


E2 - 7661

V.N.Pervushin, M.K.Volkov

LOW ENERGY SCATTERING
OF MASSIVE PIONS

Submitted to AD

Edrenacautnt meToTyT
; SOLpHMX BCoackobanEd
{ CHSIVOTEKA




1. Introduotion

1-6 jevoted to

Recently a number of papers have appeared
‘ desoription of the low—energy pion-plon scattering within quantum .
».field theory with the ochiral invariant Lagrangian. In these works
the correotions to the so=-called "tree'—diagram approximation
have been oaloulated allowing for-a oontributicn from one;loop
diagrams to the-plon soattering amplitude. Sinoce here thenonrenor—
malizable field theory is oonsidered indefinite oonstants arising
in caloulating the expression oorresponding to pilon loops oannot
be removed by renormalization of the finite number of physioal
quantities. The use, however, of superpropagator (SP) method 7'8
allows one to fix these oonstants and obtain unigue expression ‘

for scattering amplitudes.

The first rather interesting results in this branch have . - . -~

been- aohieved ty Lehmann 1-4

+. However, Lehmann uged a oalou-
lation method for superpropagator nonoovariant with respect to .
the group SU(Z) X sU(2) and his final results depended on-a ohol~
oe of ohiral Lagrangian. The oovariant calculation method for
superpropagator has been proposed in papers by Honerkamp and

Bcker 10’11

+ It oonsists in oonstruoting suoh a perturbation theo-
ry whioh would take acoount of all possible contraotions of dia-
grams, with an arbitrary number of vertices and internal 1ines,in—
to diagrams with fixed number of vertices.This oontraotion is aohi-
eved due to transferring tvo derivatives at vertioes into one pro-
) pagator and reduoing them'to §- functions,'The oaloulation methods
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approaohing the(covariant perturbation theory ‘in the



"tree"—graph' approximation have been developed even earlier R ’4, [ - with m - % b havi' N »th theesh ld‘ ) : e
. : R - : ore gorreo u. : .

in works by D.V.Volkov 1% ¥ | ‘ prrect DeNaTiolr In the threshold regien. :

. Furthermore, our formulas enable the pion scattering lengths

In a paper by one of the authors (V.P.) 14 the chiral-inva- . . - ) o L .
) : - ] <o - . to dbe calculated directly. In ' the seocond sectlon an expreseion
riant lLagrangian hag been reduced to such a form which makes
. . . : - o : . for the gf 4 - scattering amplitude is obtained. This expression
it posseible to reproduce the Honerkamp covariant perturbation R : : 1-4
S . ’ ) i generalizes the Lehmann formula: for the masslees pions into
theory by using the conventional one. It is also shown in this a
- 14 . , ‘ ) - . the case of massive pions. The Lehmann formula: contains two inde—
paper that the.use of the SP method leads in fact to normal
. ’ : i . : o ! finite: parameters which could be . fixed by using the SP method
ordering of this form of chiral Lagrangian.
: S . . . L ,in calculating- the pion. loops. Our formula includes four 1ndefinite
‘One of ‘the main results of Lehmann wérks was to elucidate
parameters which will also be able to be fixed if we w111 employ
the large effect of pion-nucleon interactions on ‘the behaviour of . B ) :
15 e the SP technique in calculating the pion loops' and when calcula—
low-energy pion-scattering phase ‘shifts. Then in our work” da~ : : ‘
: 6 ting ‘the baryon locps we shall require that in the 1imit n“ 0
in the paper = there has been found an essential influence of other . : . : l—ﬁ ’
5‘ . our formulas coincide with those derived 1n works
terms of baryon octet on the form factor: behaviour as well as on . . . B

s

"In the third section a contribution to the vy scattering'
that of the low-energy pion—scattering phase - shifts. At the :same.
amplitude from the pion 1oops 1s computed. The use of the SE .

time the-interaction with kaons in. this energy range ( up to
method is made both in covariant and non—covariant form.

