45) ~ 

and put 

h (x) = h"· {x)+ o a(x). 
f1V f1V pv (46)" 

Then affine volume- element (30) coincides with that con
'formal (44).· As we have seen before, in the dynamical 
affine symmetry the covariant derivative (28) includes free 

• -- r ' . : . 
parameters c 1 , ~ 2 , c3 •• We will prove now that for de~ 

· finite values of these parameters the expression (28) will 
be the covariant derivative not only for the affine symmetry 
but simultaneously 'for the conformal symmetry also. 
. · The conformal covariant derivative, V >..h p.v is· given · 
by Eq. (43). Let us. rewrite .. now the affine covariant. 

'deri-vative, v.\h11v ,, in term's of V>..li 11 v<x> ,_a{x): and ., 
ava(x} .. Making use of (43) we rewrite(26)for V>..hpv 
in the following form _ . , · · · 

1 -h -a -h h 
v~h .. _2 (e \ e .. le ,ae l + 

"' pv . ''o/ y _ . pv 

-(J -h 1 -h -ii-
+C (e ), a ao =;..L.(e -), le ,v 

"'r r_ f1V 2- "'Y Y 
eh l + 

f1V 

·, .... -

-~*F~-;.-;;;;;;;i~~-iri-;~;~;: ti~ e itself 

.R =-i(x a +X a ),0 ... -i·x,a.·, 
pv · 11 v . v 11 "' "' 

16 

;:~ 

+~a ~e-a r(e -h ) 8, __ -(·e -2~_.;~~-·(e h) -~(e-~ \ 0 :. + .-
2 r . . · pr 1\.V .• .• ,...,. . ·. rv · · · . 'Ar f1V 

_+ (p-+v )·~. (47) .. 

· min We shall rewrite v-
11

:,.,, >.. (27) analogously 

m in I I I 1 -a -h -h h 
v , =-r~ [r- ,a r] =-e (e \ [e ,-a e .]., = 
pv,l\ · 2 "'Y Y pv 2 "'-Y _ Y pv 

- - -
1 . -h -h - h "1 -(J -h .· 

·= -2 ( e ), [e , v e ] + -2 a ae [(e ) ?i " + 
"'Y y f1V r · pr -Av 

-
" -h ) 0 

+2(e pA rv 

- ·-
+ (e-2h)' (eh ) -(p -+v)]. 

VI\. · pr · (48) 

. " . ~~- " . 
~inally we, represe11t r ~r ar 'P (x)' .. in (29), in the form 

-I · -h ,_ · •. . . -a· -h , . 'P . r,_a·'P=(e ), 'P-1aae (e.), L 'P. (49) 
1\T r "'r r v "'11- Ill' · · 

Let us substitute (47), (48) and (49) into (29). As we have 
discussed above-. our requirement is that . V.\'1' must 
depend on. a ~x) .· and av a(x) only via the conformal .cova
riant operations V. This requirement appears to bereali.:: 
~ab~e.and 'gives fo'ur equations for the paramete-rs c1 , c 2 ,' 
c3 ·from which it follows that c 1 =-1 ,_ c 2 = c3 =0. Thus; 

focr affine and conformal symmetries simultaneously the 
covariarit'derivative of any field, .. 'P (x), is: 

~ ' ',' -- . 
-1 . 'P . " " 

V>.,'P(x)=r,_a 'P(x)+
2
LV >..L 'P(x), .(50) 

• 1\T, r. .pv, p.v . 

where · the c~miection 'V pv ,'>.. is defined uniquely: ~~: 

·y ,= ~{1\l ( r.:...,Ja a] -r-1 t'r-~a r}, +r-
11r:-1a rJ·J·(51). 

f1V•"' 2 1 "'Y y pv . 'llY · . y 1\.V vy y >., · · 

At the same time one can be convinced that no combi
natio~s. of ,V>.,h 11v·.'' ~- v(}''hrr·. ;' \]rhar . . ~nd:_Kronec~er 
symbols can be. expressed only' through· the· conformal 
covariant derivative . v.u follows therefore that· within· 

