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1, Introduction

This work is an extension end a generalization of s former
peper ( Ref, 1 , hereafter denoted by A ) devoted to the deri-~
vation of so-called "wrong-signature" sum rules for forward vir-
tusl Compton Pcattering, i.e. sum rules constructed from structu-
re functiona with crossing properties opposite to those of the
usuel causal smplitudes.

We have shown in A that the use, to that end, of current
aanticommutators réstricted to a light-like hyperplane i x¥za
combined with a sum rule derivation method proposed by Dicus,

Jackiw and Teplitz 2 provides, to all appearences, e more general
framework than the querk-parton model a-preach 3 { which, for
insténcé, led to the Sottfried sum rule 4 ror electroproduction)
and other methods based on the infinite momcntum frame techniques
( see,e.g. Ref. ° and Pavkovic'a work © ).,

Our purpose is to exploit further the method nf A in order
to extract additional informntion on the structure functions of
the lepton-hadron scattering from the canonical null-plane
current anticommutation relations postulnted in A within the
framework of a free, mnssive quark field thcory model,

First, it appears to be a netural development of our null-

plane antjicommutator investipgation %o inquire into the mlgebra
of the moments of the currents, ife. to consider derivatives of
the Fourier transform of the anticommutator function. The speci-

fic posaibilities of thies technique have been eatablished for o-
long time within the Trswework of the ordinary equal-time current

algebra 7 and more recently for light-cone commutators too 8,9 .



It permits us especially to incresse the model-independence of
sum rules derived in A and to deduce several high-energy asymp-~
totic constraints for the structure functions.

Second, we deal not only with the diagonal matrix elements
of the anticommutators of two conserved vector currents as in A
but extend our considerations to nondiagonal matrix elements and
noneonserved axial-vector currents. This enables ue to obtsin new
sum rules for nonforward virtusl Zompton scattering ( and, asmong
them, a t #0 generslization of the Gottfried sum rule 4 ) and
neutrinoproduction ampiitudes ( involving chiral-symmetry break-
ing sStructure functionsa).

The peper is orgunized as follows. In Section 2 we review
briefly the choice of the null-plane anticommutators and its
implications on our results. The moment anticommutator techni-
que is examined in “ection 3 and the generslizations to the non-
forward direction and nonconserved currsnts are conesidered, res-
pectively. in  Sections 4 and 5, Concluding remarks are provi-

ded in Section 6.

2, Null-plane current anticommutators

We recapitulnte briefly in this section the eassential featu~-
res concerning the definition of the current ~nticommutators
which have been nlready discussed in A.

The null-plane current anticommutators are a“stracted from
a free, meassive ourrk field theory model. In this model, the vec-

tor and aximl-vector currents and their bilocal generalizations

are given by:



Vﬁx) - o \6riz \j)(x): (1a)

A“:(x) =i *J(x) \Kr‘ls %_Xj}(n : (1b)
and _
V‘T(x\y) = :*J(x) \6‘..%-, \“QIJ(.;) : {2a)
r .U r
Aa(x|7)= At \P(x) il Xs iz kj)(,, . (2b)
where ° . denotes the normal product of the field operntors.

‘We postulate the followinn null-plane anticommutators of
vector and axial-vector currents _which emerge from canonical
manipulations ( it is understood that only the operator part of

the anticommutators is included):
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where ‘{t‘lﬂ and a:(%lo) (’\_.-T and U ) are the hermitian

( antihermitian) parts of the bilocal currents (2), 5-“& end nl
arz the structure constants of the )\-matrn commutato;‘s and ant:.-
commutators, S v, a +%r-3% -9 %B enda G 8 is the
fully antisymmetric tensor. The singular function D( () reads,

in the notations of Bogolubov and Shirkov 10 H

2 S
()( » = ﬂ(’\) —-) ™, (4)

+

where D(.)(ﬁ) are the positive (+) and negative {-) frequency
prrts of the Pauli-Jordan comuatation function. The symbol =
indicates that we have retesined only the two most singular ( lea-
ding and next-to-leading) terms of the current anticommutaters
near the light-cone because only these terms can be expressad
through the bilocal currents (2).