700-800 MeV is not essential ( see ref.~ .). 'In:the papers by - o .
. 1-6 ) ¢ - In the fourth section a contribution to the .rt’ scattering
Lehmann,‘Ecker and - Honerkamp : pions were considered td-be ’ .
: : ! amplitude from the baryon 1oops is discussed Here we make use. of
massless particles. As_all these papers are studying the low-energy o 3.6 S
: f the results found in refs. *T . Finally,‘in the fifth eection
region of- pion scattering,then it 'is rather important to take into
phase shift analysis is performed for scattering amplitude and
account "the pion finite’ mass, in particular in the domgin. of . two- . i
: the 1ow-energypion-scattering 1engths and phase shifts are obtai-
pion production. It seems: therefore of interest to us to. reproduce :
' : | ned. It is shown how an 1nteraction of pions with baryons or
all these calculations allowing for the pion mass finiteness,. in ) )
. Ce . : 15" : T ' . B with nucleons only influences the behaviour of different scattering
“the same way as made in ref.””. making use of the calculation pro- .
R o . U . N .'g : : ! phases and how the phase behaviour depends upon the calculation
cedure for the massive superpropagator given in .- paper .  This ! ) E
. - S : o ) ] - . method of the J'f’ interaction only ( in ‘the covariant or non-
will permit us to get: expressions for the pion-scattering phases.
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covariant with respect to SU(2)K’SU(2) way )

XA covariant perturbation theory, distinct from that . of refs.
- was proposed also in paper of Faddeev and Slavnov ;37.




2..Pion-scattering~amglitude
ln the general caae_a_Lagrangian”of-thevchiral typephas the: -
form ' - : . TLoihy
. : ' L
L) =Lty +Z 6, e
- . 7 . . :
whereplf . 18 the part of the Lagrangian responsible for the

1nteraction of pions with- nucleons ( or: baryons, see sect 4), and -

,{’(~)=—3‘j/r) 2 9 ‘ff / o ) (2. 2)
A concrete form of the functions j (k) and %73;/ is defined
by a choice of one or another coordinate system in the pion iso-

topic space. In particular, for Gursey coordinates we have 16

9‘4{’)—”’?75 '“( 7 Wﬁgfz‘;.‘ : ‘(2-’3").7

h

>

’f(f'") [&" Z] ZC(")A n / Z : ;& = 99 Mev . T

For 'n{¢ 0 ‘the chiral invariance of the Lagrangian (é;l) ia
violated. . PR V t R

The' ZZ. scattering amplitude is written in the following form

(ar)a (m -p)[ﬁ(s,z,«)s Xy +;f(f,s,u)5 G +M¢s) I

B (2.4)
3 [ 10 b ) |
whers . : - ' ; -
s-éf.,g)” ; t=(b’—/§/2 ',-" = /,7‘,'5,}: R
/r) So6) + Sp(5) + 55 - o1 ) @2

SH) 1s the functional - jt matrix iniBornrapproximation;
.I,’ﬁ) and ,f} (x) those in the %+ approximation of pion end
baryon loop diagrams, respectively.

‘Pagsing to the dimensionless.variables D
: : L L[ 2.  (2.6)
wiliste) G =ifE] <7m e
and making use of an arbitrary regularization we get the following

experesaion for massive-pion scattering amplitude

ﬂ;;f” ,——-o( (35_1)+ of1- ’/ ["'dpf-z)] *Ed’ﬁ( / .(’2..’7>)
B e ReIs3-4 A3 5T -
”(j:fl u):v—R? J} 3\""] i ' - v - . §2.8)
_j/i}[BKF;I)(t";F) f»3€—1] + 745’45(’:""4&79 + (f' «D> T

and : : » ff‘ R
y?/‘zly['"f'*ﬁ';i—ff] PR
x)= e : e
() 1y {;ﬂ- ¥=[1 % :x<o‘ . /
Our further task is to determine four ihdefinite parametera.
A B,C and D of the expression obtained We will be able to fix-them
using, on the one_hand,_the»SP method for calculating the‘pion }
loop contribution ‘and-requiring,ron the other»hand, ?h§£iin»t§°~
limit m=0 our expression be the seme as the well known expression