17'; 
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... , _.;,._.,,. 
f -·- ';",~ 
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the simultaneous realiz-ation of affine and conformal sym
metries the covariant derivative disappears not ·only of 
the field ci(x) b\lt of the whole Goldstone tensor field, h JlC.-!. 

as well. A' covariant· expression can be nevertheless ob
tained which includes the second derivatives of the tensor ~·. 
field · h ll'~~. in·· addi tiOJ1 'to h /W. , a A h IW • The·. most. easy way 
to do this is to consider the commutator of covariant 
derivatives of an arbitrary field, lJI(x) •. ·we have: 

. . . r . . w 
( 'V, 'V - 'V -V, ) lJI = -

2 
:9{ , ·L 'P , . (52) 

1\ p p 1\ ll'll• 1\p /l'll 

where 

-I ~ ·v ·v ·v ·9{ · = r · u + + 
ll'll• Ap ~y y /l'~~; p /lv,y py, A 

+V V A-(A-op). 
llY·P vy, 

(53) 

Under the action of affine and conformal groups ~ /LV Ap 
transforms as a tensor under the Lorentz transformations· 
~ith parameters Yllv (10) and iillv (36), respecti..: 
vely; Now - -

9{ =~ = 2r-1a V +V · V -:-V V ' (54) 
/l'll •ll'~~ - llY Y /lV,v ll'II•Y vy,ll -·· llY•Il vy, V · 

(summation over Lorentz indices is implied) is a scalar 
with respeCt to the affine and conformal groups. His 

•·-evident t~at any ex_p.ression ·L(~, 'V ll'P ·~l~,Ap ) : coi?p_o
sed of different fields, 'P, their covariant derivatives, 
'V ll 'P and 9{ ~v, Ap , is a scalar under the affine. and 

conformal groups simultaneously if. it is invariant under 
the .. Lorentz group. The invariant. action. can be obtained 
by integrating such- an expression over the 'scalar volume 
dV (30)~ A minimal· interaction with the field: h llv . is 
described by the action integral 

I £ f cw , v ·w) + 1
2 

9{ 1 det r d \ , 
ll 4f . (55) 

where f ('I', v 1-t 'I') is derived from the fre_e Lagrangian 
of 'P repla_cing usual derivatives . ? i!..l (x),. by cova~iant 
ones 'V 11 '1' (x) (50) and the term(2f) ~- descr~besAhe 

r>-. ' • •• . 
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; self.:.interaction 9f the·. field hgv . To ensure the correst 
·dimension, the_ universal; coupling constant L having the 
dimensiOn Of length (h= C= 1) _ '·should be intrOdUCed, and 
the replacement h v .... f h ~ should be- performed 
throughout_ (just as/lin chiral dynamics the constant F77 • 

is introduced /3/ ) .. Let us stress that the Goldstone field 
h /l'll itself can enter into a Lagra~gian only_ via the 
covariant derivatives of differentfieldS·' 'V ll 'P , Rllv,Ap and 
det r in the scalar :volume. -

5. Identification with the Theory of Gravitational Field 

Let us now verify that the theory constructed in this 
way, coincides with th~ Einstein gravity theory (see, e.g., 

· ref1 12~. We have seen above (see eq. (19)) that for fields 
of integer spin a ... the linearly transformed covariant 
and contravarianF quantities. can_ be introduced by multi
plying-by r or r~ over each index, respective,ly. For 
instance, A/f = r,w a i7 wi_ll be a covariantJector.!.t/lv. = 
= r/l 'i! r vv a -p. ii a covariant two-tensor, All =rpji .r vv all v 
a mixed two-tensor, and so on. An analogo~s operation 
can be made also with covariant derivatives, and the 
linearly tr;msformed covariant derivative of a covariant 
vector All can be defined as 

D, .A = r, "t"r _ 'V '"·a _ 
1\ ll 1\1\ llll _1\. ll 

(56') 