Eqs. (3) have therefore an approximate cherscter and the
sum rules derived on their basis are asyrwptotic relations valid
in principle only in the limit of infinite current masaeaQ(f——vﬁo) -
However, we -2xpect that th‘ey might be well verified for not too
large volues of qﬁ -q l(GeV) ) as suggested by the "pre-
cocious scaling phenomena® observed in e~P inelastic scstteringll

Finally, note that the apecific c‘z- dependence which might
oceur in the sum rules due to the moncausal nature of the light-
cone singularity is removed under the crucial asaumption that the
form factors deacribing the matrix elements of the‘bilocai currents

(2) are smooth~behaved nesr the lighi-cone.



3. Derivation of sum rules from moment sntigommutators

We consider the forward anticommutetor function of two conserw

ved vector currents defined in A:
4 qu Y3
S!ix e <P‘S\E\/r(,g) \/A(c-) \ PS\>=
2K

.Arvf\pﬂ)
(-—3 +ﬂ-ﬂ-)A(vc)) +{_P[‘P -_(P

P TS S SR e “’%-‘
i € '%“lﬁp‘sk"“) o~y cr ')m{gA,‘(z“l‘,

Sd-' e J(p\ér“& u(?) describes the spin sts-

where the vector
are isotopic spin indices and V= Pcf

tes, 4 and
The A’“} 3} verify the crosa:.ng-symmr-try relsrtions:
2 3 2 N
N Ay i-Las
~ A
(8)

N Ba,
A/. (g :-Al‘ &Y

nd are connected to the conventional structure functions \l\/&(v

of* the absorptive pnart of ihe fnrward virtusl Compton sestiering

amplitude b;y:
(7))

ﬂl’ 3 J"v
Klp = Wiy, voo.

We will nlso need the decommosgit. 101":1 gf A vy ) into parts
symantric (A 3 and antisymmetric (f‘\ ) under :n.erchsnge
of G and .Qr

[La]

o
A-\Vﬁ)”’A(V1)+LA ( ()

whose crossing properties sre fixed by Eq. (6).
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Now, following Dicus and Palmer 9 , we differentiate (S)
with respect to C\H kd =- 1)2),integrate over Q and then
set q 3—:3- « This procedure leads to the geheral

equahty.
S 4‘151_‘ OAW‘ -m S R 4;;]{\4,.,\;&} ps>.. ©

Sum rules are then deduced from Eg. (9) with the help of
Eqs. {3a), (5)-(8) and of the usual definitions of the bilocal

form-factors:
/P,sln\f‘“(x\u)]rs> },r\/ (x xr) + x" \/ (x - P)

(10)
<Os| A lpsy = s A Gxpy+ PUGes) A(x,’x-p) N

- L 3
+* Xr(x-s) A (xfx.P\
and of their 11ght-cone Fourier transforma - -

V(K)-_(da(e \/(oo() 4'_.:1,9_., (10")

Relot:.ons analogons to (10) and (10) hold respectively for
'\J‘ (1 and\/ (uil), A A ( A= 1,2,3). The derivatives
are rewritten'with reapect t.o the scalars { VCI ) by means
¥
OWEA) | W o DWhd
(a"‘u v q Bc‘z



The sum rules and h)‘.gh-energy aéymptotic relations emerging
from the components (r.\')= (++) and (+-) of Egq. (9) with n= 1,2
are given in Tables I and II.

We did not 1list all of them but only the really new results
in comparison with tRhose given in A, So, for example, with
(tA-'V = (+4)y, R=1 we find also that the first derivative
of the Gottfried integral ( see 4, Eq. (I.1l) ) with respect to(i
is equal to zero, but it is & direct consequence of the Gottfried
sum rule itself which hes been derived with the same (++) anti-
commutator ( for n=0).