3 .rne latter ‘requirement: allows us, in particular,

found’by Lehmann .
to employ the- expressions found in refs.3 6 for the contribution to
the Z % scattering amplitude from the nucleon or all baryon

loops in the §/4 approximation.'

3. Pion-loop.contributionﬂ»

In_order to employ the'SP,methbd'for finding the parameters
Ar,B;'(‘r andD:

two-vertex diagrams-with pion loops ﬁhertho’every vertex two

we should consider the whole set of



external pion flelds are joined (Fig.l) The corresponding

matrix element _ (f/, in the conventional "naive" perturbation
"'theory is' of the form -
S{/‘—@T’[/“'f“f/)("/”/] I, G n”
- ’4where af(:}/f//') means that -the Lagrangian vé—,,—) ("'J
. gsed into the external asymptotical field -T(X) and in (3. 1) the
second order of this expansion is taken /—(1) 1s the inter-
nal quantum field over which T -ordering is made. The final results

:'achieved here will depend on the form of chiral Lagrangian, even ‘

in the limit m-= 0 . The covariant calculation method of (3. 1)
5,10,11

14

’~"-propvos_ed by Honer}lamp and extended: to “the Lagrangian -

- -formalism in paper s corres‘ponds to dicriminating

I all two-—vertex diagrams from those with an arbitrary set of

) vertices ( see Introduction) and consists in replacing the Lag- ’
rangian cf({f/f) in (3.1) by £he one ct:o, (¥/r) found by using the
procedure of uiiferentiation covariant with respect to the group
SU(2) X SU(2) ( see Appendix and ref. 14 ). ' )

. ' The results obtained by the covariant ‘méthod are independent
of a choice of pion coordinates in the limit m=0 . , The output
shape of the Lagrangian 0{;., ("'/") will bé almost’ the pame dp that ‘

found by using Gursey coordinatesx z

2 (r/r) <y (1) + Lytrin) =5 (”/F/'V > (3.2).5
ke 607 = e (3R g 40 H7), Gy
5(14 (Fir) = —— 9""172‘[}//"7/-1 /- Ja/jf{r‘y (34)
¢"’(r/r)_ Bl R ’*J{?o ‘o (")" S e

_is decompo- )

Here f(/”'") ig the. seme function as in (2.3), the coefficients

C¢ ) *are ‘dependent on the choice of Lagrangian, (mEga ).,

' Por Gursey coordinates this ,coefficient; up’ to the third’ term of

the sum, is roughly equal to x

2% (24 +n?) . (a}=-’-‘ : © - (3.6) -
(h) - 10(1"4_])/(2,,,.;/” ’ i e . » .

All calculations in what follows will be carried out by

A
making use of the covariant expansion of df Performing T 7=

ordering for ,J,’(r) we get the expression

(G2t Bl (7 ast-R e Rt - ,»f),«, (4 %), (3{5’/

‘A= 1y / (27) () 8%6n) + ‘+( 7 a7 ) 4 (n—x,) .
) G ) ) ) -
B 6] B S
- mz[( ; )’+(é_.i %) ] 357(4-&2/ (3:9)
Here 7= T"(x.) , L
‘gj (k)='?‘: hZD:(‘? A()a, “- Aﬂr) 24 ‘p()}[e"af(;)j?"q"{,.)) (3. }0)

oL /T

3.——-'? f(Ac(,)) [ A(x)] Y (3.11)

¥

. o .
"X How to compute the function. ? ("'/f/‘ see Appendix.