,the one for a confravariant vector 
.. ·. ll'' . . -1 

D A A = r r · v _a 
- A A- ll/L A ll 

(56''·) 

arid for a covariant. tensor of second :rank: 

_ D, A = r, , r _ r _ n, a -- , 
. 1\ /lV 1\1\ Jl/l V~ v 1\ '/LV 

and so on. After some easy calculations one may be con
vinced that these definitions are exactly the same as the 
standard ones of gravity theory, For instance, 
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-1 . 
_.n A =f -r _V- a_ =f rf _[f_ a (t.'' A + 
· -A ·. IL . A A p. p. A · p. A 11. p. p. A r r p. a · a 

-1 . · a 
+ v_ f3\ff3 A l=a,A -r, A · JL , ,~~. a a 11. p. . 11.p. a 

a 
where r p.A is the Christoffel symbol: .. 

rP,. =-(fa, f..,..
1 

) -'-f. - f, \ v __ ~ 
p.~~. 1\ . p.a ILIL ~~.~ p.a,ll. 

1 ay . 
=" 2 g (a 1L gyA. + a>.. g ILY - ay g 1L A) . 

-1 
f
aa 

-;. 

(57f 

(58) 

Note shoi.lld be made, that'vanishing.of·the covariant de
dvative D >.. of. metric tensor is tightly connected with 
~hat of the covaria~t de~ivatiye .. Vp. of constant tensor 

f.W· (or T/ p.v If P. - 1,2,3,0) 

D ( -1 -1 ) g . = r _r r v - g f · r · = 
A p.v M p.ji. vv A. . or ail_ fv. 

(59) 

=5txriLii rvv v1 op.v-=0. 

The covariant derivative of a spinor; DA 'I' = f >..X Vx 'I' is 
defined in the same way as in the vierbein formalYim in 
the' relativistically symmetric gauge of vierbeins 07 . 
Further, the cov~riant curvature tensor R tw, A P is exp-
ressed in terms of !R ·, · · 

p.v,~~.p 

'!R = r f · r - r _!R · - • 
. p.vA.p p.ji w A.A. pp P,vA.p 

(60) 

For the Ricci tensor we·have 

'!R p.A =rP.7L r >..x~!R iivXv (61) 

•20 

and the curvature .R ··coincides with the complete contr:. 
action 

. " . . 

R=-~ . (62) 

The rule stated above as to form scalars is identical with 
the corresponding one in the Riemannian geometry. For 
example· · 

a a II = A /LA/I v ¢ v ¢ = g p.v a ¢a ¢. . 
1L r r ./L . p. p. v 

V a V a =gar DaAILDrAu p.vp.v r 

Also. the expression for scalar volume coincide, for 
det r = ..j aet g . Finally, the- coupling constant f with 
the field htw is connected with the Newton gravitatio-
nal constant k ( k = 6.67.10-8 cm-3 g - 1 sec -2 )'by 
the relation: 

_1_ f2 = k. 
4rr (63) 

Now we have identified completely the theory obtained 
with the Einstein general relativity'. The invariant interval 
is constructed basing on the differenti:H forms wJ: (d) (23a) 

2 p . p 
ds = w (d) cu (d.)= 

A. A. 

(64) 
=r ,dx~r , di' =g dxp. dxv 

p.11. v11. p.v 
It can· be observed thatwe. have arrived at the gravity 
theory in the vierbein formalism (see, e.g.,. ref. 113/ ), 
using the relativistically. symmetric gauge * employed 

*Vie rhein ·L p.a~Lp.a ·L va,;; g ~v ) is determined up to an 
orthogonal. fPatrix .. In the polar; decomposition we have 
·Lw = r w ( e ) vr where r p.v is definit.e symmet-
ric matrix, Ovr an arbitrary" antisymmetric matrix. 
Under an· action of the Weil gauge group SL(2,C) , rp.v 
re~ains the sa~e. a_nd nvr chan~es arbitrarily. yve 
defme · the relatiVIstically ·symmetric gauge accordmg 
to SL(2,C) as the gauge 'in which n simply vanishes, 
. 0 . =0. Then the vierbein ( r · for· us)is symmetric 
anctP.'flas ten components as .. thep.vmetric tensor itself. 

