СООБЩЕНИЯ
 ОБЪЕАИНЕННОГО ИНСТИТУТА
 ค $\triangle E P H$ ЫX ИССАЕАОВАНИЙ

АУБНА

$$
\begin{array}{lr}
\frac{634.3}{M-90} & \text { E2 } 2 / 1 / 7638 \\
/ 2 / 8 / 2-7 M & \\
\text { J.Moulin } &
\end{array}
$$

GENERALIZED SUM RULES
FROM LIGHT-CONE CURRENT
ANTICOMMUTATORS

1973

^АБОРАТОРИА ТЕОРЕТИЧЕСНОЙ ФИЗИНИ

E2-7638

J.Moulin

GENERALIZED SUM RULES

FROM LIGHT-CONE CURRENT
ANTICOMMUTATORS

1. Introduction

This work is an extension and a generalization of a former paper (Ref. ${ }^{1}$, hereafter donoted by A) devoted to the derivation of somcelled "wrong-signature" aum rules for forward virtual Compton pattering, i.e. sum rules conatructed from atructure functions with crossing properties opposite to those of the usuel caubal smplitudes.

We have shown in A that the use, to that end, of current anticommutators restricted to a light-like hyperplane $x^{0}+x^{3}=0$ combined with a sum rule derivationìmethod proposed by Dicus, Jackiw and Teplitz ${ }^{2}$ provides, to all appearences, a more general framework than the quark-partion model a-pronch ${ }^{3}$ \& which, for inatince, led to the Sottfried sum rule ${ }^{4}$ for electroproductinn) and other methods based on the infinite momentum frame techniques (see, e.g. Ref. ${ }^{5}$ and Pavkovic'a work ${ }^{6}$).

Our purpose is to exploit further the method of A in order to extract additional information on the atructure functions of the lepton-hadron scattering frim the canonical null-plane current anticomutation relations postulnted in A within the fromework of n free, massive quark ficld throry model.

First, it appeare to be natural development of our nullplnne anticomutator investigation to inquire into the elgebra of the moments of the currents, i.e. to consider derivatives of the Fourier tranaform of the anticomutator function. The specific possibilities of thie technique have been eatablished for along time within the fromework of the ordinnry equal-time current algebra ${ }^{7}$ and more recently for light-cone commutators too ${ }^{8,9}$.

It pernits us eapecially to incrense the model-independence or sum rules derived in A and to deduce seversl high-enerey asymptotic constraints for the otructure functions.

Second, we deal not only with the diegonal matrix elements of the anticommutators of two conserved vector currents as in A but extend our considergtions to nondiagonal matrix elements and nonconserved axial-vector currents. This enables ue to obtein new sur rules for nonforward virtunl Sompton scattering (and, anong then, a $t \neq 0$ generslization of the Gottfried awn rule ${ }^{4}$) and neutrinoproduction ampitudes (involving chiral-symmetry break1ng structure functions).

The peper is orgenized as follows. In Section 2 we reviow briefly the croice of the null-plane anticomnutators and its implications on our results. The moment anticommutator technique is examined in fection 3 and the generglizations to the nonforward direction and nonconserved currents are considered, respectively. in Sections 4 and S. Concluding remarka are provided in Section 6.

2. Null-plone currert anticomputators

We recapitulnte briefly in this section the easential features concerning the dafinition of the current anticommutators which have been nlready discussed in A.

The null-plane current anticomutators are abstracted from n free, masaive ountr field theory model. In this model, the vector and axial-vector currents and their bilocal generalizations are given by:

$$
\begin{align*}
& V_{a}^{r}(x)=: \bar{\Psi}_{(x)} \gamma_{1}^{\mu} \lambda_{2} \lambda_{\alpha} \Psi_{(x)}: \tag{la}\\
& A_{a}^{r}(x)=i: F_{(x)} \gamma^{r} \gamma_{5} \frac{1}{2} \lambda_{a} \psi_{(x)}: \tag{lb}
\end{align*}
$$

and

$$
\begin{align*}
& V_{a}^{r}(x \mid y)=: \Psi_{(x)} \gamma^{r} \frac{1}{2} \lambda_{a} \Psi_{(y)}: \tag{Ra}\\
& A_{a}^{r}(x \mid y)=i: \bar{\Psi}_{(x)} \gamma^{r} \gamma_{s} \frac{1}{2} \lambda_{a} \Psi_{(y)}: \tag{ab}
\end{align*}
$$