B ’( . . A B ) ‘, B ‘
and 4 (x) - is the_propagat'or of free scalar field'- The ’

7

- ) R ) and. . . )
| ‘coefficients @(n) - are expressed in terms of ('; (»), Cp .- R | g.r(x) _ - mi a o) [ s -
( see eq. (2.3) ) -in the following wayz R TR e o v a{hr/"}’}'" )/ - 1 * /,-X/J//] :
é - 7. 2 g A o : . L0
@=ZRO) Gn) [ 0F s LEal) ;o BTG, L 3 = ae P @By
“"'aj': 6";\”-/(‘/0) Gl) ﬂj—— SLEER 2,y ' o - ! (f"/’;)zr : [ 7/")"’{ 1 ’ ‘
- 2 ® 7T s Rlo)Cp (5] 5 (3.12) 3 T R
e e : 6n#5 S - - . )’[= ‘4 4 ’
k : . = 2o Y, - 1 I
) 3 ] 5 /Q/h) [ﬂ’/"}(f/n) Y (7 ’:. ZhrS p/‘,} /") ({/‘1} ' ; L ) ¢ /’d o /}// —C?‘/ o ‘
- 13 '-I' . L 3 .
+ - =4, ! Y @%)
. '}; » X /-/;. ‘,4’.16}//?' = i‘.’ . RN

ﬂ/n) Crrg /m! % g
((}—-—“/_}_ o ‘
| 7 ezt " A ~

- Further, since we are interested only in the one-loop e

approximation, 7= 'O, then in passing to the momentum space in S S : P . :
: © and- € -1is the Euler constant. Hence for the parameters

ae T (3 10), and (3.11) we will employ ‘the ‘massive: form of free; pro- .
A B (o and“-a- we obtaing !

- pagators Just for expressions enclosed in parentheses. The remain- °

- : 32 5. ;
. ing propagators may be’ taken, for the sake of simplicity, in A = 6-/{'" “ta Z 663 5" = 6%» f'3£ = 1fi, G"J :.4'-22( .19) 77
the massless fom. as it was made in our papers 8,15 . Then for . - . A= L ;,.\,:_ e =0 isr o Pt
; o -5 ) P i !
- Pion scattering amplltude we set the final express:l.on . ‘ . ‘ N For the noncovariant epproachtone hae . :
g ﬁ(“a) #° , / ’ R , , , 1ae |
o 3 3_]3} o ) I’,G’ P > .
= Z : = = + 1y -~ . = . o - .
' ﬁ ‘[(tﬁ)g ) *(u ;)3 ﬂj] T - (3.1%) o A . /3’ L e 7 ;G a,/,_,‘.D"i, €. .
. 7 T ’ ‘ ;(3‘20_)
N m) 5Ms) - Ll 2mY oz/tjf-'(« ;‘./g-/gp e
, . ) :'7 . X ’»,- . . -
T mt 3T +»2m4[3 2, fz*/«/]wm«’/:-;,,)g ) . ‘ |
2 o ‘ . 4. Baryon-laop contribution x.
. I (20 B lT) < e 2t) 00 S - 4 Zemoncloo contripution o
. /e ~2e?)8 (4 5’/5 - : o _
K g S LT Cht '/A)]’ ] ( 4 LT First of all we consider the interaction of pions with.
B ” ‘ v .. ‘ o “. sEe ‘ ’ nucleons only, following Lehmann 3 . Then, to the lowest orders

-"in 5" the pion interaction Lagrangian is splitted into three

parts:

4 LgX P R . o
= f‘l‘" ¢ "’ﬂ'/ -7 _éav = 3,6 .

.M
N
~\
1h)
N—
]

X myie section is a brief sketch of the results of works

o - R o o ST
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:ﬁ)/ F,‘(t)}b/{j:
g e (4.1)