21 



·).- .··· 

:;., 

••• < 

:: 

. ;, .. !'.~ .. _ 

for .. the first time. by Polubarinov and one·orthe present 
authors in 1965 /IO( · . ·' . - ~ 

6 .. Conclusion · ... · ' 

It has be;~ proven that the theory of srmultaneous 
nonlinear realizations of affine and conformal symmetries 

·is 'the Einstein gravity theory. These symmetries are 
spontaneously broken up to the Poincare group and are 

·.dynamical. G.ravitons appear to be the appropriate Gold-<t 
stone particles (as known, they are at the same~time the 
gauge fields for the.general covariance group). 

·-', The fine analogy found between the general relativity 
and much more simple theories of nonlinear realizations 
of internal symmetries (cl}iral, unitary, etc.) looks rather 
promising. This analogy suggests new. ways for searching· 
links of the gravity theory and elementary particle theory. 
Thus, in the theories of nonlinear realizations of internal 
symmetries the asymptotic algebraic symmetry emerges 

· if one requir~s that tree diagrams be of good behaviour 
at high energies /IS/: particles should be classified over 
linear representations of the initial symmetry SU(2)xSU(~) 
in chiral symmetry, SU(3) in unitary symmetry and 
so on), and the mass· operator has to possess simple 
transformation Rroperties which for a.u cases prove to 
be reasonable / 5(Under an analogous requirement in the 
gravity .theory the algebraization of affine and conformal 
symmetries· can be. expected·. Because of absence-of t,he 
finite-dimensional spinor repres.entations of the group 
SL (4, R.) the infinite-dimensional representations of 
S·L(4, R) have to appear. This group contains SL(3,R) as 
the three-dimensional: subgroup. No.te that the. use of 
SL(3 ,R) (and of its infinite-dimensional representations) 
as the generatinj speCtra algebra was advocated by · 
Gell-Mann et al. 161 for· describin.r, the hadron orbital · 

·excitations. Recently Biedeharn1 11 I has demonstrated 
that the primitive infinite-dimensional· .representations 
repr:oduce ·the Regge sequences of hadrons. Under ~the 
condition ·of reasonable ·'interactions of elementary par
ticles with gravitons the use of · SL(3, R) and even SL(4,R). 

;,, 

. . ''·~ 

-.-

will be justified. It seems to be natural that the gravita-· 
tion for which the -charge is ·the mass can also define 
some qualitative aspects of particle mass variety. Note 
should be made that here nonminimalgravitational coupl
ings a·rise describing the transitions s 

1 
-> s 

2 
+ gravi

tons · where s 1 and s 2 are different particles * . with 
the coupling constants fixed. Apparently, studying the al
gebra of affine and conformal currents (cr. the chiral 
current algebra) is of further importance. Note that the 
tree graphs of the gravitational theory depend on momenta 
like those of the nonlinear realization theory of chiral 
symmetry (the coupling constants have the same dimen
sionality) and unlike those of renormalizable gauge 
theories. One may imagine_of the Einstein gravity theory 
as an effective Lagrangians theory(cr. effectiveLagran
gians in the. chiral dynamics) which is valid for the 
description of classical effects and in the long-wave limit. 
In analogy with the. chiral symmetry one may think about 
constructing the possible a -model of the theory of 
gravitation. The problems emerging here though being 
complicated are noteworthy. 

The authors express their deep gratitude to F .A.Be
rezin, M.A.Markov, I. V.Polubarinov, W. Tybor, B.N. Va
luev, ·D. V. Volkov and A .N. Zasla vsky for useful'dis cuss ions. 

---;-w-;-tht;k-th;t-~~~h--couplings are . essential for 
analysis of the one-loop divergences, :which has been 
performed recently by G.Hooft and M.Veltman/18/, and 
these may· help improving the situation with renormali
zation ·of gravitational interaction· of a scalar field in 
the orie-loop approxill!_;tiion. 
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