where : : denotes the normal product of the field operators.
We postulate the following null-plene anticommutators of vector and axial-vector currents which emerge from canonical manipulations (it is understood that only the operator part of the anticommutators is included):

$$
\begin{aligned}
& \left.\left.+d_{a l_{c}}\left(s^{\mu v / \beta} \bar{J}_{c \beta}(x \mid 0)-E^{\mu v \alpha \beta} a_{c \beta}(x \mid 0)\right)\right]\right\} \\
& +2 g^{\mu^{\alpha}} D^{(1)}(x) \partial_{x}\left[f_{\text {abc }} V_{c}^{v}(x \mid 0)+d_{a k c} V_{c}^{-2}(x \mid 0)\right] \text {, }
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.+d_{a l e}\left(s^{\mu v \alpha \beta} \overline{C_{l}}(x \mid 0)-\epsilon^{\mu v \times \beta}{\underset{c \beta}{\beta}}(x \mid 0)\right)\right]\right\} \tag{Bb}\\
& +2 g^{r(\alpha} D^{(1)}(x) \partial_{x}^{1}\left[f_{a b x} Q_{c}^{\nu}(x \mid 0)+d_{a k e} \bar{Q}_{v}^{v}(x \mid 0)\right] \text {, } \\
& \left\{A_{a}^{\mu}(x), A_{b}^{\nu}(0)\right\}_{x^{+}=0}^{\wedge}\left\{V_{a}^{\prime}(x), V_{b}^{\prime}(0)\right\}_{x^{4}=0}, \tag{3c}
\end{align*}
$$

where $v^{\mu}(x \mid 0)$ and $a_{u}^{\mu}(x \mid 0)$ (\bar{v} and \bar{a}) are the hermitian (antineraitian) parts of the bifocal currents (2), $f_{\text {ut i- }}$ and $d_{a b c}$ are the structure constants of the λ-matrix commutators and anticommutators, $S^{\mu \nu \alpha \beta}=g^{\mu / j^{\mu}}+g^{\mu \beta} g^{v o d}-g^{\mu} g^{\alpha \beta}$ and $E^{\mu v a \beta}$ is the fully antisymmetric tensor. The singular function $D^{(1)}(x)$ reade, in the notations of Bogolubov and Shirkov ${ }^{10}$:

$$
\begin{equation*}
-i D^{(i)}(x)=D^{(+)}(x)-D^{(-1}(x) \tag{4}
\end{equation*}
$$

where $1^{(\pm)}(x)$ are the positive $(+)$ and negative $(-)$ frequency parts of the Pauli-Jordan comalatation function. The symbol \triangleq indicates that we have retained on dy the two most singular (leading and next-to-leading) terms of the current anticomutators near the light-cone because only these terms can be expressed through the bifocal currents (2).

Eqs. (3) have therefore an approximate character and the sum rules derived on their basis are asymptotic relations valid in principle only in the limit of infinite current masses $\left(-q^{2} \rightarrow \infty\right)$. However, we expect that they might be well verified for not too large values of $q^{2}\left(-q^{2} \geqslant 1(G e V)^{2}\right)$ as suggested by the "prescocious scaling phenomena" observed in ep inelastic scattering ${ }^{11}$.

Finally, note that the specific q^{2} - dependence which might occur in the sum rules due to the noncausal nature of the lightcone singularity is removed under the crucial assumption that the form factors describing the matrix elements of the bilocel currents (2) are smooth-behaved near the lighi-cone.
3. Derivation of sum rules from moment anticomutators

We consider the forward anticomutator function of two congerred vector currents defined in A :

$$
\begin{aligned}
& A_{a b}^{\mu v}(p, q) \equiv \int d^{4} x e^{1 q x}\langle p, s|\left\{V_{a}^{\prime \mu}(x), V_{x}^{v}(x)\right\}|p, s\rangle= \\
& =\left(-g^{\mu \nu}+\frac{q^{r} q^{v}}{q^{*}}\right) A_{L}^{\nu}\left(v q^{2}\right)+\left[p^{\mu} p^{\nu}-\frac{v}{q^{2}}\left(p^{\mu} q^{v}+p^{\nu} q^{\mu}\right)+\frac{v^{2}}{q^{2}} q^{\mu \nu}\right] A_{2}^{\alpha v}\left(v q^{2}\right) \\
& +i E^{\mu v d}{\underset{x}{x}}^{q_{\beta}} A_{3}^{a t}\left(v, q^{2}\right)+i(q s) E^{\mu v o r} p_{\alpha} q_{\beta} A_{4}^{\alpha \alpha^{2}}\left(v, q^{i}\right) \text {, }
\end{aligned}
$$

where the vector $S^{\alpha}=i \bar{u}(p) \gamma^{r} \gamma_{S} u(p)$ describes the spin stgtee, a and f_{4} are isotopic spin indices and $v=p . q$.