Foen)< M e

. / ‘FI;TA WO R ) w2
- ‘_ﬁ"’"’) ;~., N A '
f?(z:h// = .4;;-217 ; ’:/(’/%~?/’/4'J&é'lf‘/~/j),f/p/. (4.3)

i Here fh@ is the nucleon mass, gg =1,25 is the normalizatlon
constant; In the - //} -approximatlon to the 77 scattering

’ amplitude the five one-loop diagrams will contribute ( Fig.2) .
Two of them, b and d, contain ' the vertices where the connection
with derivative of (:() enters. We. are interested only in tems

\

with . $ s1nce the subsequent tems of the expanslon in powers

- s

of (12 ’ include the small’ factor %f . In this approx1ma-~
tion all: diagrams prov1de the finite contribution to the-pion IRt
scattering amplitude, except for the diagrams b- having two
vertices with derivatives. In calculating this diagram .an arbitrary
»parameter appears. . . AR
As the vertices related to 4 contain the small factor/:‘,f‘z)
Lehmann does not cons:.der the diagrams b and d; and other diagrams
vgive the finite contribution to the pion scattering amplitude:

-——-——'—% (“h/=a'2:-" /“‘I -t rll;/

32 A - (4.4)

In order to allow for the contribution to the amplitude

' » 'from other members of baryon octet it is convenient to write

the interaction Lagrangian in-<the form 1nvariant with respect

to SU(3) x SU(B) Slmilar calculatlons _have been- recently per-:, .

formed by Ecker and. Honerkamp 6 « Without dlscusslng in detail

’.:1
|
o

~

their calculations we only meriion that the part‘_of the ,Lagrangian :
responsible for interaction with the derivative of % (;‘_,tf!_) will '
not now include the small factor (9”-1_ 7 ) in front of the
whole expression, therefore no -reason exists here, generally
speaking, to neglect the diagrams b and d.: . - ‘
However, the estimates of the work 6 have shown that if one
fixes an arbitrary constant of the expression corresponding to
the diagram b, by fitting ‘the correct position of the p-wave
JO resonance, then the contribution to the amplitude from this
diagrams appears to: be rather small ‘as: compared £o those from all

other- diagrams. Therefore in the following calculations we

will take: into ‘account only the contributions from the diagrams

¢ i
a,c,d and e, where all ‘the coefficients for the - g7 terms are .

vstrictly determined. As & result instead of .(4.4). we get the ..

following expre ssion

‘_74;/ {J’/u} 274/‘1,4

{ff’[d‘a ?o{'"/ﬁdj 24 /1—;}/{7;*

e ad €4.5)
».+(;ﬂ : 2)[__4;_,_ 26 «(4 _{) > f{,_ﬂ}ij/z
J‘zr)/ EZN E
_;_‘ Y34 /‘7./ e ey s
WO 1 -~e//yﬂ g
+104%(1-4)" 1= £ *’v#v’/f«/”J} e
-2 . As in

Here ® 1is the mixing.SU(3) pavameter = %< 7 in
paper 15 4e will put it to be equel to' about 0.67. - 4,,- is

the contribution to the amplitude from the diagrams m.thout )

\/5{{ "~ 1s the one from '