In the same menner, the (+-) components (n=1) constrain
the derivatives with respect to ql of the left-~hand sides of Eqz,.
(I.2-6) of A to vanish. Analogous results are deduced for the
aécond derivetives with n=2, In addition, the second moments give
the 2- derivatives of the n=1 relations (1.1,3-6) and (II.1,4-€).

The {*++) relations deserve a particmnlar. attention because
they are the least model-dependent ones, as is well known 12 . For

inatence, sq. (I 1) which 1mp11es that

Sa\a ¥\ = ot

[
is & less model-dependent ststement atout the integral than ‘the
(#+=) oum rule Eq. (I.5) of A. Simi,::lsrl).', %.jqa. (1.3-6) are less
model~dependent. And more general relations then the Eqs. (I.7-10)
of A which rracecded from the "bad” anticomutator: (\w) = (A',a)
and LA.--) under the additional assumption that ﬁ: — 0 (M= mass



of the nucleon). ugs. {I.3-6) appear here without any special
requirement of this type. Eqs. (I«7-10) are new sum rules inv_olving
higher powera of ¥V which could not have been derived with the
method of A.

The higheener,y asymptotic relations of Table 1I are specific
consequences of the uge of the moment algebra. They originally

energe from ¢q. (9) in a form which can be symbolically represented
by: a4
S“l" .?'V fodh - g(‘f) . (1)
Zoo
Equations of the type (11) are then transformed into statements
about the odd parts of the functions S(v,c‘z) under the exchange

Vo> -~-Vv:
(edd)

[g(v’af) -v=~= iz S(ﬂz) . (12

It is worth noting that all our moment anticommutator asymptotic
conditions of Tz{ble II deal with structure functions entering
light-cone commutator sum rules 2 » 8.8 Eq. (II.1) is a requi-
rement about the high-energy behaviour of the integrand of the Fu-
bini~-Dahsen-Gell-Mann sum rule 1° , Inversely, the asymstotic
conditions derived fvom the moment commutators should involve
atructure functions appeering in the antigommutator or "wrong-
signature®” Sua rules of A. ¥e shall return to this point in the

next Section.
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Sum rules for forward virtual Compton
scattering from light-cone moment anti~
coamutators
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Table II

High energy asymptotic conditions for forward
virtual Compton acattering from light-cone
moment snticomsutators
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4. Nonforward spin-independent virtunl Compton scattering

sun rules

The results of A and of the previous section are now exten-
ded to the nonforward spin-independent virtual Compton scatterin,
amplitudes. Apart from a more complicated kinemmtical situation,
the previous methads apply sutomatically.

We first define the spin-averaged nondiagonsl matrix element

of the enticommutator of two conserved vector currents between

fermion states with 4-momenta and s
Y o iaw fu)z M
— = X X .
A e = (ae Y e
Following Gross 14 , we decompose this nonforward anti-

commutator function into invariants:

A'Nkmﬂm‘) = 6%’1,) Gveqz) [—3,(!5 Aiv'Q:,flg) + f , ,Ej

ot " o (. ()

“ia-Be) Aedtd) (L Bad A e b + Q"AF A GQES)
where the projection operators erv(t‘) z (%’rv )

ensure current conservation,
P. % (Pi*Pz) 3 Q= 43_@[4“12)) A’%‘%’ P{ F:z (15e)

and

v=£Q | LN R §< QA= 4 {g-92) (156)



ab
;- 2,
The invariant functions A &V,Q)t )g) posgess the cros-
. o

sing-symmetry properties:

wls 2 B, 2 .
ECCAANE A;CE-?, t-1) 41245
Aleatly=- A v ety .