The $A^{2}\left(v, g^{2}\right)$ verify the crosaing-syymetry relations:

$$
\begin{align*}
& A_{i}^{u b r}\left(v, q^{2}\right)=A_{i}^{b_{n}}\left(-v, q^{2}\right) \quad i=1,2,3 \\
& A_{4}^{a b}\left(v, q^{2}\right)=-A_{4}^{b_{a}}\left(-v, q^{2}\right) \tag{6}
\end{align*}
$$

 of the absorptive part of the forward virtual Compton scattering amplitude by:

$$
\begin{equation*}
\quad A_{i}^{a b}\left(v, q^{2}\right)=W_{i}\left(v, q^{2}\right), \quad v>0 \tag{7}
\end{equation*}
$$

We will also need the decomriogition of $A_{i}^{\text {ab }}\left(u, y^{?}\right)$ into parts symantric $\left(A_{i}^{(+2)}\right)$ and antisymmetric $\left(A_{i}^{[G[]}\right)$ under interchange $O^{\circ} a$ and $\hat{\ell}$:

$$
\begin{equation*}
A_{i}^{\infty l}\left(v, q^{2}\right)=A_{i}^{(\alpha,)}\left(v, q^{2}\right)+i A_{i}^{[\alpha Q]}\left(2, q^{2}\right) \tag{8}
\end{equation*}
$$

whose crossing properties ire fixed by Hq. (6).

Now, following Discus and Palmer ${ }^{9}$, wo differentiate (5) with respect to $q_{\alpha}(\alpha=-, 1,2)$, integrate over q^{-}and then set $q^{+} \pm \frac{g^{0+q^{3}}}{\sqrt{2}}=0$. This procedure leads to the general equality:

Sum rules are then deduced from Eq. (9) with the help of Eq. (Ba), (5)-(8) and of the usual definitions of tine bifocal

$$
\begin{align*}
& \text { form-factors: } \\
& \left\langle p_{1} S\right| \sim_{\alpha}^{r}(x \mid 0)|p, S\rangle=p^{\mu} V_{a}^{1}\left(x^{2}, x, p\right)+x^{1} V_{a}^{2}\left(x^{2}, x-p\right) \\
& \langle p, s| Q_{a}^{r}(x \mid 0)|p, s\rangle=s^{1} A^{1}\left(x^{2}, x \cdot p\right)+p^{1}(x \cdot s) A_{a}^{2}\left(x^{2}, x-p\right)+ \tag{10}\\
& +x^{r}(x \cdot 5) A_{-}^{3}\left(x^{2} x \cdot p\right)
\end{align*}
$$

and of their light-cone Fourier transform:

$$
V_{a}^{\infty}(K)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} d \alpha e^{-i K \alpha} V_{n}^{i}(0, \alpha) \quad i=1,2 \ldots \quad \text { (10) }
$$

Relations analogous to (10) and (10') hold respectively for
 $\frac{\partial^{a}}{\partial q^{2}}$ are rewritten with respect to the scalars $\left(v, q^{2}\right)$ by means or:

$$
\frac{\partial w\left(v, q^{2}\right)}{\partial q_{\alpha}}=p^{\alpha} \frac{\partial w\left(v, q^{2}\right)}{\partial v}+2 q^{\alpha} \frac{\partial w\left(v q^{2}\right)}{\partial q^{2}}
$$

The sum rules and high-energy asymptotic relations emerging from the componente $(\mu y)=(++)$ and $(+-)$ of Eq. (9) with $n=1,2$ are given in Tables I and II.

We did not list all of thea but only the really new resulta in compariaon with those given in A. So, for example, with (μV) $=(++)^{n}, n=1$ we find also that the first derivative of the Gottfried integral (see $A, E q$. (I.1)) with respect to q^{2} is equal to zero, but it is a direct consequence of the Gottfried sum rule itself which has been derived with the same (++) anticommutator (for $n=0$).