derivatives in the -vertices ¢_7, c,e. . 2
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the diagram d whers. one_vertex includes- the derivative. Summing i As-a Tesult, we'get‘the“followingiexpressi’on V Lo e
up ‘these. expresslons we obtain. Iiry e e T2 A R "'I‘;-.
A1) - e (D=F4B,(5) + c (Fo87) (-5)* + a1 (5.2)
Re s fu ) - - ; .
- /e / 6-"2"'6?/:‘ ;,r// E : 1 ) 3
."2“" oo (4T r ' : T . )
, : o Here -#, - .is the Born contribution, /%  :is.the-real part of
this expression will»-be used i “the. ub'e uent works. ..- : L ’ ) ‘ ’
Just is P 8 n ¢--eubsequen €8 contribution from the one-loop diagramss. ‘- -
, o : T -2ﬁs—y &, --6:1) ,EKFU;'_Ju;N,e, :
5: Scattering phases and lengths - - : - K - ) '_ (5 3)
o sxpre o ene asotions’ (3:19) 1 Rt e[St
The express:.ons found in the preceding sectlons (3 19),, 3 20) (4, “r‘f} ’2 +( -j/]// y /9}_7
: T (5 4)
and 7 make it osslble to fix com letel L2 qQ?
(4 4) (4 ) e p v arbitrary : : 3 ﬂBH’) * f’/.’ﬂf-.m) # ('/2.; u)-/-é‘.@
parameters A,B, c and D in (3 8) for four dlfferent cases. These : 1 ; )
cases correspond firstly, to two different methods of calculatlons L R /79 = 'k('](:)/j’: 1) 6'[{ 247/_'_ Qf37/} i ;[ . ]+
S IR | : o)t )] :
2 : :
of contributlons to the pion scatterlng amplltude from the plon . - \ g L :?— ’/4-,3) +2R J‘z —a(’ ’ 21) e S (55)
1oops. and secondly, to account of an addltional contributlon Lo . ’ ' . T R .
. ’ b
from only the nucleon loo 8 or from all baryon loo s. To choose . o 44 D
p v ps-. : _\, 1} = -&7(:) a?+ 2[5/1 d~.72(a)/ 3(q / Ay
the most effective varlant we will . carry out the phase shift £ / .7/1)/—‘ (5 6)

®

analysis of‘,the amplitude for all the four’ cases. : o { T V- L —éad)( (7 J(;)].,. a /3-,4) + a( '
_When calculetlng the partial wave amplltudes we shall use i .

.

{
the formula R e e . S 4{

The scattering phases will be computed by the well-known formula

y,,(,,/ /wm»-——/f._ A (ﬂ‘«cv) - @-E)
. i !

(5.7)
-{ "'1} R -2 n,‘*;,/';f//.(, 2z 7 .. EE4 - o ’
" (_ c (/ 7/ S R . A " ’ . Expanding in powers of smail paramete}. "..(“‘ '“w.ei errivv‘e‘ 'at. tAhe-H'
. by (u 7 . S Ey expression : .
. , (5.1) fae P RN R T
. | ) ’
2 5 | SR 8.505). Y AR R I
Y] » =LF ¥ I Z . - B . 7 :
bz 2 %,_;;/)/ yebe )2, asr, . gt \7__——3 o e
B . . o i S = u/{_r/ / //] i ce e
) ’ - ’ i - »‘?’;‘ LIS e E ' g ) Y
> o B 5 . - - ., -

7] : o T SR s



For m=10 this expression coincides with that found by Lehmann
expanding Oé 5} for small 7 in the effective range { see

2 . ~ .
reff ). R

g: PV 5" ‘s

and 4: From these plots it is easy .to. see that to the experimental

5! ' .
1 is .shown in Figs.3

A behaviour of phases
values those curves are the most close which are calculated by
using the covariant method for the pion loops and by allowing
for the baryon contributions.

The scattering lengths obtained by the formulas -

Sty A=l “/)/ ©(5.9)

in this‘variant have the'following‘values"

e a T n o s ard (5.10)
’Qo'= 0,16”,;[ ; a, =°0,05m“’ p F?‘ = O, 033
AAt the same~time,_in‘the Born approximation these are
. L i . gl oeim Tt . (5.11)
al=012m ; al=-go6m ; al=geim . G

Hence it follows that the loop diagrams give the most contribution
to Al . ' ; kil

6. Conclusion

The calculations performed made it possible to obtain the;
.expressions for the massive pion scattering amplitude with the
required behaviour in the threshold region. The formulae for
amplitudes contain the eiplicit,intormation)on the pionyscattering
length. At the same time the plotsvevidence that at energles
~ BOOVMeV the pion masaes'are not essential at all. Note should
'be made also that the behaviour of 5: in the near threshold.