(16)
A"

By definition, for V » O s P is proportional

y definition, fo > dkPquw P,[qg) prop

to the imaginary vart aof the nonforward Compton scattering ampli-

tuie, i.e.
o 5
A Lv,Ql,t,S) = \Nf’zv,cait,g) , V>0, an

14 + The

ofr
where the W& are the structure functions used in Ref.
sum rules will be most conveniently written in terms of combina-
< /
tions of the functions \N M
~
odlr ag Qa
. 2 2 + 2 18)
W, @8y = Weattih t Wea )t,-X). (
4.(1') * *
Tte nondiagonsl metrix clements of the bilocal currents, summed
over the spin , mre exnressed in terms of form=factors by the

relntions 14:

<pRLEmlpo = ENGegnet) + 5TV el 80+
(19a)
+4 /lr \/:(*2, X-l), x-A)‘t)

o .
<F‘\a:("‘°)l"1>=* €’ Ffv/_é{x(; A CARRTD {19b)
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—

PN
and similer expresasions hold for \) (\\0) and C/L (‘\‘0)
Sum rules for the functions \'\/ (‘V Q t g ) are now

easily derived from the baaic equality o the wethod af Dicus

et nal. 2 :
400 —r =y
_ ) 4 "qn'xx. - r Y
Sa«, N (rzqnfﬂﬂ q:r_q;o g‘*“ < H{\{*(n,\{hcw}g(m] P>,
25 (20)

o3
where q.‘:: -9 5 _:_ (“\h“h) .

Eq. (20) is evaluated by means of Eqs. (3a), (13)-(12) and by
uaing the light-cone Fourier transforms of the bilocal form-factors
(19): . e & .
~y ~ Rl “
\/Q- (K){-) = é del € \/n (o)o()o)t) s (21)
—a0
where <X T X-P

The resulting sum rules are given in Table III. £qs. (III.1,
2,5) are t‘#o generalizotions of the Gottfried sum rule, Eqe
(I.1) and of Eqs. {1.5,6) of A respectively.

We heve also summarized in Table IV some relations which can
be obtained by applying the mome}rt anticommutator technique to
the (**} components of Eq.(13). Note in addition. that the first
and second derivatives with respect to Qz and of the gene~
ralized Gottfried integral (III.1) are also constrained to va- -
nigh, Eqs. (IV.1-8) generalize Eqs., (I.1,2) and (II.1-3) to the
nonforward direction.

The high~energy asymptotic comstrsints (IV.l1,3,4) are obtai-



ned as in the forward case ( esee Eqs. (11), (12) ) from general

equotions of;the types
gav _B__ §(M'Q§{?)S) = &(Qz,t,g) (22)
) o ov

which imply that the odd »arts of the functions S-(lef t)g)
under the exchange V-» -V verify the relation:
T tedd) 2 (23)
2 4 .
L § cv,Q,t,g)] =3 éL(Q,f,\E).
vaxoo
%e would like to point out here that we may not agree with Dicus

and Palmer 2 who deduce systematically opposite conclusions from
the same Egs. (22) occuring in the light-ci: 2 moment commutntor
case, i.e. that Eq. (23) should hold for the even parts of
&(v‘th,i) instead of the odd ones.

Hence they claim in Ref. 9 that the first moments of the (++) commu=-

tator imrly ( with our notations):
[ ol thr
(v O)l =0 .
Wy V5D (20)
while our conclusion is:
a " (zs)
[\N’ L-VQ"tS)] = Q..
EYC T T N

Eq. (24) is actually a moment anticommutator result as indicated
by 2q. (TI.1). In this connection the remarks made at the end

of Section 3 should be extended to the nonforward direction toop.