In the same manner, the (+-) componenta ($n=1$) constrain the derivatives with respect to q^{2} of the left-hand sidea of EqE. (1.2-6) of A to vanish. Analogous results are deduced for the second derivatives with $n=2$: In addition, the second moments give the q^{2}-derivatives of the $n=1$ relations ($1.1,3-6$) and (II.i,4-E).

The ($+{ }^{+}$) relations-deaerve a particular mitention because they are the least model-dependent ones, as is well known 12 . For instance, sif. (I.1) which implies that

$$
\int_{0}^{+\infty} d v \frac{v}{-q^{2}} W_{2}^{\left[0, q^{2}\right.}\left(v q^{2}\right)=\text { Const. }
$$

is - less model-dependent stotement a^{2} out the integral than the $(+-)$ aum rule Eq. (I.5) of A. Similerly, Eqs. (I. $\mathrm{K}_{\mathrm{i}}-6$) are lesa model-dependent, and more general relations then the Eqs. (1.7-10) of A which $\mathrm{Fr}^{\prime \prime}$ ceeded from the "bad" anticommutators $(k v)=(i j)$ and $(i-)$ under the additional assumption that $\frac{M^{2}}{q^{2}} \rightarrow 0$ ($M \equiv$ mass
of the nucleon). sqe. (1.3-6) appear here without any special requirenent of this type. Eqs. (I.7-10) are new aum rules involving higher pouers of \checkmark which could not heve been derived with the method of A.

The high-ener, ${ }^{3}$ asymptotic relations of Table II are specific consequences of the uee of the moment algebra. They originally energe from eq. (9) in a form which can be symbolically represented by:

$$
\begin{equation*}
\int_{-\infty}^{+\infty} d v \frac{\partial}{\partial v} f\left(v, q^{2}\right)=g\left(q^{2}\right) \tag{11}
\end{equation*}
$$

Equations of the type (1l) are then transformed into statements mbout the odd parts of the functions $f\left(v, q^{2}\right)$ under the exchange $\nu \rightarrow-\nu$:

$$
\begin{equation*}
\left[f^{(\text {odd })}\left(v, q^{2}\right)\right]_{V=\infty}=\frac{1}{2} g\left(q^{2}\right) . \tag{12}
\end{equation*}
$$

It is worth noting that all our moment anticommutator asymptotic conditions of Table II deal with otructure functions entering light-cone commutator sum rules ${ }^{2}$, e.g. Eq. (II.1) is a requirement about the high-enargy behaviour of the integrand of the Fu-bini-Dahsen-Gell-Mann sum rule ${ }^{13}$. Inversely, the asymptotic conditions derived fion the moment commatators should involve atructure functions appearing in the anticommutator or "wrongdignature" auri rules of A. Be shall return to this point in the next section.

Table I

		High energy meyptotic conditions for forward virtual Compton acattering from light-cone moment anticomentators
1	$(t+1$	$\left[W_{2}^{[w]}\left(v, q^{2}\right)\right]_{v=0}=0$
2	(+) 2	$\left[\frac{\partial}{\partial v} W_{2}^{(\nu)}\left(v, q^{2}\right)\right]_{v=\infty}=0$
5	42	
4	(- - 11	$\left[\frac{v}{q^{2}}{w_{2}^{\prime}}_{\left(v, v^{(k)} q^{2}\right)}\right]_{v=-}=0$
5	-1	
6	$-y_{1}$	$\left.\left.\left[W_{3}^{[a k]}\left(v, q^{2}\right)\right]_{v=0}=0,\left[W_{4}^{(v)}\left(v, q^{2}\right)\right]_{v=0}=0,\left[v W_{4}^{(v, q],}\right)^{2}\right)\right]_{v=0}=0$
7	-12	$\left[\frac{\partial}{\partial v} \frac{v}{y^{2}} W_{2}^{[v i d}\left(v y^{2}\right)\right]_{v=\infty}=0$
8	$x+\frac{1}{2}$	$\left[\frac{\partial}{\partial v} W_{L}^{(\sim v)}\left(v q^{2}\right)-2 \frac{v}{q^{2}} W_{2}^{(\alpha / 2)}\left(v q^{2}\right)\right]_{v=\infty}=0$
9	$=2$	
10	12	
	$+-1=$	$\left[\frac{\partial}{\partial v} W_{3}^{(v, ~}\left(v q^{2}\right)\right]_{v=0}=0,\left[\frac{\partial}{\partial v} W_{4}^{(\nu, 0]}\left(v, q^{2}\right)\right]_{v /=0}=0,\left[\frac{\partial}{\partial v} v W_{4}^{\left(v v^{(v)} q^{2}\right)}\right]_{v=0}=0$
	$1-1 / 2$	$\left[\frac{\partial}{\partial q^{2}} v W_{3}^{\left(u^{k}\right)}\left(v, q^{2}\right)\right]_{v=\infty}=\frac{\partial}{\partial q^{2}} \int_{0}^{\infty} d v W_{3}^{(u d)}\left(v, q^{2}\right),\left[\frac{\partial}{\partial q^{2}} v^{2} W_{4}^{\left(\omega b^{2}\right)}\left(v, q^{2}\right)\right]_{v=\infty}=0$