region depends rather much on a choice of the pion coordinates due.

to the broken chiral symmetry for M3 o . For instance, in the-

16

andiﬂfo, Fig 3)e ) . T K ”“i

A

Weinberg parametrization ( see eq. (A.8) )ithe slope angle for.

phase 5. in the threshold region. and consequently the scatterlng~

- length 1ncrease by 30% ( starting from threshold the corresponding

'curve.for thia phase liea Just in +he middle of curves I with nj_ Q

We consgider Gursey coordinatas to be much more preferable
as their choice along the geodesica is naturally connected with
geometry of the group SU(2)X sU(2).
) Analysing ‘various methods of allowing for the: loop diagram -
contribution to the S _scattering amplitude exhibits the rollow—
ing 1 Of rather strong 1nfluence on the scattering phase behaviour

is the choice of calculation technique for the pion loop contribu-a

5

tion. The covariant, one is not only independent of the ch01ce of

‘\the form of chiral'Lagrangian 1n the masaless caae, but also

resulta in a behaviour of scattering phases the most close to the

) experimental values. At the same time an’ account of the baryon,

or only nucleon,.loops gives almost no- difference in the behaviour
of’ phaaes st and 5 and is important only for correct

description of: the phaae ) &:‘ . where account of ‘the baryon loops
improves explicitly the phase behaviour calculated by the covariant

methcd. Thus,: we consider the covariant method of~ca1culations of -

~the’ pion contributipns to the ¥ I -scattering emplitude, with

alloﬁing‘for the baryon'loops,'to'be most justified both from
the purely-theoretical-point of view ‘and from that of agreement . -

with experiment. At‘the'aame time the kaor loops.contribute

,Y‘negligibly in the: energy region of interest These conclusions

agree with the results of Ecker and Honerkamp 6 o 7



~APPENDIX: SR

The usual eecond-order expanaion of’the Lagrangian (2. 2)J;r 5
in powera of asymptotic fielda Sr'- may be repreeented in the
form ( rearranging the derivatives and allowing for the equation :

(?zf:—/rtf )t

L) =t o £ v ot . m? g (;}r) PN ]
.;{'ff‘ -\-_51—-4:(:“;,;—..? -x€2.x%) “/‘ "thC,fv}ﬂhi;, /""’.; -
’- —'— 2502 "l//'“/‘ ,-r’f{)Zq &ﬁ% ‘4?’;;,
o5 (P R)E o,

AI Z nC (nfl){ [—-4(2” + iC«rX)] 3r?/~~/)r //_;d .
o+ —-—” . P2 Yr)2r) - Znr it ’)(m/(x/j(rar) bR

Ren)r39)- (s ) - fud o :’o,[@r)’- wort] .‘

The formulae (3.1) and (A.1) give the superpropagator‘(i}e. o
gauma of :all the tﬁo-vertex diaegrame) in the conventional perturba-
tionztheory‘neglecting_. contractions.  Note should be made thathj

tne main contribution to the scattering amplitude in the one-loop
approrimation comes from the first three terms of Lagrangian (A.1).

- Po allow for the contractione the following is necessary14:f

1. To expand the Lagrangian 45};4) By making use - of~‘

the covariant differentiation with respect to the variable Z
. 2.‘To change variables with the’ help of drei-bein fieldafﬁr)

»
N -

3. To expand theexpressionfound in thia way for the Lagrangian

in powera of the asymptotic fielda 9% . The covariant part,of"

14 | 1o recail

;'Lagrangian (2. 2) has been computed in the paper
we illuatrate briefly the covariant method by expanding the non-.
covariant masa additive term to Lagrangian written in the Gursey
coordinatea.ffY » i