Table III

()

Sum rules for nonforward virtusl Compton
scattering from light:-cone current
anticommutators
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Table IV

Sum rules and high-energy asymptotic conditiona for

E nonforward virtual Compton scattering from the
g light-cone moment anticommutator (++)
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als o ak |
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5. Neutrinoproduction sum rules

Until now we have dealt only with conserved currents although
it is not especinlly »quired by the method. Ve would like
to generalize our results to the case when nonconserved saxinl-
vector currents are present, i.e. to the structure functions of
the neutrino-hedron interaction. We Shall restrict ourselve to a
brief survey of the most significant relations which emerge from
the study nf the spin-independent forward amplitudes,

The bosic object of our investigation reads:

- nc‘x ™
A;er = \dxe <P‘§I_E\),JLL°)}1P>’ (26

where Tr(*) \/ x> -~ A {(x) " is the ususl V-A weak
current, & and L are Sllg, indices and the srins have been
summed over. In the ;;uark field theory model the vector and aximl-
vector currents are given .y Eas. (1).

— v
The function Aa.l?r (P,ﬂ) has the tensor structure:

-y - av glyY ol v
AL G TORE [PF- 24
N — ol 2 . _\“‘ . vl (27)
+$3 ]Aa(“’ + 1€ F"r‘fs /\st,ﬁ)+
I S QR AT o Ny
+qfqt Ap e + (paTspqh) A
ok
A and A are respect:l.vely the parity-violating and

‘chiral-aymmetry breakmg structure functions, Crossing implies

that:



~ R

— f

Aty = A Gug) <= L334

-— —~ R

ak 4 2

AS ey = - AS (—",‘1 ) (29)
-—
/xzjrtbq) is connected to the absorptive part of the causal

current~hrdron interaction amplitude

= 4 9% [ r "] (29)
W G s \dxe lTe, T el
4 2
If one decomposes \CJedk into structure functiona \AJ. in
A
the same Way es /\:;f { see 2q. (27) ) one has:

— . — R
A vq) = W, 9> , VYO, (30)
< ~ .

Their perts symmetric and antisymmetric with respect to ond &
sre defined as in Eq. (&).

Now, applying the same methods as in A and in Section 3 of
the present work, we ere able to derive a set of ‘sum rulgs and
agymptotic relations for the woeak structure functions \A/.lr on
the basis of the postulated null-plane ant1commutators Eqs. (3).

~ The most intevesting of them are listed in Tables V and vI.

6. Concluding remarks

We herve formally derived in the present work some consequences
of the light-cone structure postulated for the current anticommuta~

tora. The obtained relations require a further analysis and the



divergent expressions must be regularized in order to be compared
with experiment. Indeed, we have writtcn “"divergent® sum rules es
formal equalities, requiring only that the criterion of self-con-
sistency propnsed by Dicus et al, 2 is satisfied, i.c. that the
aum rules are true in free-~field theory. The regulsarization
of the divergent expressions may be performed by employing the
well-known techniques 16 for converting them into,c.g. finite
energy sum rules bv means of the subtraction of the leading Regge~
pole contributions. One may ®lso combine diffTerent structure
functions in msuch a way that these leading contributions cancel
( for example, the Gottfried sum rule for the ep-en difference
converges because of the cencellation of the Pomeranchukon
exchanges).

It should be especially intereating, in our opinion, to
investigate further the possible violation of the scaling behaviour

of the "wrong-signature® sum rules in the Bjorken region which
might occur if the mairix elements of the bilocal currents rele-
vant to the real world, unllke the situation discussed in this
paper, appearsd to be not sufficiently regular in- the vicinity

.

of the light-cone.
The suthor expresses hiu gratitude to br.5.B.Gerssimov for

many helpful discussions &rd sdvices and for a careful reading of
the nanueéript . He thanks Prof.D.A.Dicus for correspondence. lis
is also indebted to the Directorate of the JINR for giving

to him the poseibility of working et the Lavorstory of Theoretical

Physica.



Table V

Neutrinoproduction sum rules from light-cone
anticommutators of currents and their moments
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Table VI

High-ensrgy essymptotic conditions for
neutrinoproduction structure functions from
light=-cone moment anticommutators
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