4. Nonforward spin-independent virtual Compton scattering
sum rules

The results of A and of the previous section more now extentded to the nonforward spin-independent virtual Compton scattering, amplitudes. Apart from a more complicated kinematical situation, the previous methods apply automatically.

We first define the apin-averaged nondiagonal matrix element of the anticommutator of two conserved vector currents between fermion states with 4 -moments p_{1} and p_{2} :

$$
A_{\text {at }}^{\mu^{v}}\left(p_{2} \dot{q}_{2} ; p_{1} q_{1}\right) \equiv \int d^{4} x e^{\left.\right|_{i\left(q_{1}+q_{2}\right) \frac{1}{2} x} ^{r^{2}}}\left\langle p_{2}\right|\left\{V_{a}^{r}\left(\frac{x}{2}\right), V_{2}^{v}\left(-\frac{x}{2}\right)\right\}\left|p_{1}\right\rangle(13)
$$

Following Gross ${ }^{14}$, we decompose this nonforward anticommutator function into invariants:

$$
\begin{aligned}
& +\left(P_{\alpha} \Delta_{\beta}-P_{\beta} \Delta_{\alpha}\right) A_{3}^{2 d}\left(v, Q^{2}, \delta_{i}\right)+\left(P_{\alpha} \Delta_{\beta}+P_{\beta} \Delta_{\alpha}\right) A_{4}^{a b}\left(v, Q^{2}, t_{j}\right)+\Delta_{\alpha} \Delta_{\beta} A_{s}\left(v, Q_{1}^{2}, \delta^{2}\right)
\end{aligned}
$$

where the projection operators $\quad \theta^{\mu^{\nu}}(q) \equiv\left(q^{\mu \nu}-\frac{q^{\mu^{v}}}{q^{2}}\right)$
ensure current conservation,

$$
\begin{equation*}
P=\frac{1}{2}\left(p_{1}+p_{2}\right), Q=\frac{1}{2}\left(q_{1}+q_{2}\right), \Delta=q_{2}-q_{1}=p_{1}-p_{2} \tag{15a}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu=P \cdot Q, t=\Delta^{2}, \delta=Q \cdot \Delta=\frac{1}{2}\left(q_{2}^{2}-q_{1}^{2}\right) \tag{15b}
\end{equation*}
$$

The invnrinnt functions $A_{i}^{a l}\left(\nu, Q^{2}, t, \delta\right)$ possess the erossingesymetry properties:

$$
\begin{align*}
& A^{u h}\left(v, Q^{2}, t, \delta\right)=A_{i}^{b a}\left(-v, Q^{2}, t,-\delta\right) \quad i=1,2,4,5 \\
& A_{3}^{\text {al }}\left(v, Q^{2}, t, \delta\right)=-A_{3}^{b a}\left(-v, Q^{2}, t,-\delta\right) . \tag{16}
\end{align*}
$$

By definition, for $v>0 \quad A_{\alpha e}^{\mu^{\nu}}\left(p_{2} q_{2} ; p_{1} q_{1}\right)$ is proportional to the imaginary dart of the nonforward Compton scattering ampletuff, ie.