 Let 97&) be- an arbitrary function of T then the~4

general expreaaion for expanding in the covariant derivativeafx

e : . e

X | . L T A

- ia of the fonm T e N » R i

P (F02) = Wr) ’, 9% +Z AT 9’/r) S ARV CEOR

\——Y'"/
Lk A

o) e e
Vj.fj,'_ = a(ay) -J.7k)a, %’/xv'.)_j

- (.V;) B . "(n-l)" 4."":"'2 = 79/’! !) | S
"(F..-"""' = a' 9’;.."._”,. - : J;‘(r) "/'/"'J‘ml'(.l',.,’.,.’ . (A-5)
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n-{ ’ [ n=2-c

] .

are the'ChristoffeL aymbois,

where jt:h

xWe uae notation ‘of the paper by DV Volkov 2.7

AB”ZAB" C e 2,

'I . px-’

A' = /_‘aea‘(,-) 3 (Pq'/x) 6.7:): J/' ,)’ ¢ /d(’ ?"/K'): 0]'} /‘7}} (A-B) ’ .



Changing variables of eq. (A.3), we ‘get”

%L»(wz) =9(x) » (20.0°Yr® + Prir)

¢(r//) L (nu)l[ (;:/’2)---,"...

2% é(r) €{x)]/- rart
e~

. (4.6)
"7::;——{ nv2 ‘ nr2
For the Gursey coordinates we have .. . ; P s
Lo - 2/ 2 ’ . ﬁ . . R Y
ez 8 +l?a7f (E-—? —1) / Z= 4? //2‘;‘-;5’”': -% )

NN (;(1)[:5.;,, - .7, ]+ ——[if-f?in/?cfgz-f L)

i $i: 22 ' ]
-5, A, - 2
e a /
'I‘ov exemplify we calculate the first term of the ex'pansion (A.6)2

y’/"z e7? >

Q-Y”: 2. >

w.."’f = 28 <2 m < 55 w’(,/) + a(r‘)

- (/"'/} +tl/.‘/

{z)

e, E""e“']f"/“‘~ £F7r seu(riT

Calculating the subsequent expansion terms in an analogous way.
we arrive. at the expression (3. 5). We have found the first six
expansion terms the even ones being described by ‘the functiony,("}

in ' (3.5

gl . o

oo 27 (2riin) o |
. (zh+2)/G”*g//;zn o B ‘(A:.7)

The equivalence of conventional perturbation ‘theory a110w1ng for

o

contractions and the covariant method for the massless case has

’ been proved in a paper of Honerkamp et a1. 17

Now, in addition, we will demonstrate how the coefficients

(’9,() and ?w/r//‘) ‘change if one uses instead of the Gureey oo

coordinatee the Weinberg para.metrization

R = (7 - L " = Z oty o

2 . )
(4.8)

Gl2ur)! f-f’f'. AR R

(;W(h}:_ 4-7‘- d»{fh?i ( T W

Note that the use - of this: parametrization ‘of: Lagrangian results -

in_the 30% increaee of ‘the ecattering length _f.),,”\ and»change_s

< [F L we o E
slightly the behaviour of phases d,  and” g .

fa s
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Fig.2...Baryon one-lcop diagrams for I'% ‘scattering

from lagrangians (4.1)-(4.3) .. :




Fig.3.

£ &8 & 8 & &

I=0, I=2; 5 wave phase shift. Curves 1)1
covariant perturbation theory with account of all-:

baryon loops (dashed line m=o0, s80lid line n1# 0).

Curves II): covaraint perturbation theory with only

nucleon loops, m#0.Curves III) and VI): "naive"

. perturbation theory withiacCOUnt of 'all baryon

loops (IV)-and with only nucleon loops (III),

Data points from ref. 6 .
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Fig.4.
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I=1; p wave phase shift. ~Cufves 1(11)-“

-covariant theory ( dashed line m=0, SOlld 11ne

m#O), Curves III(IV)' "naive" perturbation theory.'

Data points are taken from ref. 5 ;‘
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