$$
\begin{equation*}
A_{i}^{c}\left(v, Q^{2}, t, \delta\right)=W_{i}^{\left(v, Q^{2}, t, \delta\right), v>0, ~} \tag{17}
\end{equation*}
$$

where the $W_{i}^{\text {ab }}$ are the structure functions used in Ref. 14 . The sum rules will be most conveniently written in terms of combinetins of the functions $W_{i}^{a b}$:

$$
\begin{equation*}
\left.2 W_{i(\pm)}^{a b}\left(v, Q^{2}, t, \delta\right)=W_{i}^{a b}, Q^{2}, t, \delta\right) \pm W_{i}^{b a}\left(v, Q^{2}, t_{j} \delta\right) \tag{18}
\end{equation*}
$$

The nondiaponsl metric clements of the bilocal currents, summed over the spin, are expressed in terms of form-factors by the relations ${ }^{14}$:

$$
\begin{align*}
\left\langle p_{2}\right| V_{a}^{r}(x \mid 0)\left|p_{1}\right\rangle=P^{r} V_{a}^{1}\left(x^{2}, x \cdot P, x \cdot \Delta, t\right) & +x^{r} V_{a}^{2}\left(x^{2} x \cdot P, x \cdot \Delta, t\right)+ \tag{19a}\\
& +i \Delta^{\Gamma} V_{a}^{3}\left(x^{2}, x \cdot P, x \cdot \Delta, t\right) \\
\left\langle p_{2}\right| Q_{u}^{r}(x \mid 0)\left|p_{1}\right\rangle=i E^{\mu v a} \beta & P_{v} \Delta_{\alpha} x_{\beta} A_{a}\left(x^{2}, x \cdot P, x \cdot \Delta, t\right) \tag{19b}
\end{align*}
$$

and similar expressions hold for $\bar{V}^{\Gamma}(x \mid 0)$ and $\overline{C l}^{r}(x \mid 0)$. Sum rules for the functions $W_{i}^{a .2}\left(\nu, Q^{2}, t, \delta\right)$ are now easily derived from the basic equality of the method of Discus et nl. ${ }^{2}$:
$\left.\frac{1}{2 \pi} \int_{-\infty}^{+\infty} d q^{-} A^{\mu \nu}\left(p_{2} q_{2} ; p_{1} q_{1}\right)\right|_{q_{1}^{+}=q_{2}^{+}=0}=\int d^{4} x e^{-\overrightarrow{q_{21}} \cdot \overrightarrow{x_{1}}}\left\langle p_{2}\right|\left\{V_{a}^{r}(x), V_{b}(0)\right\} d\left(x^{+}\right)\left|p_{1}\right\rangle$,
where $q^{ \pm}=\frac{q^{0} \pm q^{3}}{\sqrt{2}}, \vec{q}_{1}=\left(q_{1}, q_{2}\right)$.
Eq. (20) is evaluated by means of Eqs. (aa), (13)-(19) and by using the light-cone Fourier transforms of the bilocal form-factors (19):

$$
\begin{equation*}
\widetilde{V}_{a}^{i}(k, t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} d \alpha e^{-i k \alpha} V_{a}^{i}(0, \alpha, 0, t) \tag{21}
\end{equation*}
$$

where $\alpha \equiv x \cdot P$
The resulting sum rules are given in Table III. Eqs. (III.1; 2,5) are $t \neq 0$ generalizations of the Gottpried sum rule, Eq. (I.1) and of Eqs. (1.5,6) of A respectively.

We have also summarized in Table IV some relations which can be obtained by applying the moment anticommatator technique to the (++) enmponente of Eq.(19). Note in addition that the first and second derivatives with respect to Q^{2} end δ or the generalized Gottfried integral (III.1) are also constrained to vanigh. Eqs. (IV.1-6) generalize Kqs. (I,1,2) and (II.1-3) to the nonforward direction.

The high-energy asymptotic constraints (IV.1,3,4) are obtain-
ned ns in the forward case (see Sqs. (11), (12)) from general equations of the type:

$$
\begin{equation*}
\int_{-\infty}^{+\infty} d v \frac{\partial}{\partial v} f\left(v, Q^{2}, t, \delta\right)=f(Q, t, \delta) \tag{22}
\end{equation*}
$$

which imply that the ocd arts of the functions $f\left(v, Q^{2}, t, \delta\right)$ under the exchange $\boldsymbol{V} \rightarrow-\mathcal{V}$ verify the relation:

$$
\begin{equation*}
\left[f^{(o d d)}(v, Q, t, \delta)\right]_{v=\infty}=\frac{1}{2} g(Q, t, \delta) \tag{23}
\end{equation*}
$$

We mould like to point out here that we may not agree with Discus and Palmer ${ }^{9}$ who deduce systematically opposite conclusions from the same Eqs. (22) occurinp in the light-cis a moment commutator case, ie. that Eq. (23) should hold for the even parts of $f(v, Q, t, \delta)$ instead of the odd ones.
Hence they claim in Ref. ${ }^{9}$ that the first moments of the (${ }^{++ \text {) comma- }}$ tater imply (with our notations):

$$
\begin{equation*}
\left[W_{2(-)}^{a b}\left(v, Q^{2}, t, \delta\right)\right]_{v=\infty}=0 \tag{24}
\end{equation*}
$$

while our conclusion is:

$$
\begin{equation*}
\left[W_{2(t)}^{a b}\left(v, Q^{2}, t, \delta\right)\right]_{v=\infty}=0 \ldots \tag{25}
\end{equation*}
$$

Eq. (24) is actually a moment anticomatator result as indicated by Eq. (IJ.1). In this connection the remarks made at the end of Section 3 should be extended to the nonforward direction tog.

Table III

Table IV

5. Neutrinoproduction sum rules

Until now te have dealt only with conserved cents although it is not especially squired by the method. $\ddot{\text { ie }}$ would like to generalize our results to the case when nonconserved axialvector currents are present, ie. to the structure functions of the neutrino-hadron interaction. We shall restrict ourgelve to a brief survey of the most significant relations which emerge from the study of the spin-independent forward amplitudes.

The basic object of our investigation reads:

$$
\begin{equation*}
\left.\vec{A}_{a b}^{\mu v}(p, q) \leq d^{4} \times e^{i q x}<p\left|\left\{J_{a}^{r}(x), J_{b}^{v}(0)\right\}\right| p\right\rangle \tag{26}
\end{equation*}
$$

where $J_{a}^{\mu}(x)=V_{a}^{\mu}(x)-A_{a}^{\mu}(x)$ is the usual V-A weak current, A and l are $S l_{3}$ indices and the spins have been summed over. In the quark field theory model the vector and axialvector currents are given ar Bu. (1).

The function $\bar{A}_{\text {ab }}^{\mu^{2}}(p, q)$ has the tensor structure:

$$
\begin{align*}
& \bar{A}_{a b}^{p^{v}}(p, q)=\left(-q^{\mu v}+\frac{q^{\mu} q^{v}}{q^{2}}\right) A_{L}^{-b}\left(v, q^{2}\right)+\left[p^{\mu} p^{v}-\frac{v}{q^{2}}\left(q^{\mu} q^{v} p^{v} q^{\mu}\right)+\right. \\
& \left.+\frac{v^{2}}{q^{2}} q^{\mu v}\right] \bar{A}_{2}\left(v, q^{2}\right)+A^{\mu \alpha} \beta_{p} q_{\beta} \bar{A}_{3}\left(v, q^{2}\right)+ \tag{27}
\end{align*}
$$

$+q^{r} q^{\nu} \bar{A}_{4}^{a b}\left(v, q^{2}\right)+\left(p^{r} q^{v}+p^{n} q^{r}\right) \bar{A}_{5}^{a b}\left(v q^{2}\right)$
A_{3} and $\vec{A}_{4,5}^{a b}$ are respectively the parity-vislating and - chiralmeymmetry breaking structure functions. Crossing implies that:

$$
\begin{align*}
& \bar{A}_{i}^{\operatorname{lo}}\left(v, q^{2}\right)=\bar{A}_{i}^{b_{m}}\left(-v, q^{2}\right) \quad i=L, 2,3,4 \\
& \bar{A}_{5}^{\text {al }}\left(v, q^{2}\right)=-\bar{A}_{5}^{\log }\left(-v, q^{2}\right) \tag{28}
\end{align*}
$$

$\bar{A}^{r v}$
en (pi) is connected to the absorptive part of the causal current-hidron interaction amplitude

$$
\begin{equation*}
\bar{W}_{a b}^{\mu v}(p, q) \equiv \int d^{4} x e^{i q x}\langle p|\left[J_{a}^{r}(x), J_{b}^{\nu}(0)\right]|p\rangle \tag{29}
\end{equation*}
$$

If one decomposes $\overline{\mathrm{W}}^{\text {row }}$ into structure functions $W_{i}^{\text {ab }}$ in the same way as: $\bar{A}_{\text {abr }}^{\text {w he }}$ (see sq. (27)) one has:

$$
\begin{equation*}
\bar{A}_{i}^{u k}\left(\nu, q^{2}\right)=\bar{W}_{i}^{a b}\left(\nu, q^{2}\right), v>0 . \tag{30}
\end{equation*}
$$

Their parts symmetric and antisymmetric with respect to a and \mathbb{b} are defined as in Eq. (8).

Now, applying the same methods as in A and in Section 3 of the present work, we are able to derive a bet of sum rules and asymptotic relations for the was structure functions $W_{i}^{a b}$ on the basis of the postulated null-plane anticommatators Eggs. (3).

The most interesting of them are listed in Tables V and VI.

6. Concluding remarks

We have formally derived in the present work sone consequences of the light-cone structure postulated for the current anticommutators. the obtained relations require a further analysis and the
divergent expressions must be regulerized in order to be compared with experiment. Indeed, we have written "divergent" sum rules as formal equalities, requiring only that the criterion of self-consistency propoged by Dicus et al. ${ }^{2}$ is satisfied, i.e. that the an rules are true in free-ficid theory. The regularization of the divergent expressions may be performed by employing the well-known techniques $\mathbf{1 6}$ for converting them into, c.g. finite energy sum rules bv means of the aubtraction of the leading Reggedolf contributions. One may leo combine different structure functions in auch a way that theise leading contributions cancel (for example, the Gottfried sum rule for the ep-en difference converges because of the cencellation of the Pomeranchuicon exchanges).

It should be especially interesting, in our opinion, to investigate further the possible violation of the scaling behaviour of the "wrong-signature" sum rules in the Bjorken region which might occur if the metrix elemente of the bilocal currenta relevant to the real world, unlike the aituation discuesed in this paper, appared to be not sufficiontily regular in the vicinity of the light-cone.

The author expresses his gratitude to Br .S. B .Gerasinov for meny helpful discussions asiadvices and for a careful reading of the manuscript . He thanks Frof.D.A.Dicus for correspondence. Its is also indebted to the Directorate of the JINf for giving to him the possibility of working at the Laboratory of Theoretical Physice.

Table V

Table VI

References:

1. S.B.Gerasimov, J. Houlin. JINR EZ-7247, Dubna (1973).
2. D.A.Dicus, R.Jnckiw, Y.I..Teplitz. Fhyo.Fev., D4, 1733 (1971).
3. R.P.Feynman, Phys.Rev.Lett., 23, 1415 (1969).
J.D.Bjorken, E.A.Paschos. Phys.Rev., 1BS, 1975 (1969).
4. E.Fottfried. J'ys.Rev.Lett., 18, 1174 (1967).
5. 5.3. Terasimov. JIN!
f. H.I.: avkcric. Nuovo Cimento, 15A, 127 (1973).
6. N.Cnbibho, L.Redicnti. Phys.lett.,19, 697 (1966).
K.Kowarabayrshi, N.Suzuki. Phys.:Tev., lSO, ll@1 (1966).
ui. Hosorla, K.Ynmamoto. Prorr.Theor. Phys., 36,425 (1966).
A, Riciti, Phvs.Pev., 142, B1258 (J366).

7. Ј.f.Dicus, D.lf.inlmer. Anri.of Phys., 79, 68 (1973).
10.N.N.Ropolubov, D.V.: hirkov. Introduction to the theory of quantized fields (Interscience, New York, 1759).
11.E.D.Blom, F.J.Gilman. Phys.Rev., 14,2901 (1971).
12.Y.Georrelin, J.Siern, J.tersak. Nucl.Phys., B27, 493 (1971).
D.1..F•1mer. Fhy:. .lev.,D5, 2575 (1972).
13.S.Fubini. Nunvo Cimento,43A, 475 (1966).
R.F.bnshen, W.Gell-ithnn, in Proceedings of the $3^{\text {rd }}$ Coral

Grblee Conference on Symmetry Principles nt High Energy (San Francisco, Cal. 19G6).
14.D.J.Groas. Phys. 'iev., D4, 1130 (1971).
15.D.A.Dicue, V.L."eplitz. Phyn.Rev., D6, zirs. (197:').
16. See for example: D.J. Broadhurst, J.F.Gunion and R.L.Jalfe, Ann.of Phys., 81, 88 (1973) and references quoted therein.

Received by Publishing Jepartment on 信cember 26, 1 ?73.

