ОБЪЕАИНЕННЫЙ ИНСТИТУТ ЯAEPHЫX ИССАЕАОВАНИЙ
 AYБHA

$$
Z-36
$$

$821 / 2-74$
L.G.Zastavenko

STRONG COUPLING DECOMPOSITION
OF THE GROUND STATE FUNCTIONAL
IN THE QUANTUM FIELD THEORY MODEL
of neutral scalar field
WITH THE SELFACTION $\mathrm{g} \boldsymbol{\phi}^{4}$
IN THE CASE
OF TWO-DIMENSIONAL SPACE-TIME
1973
NAБOPATOPИA
TEOPETИYECHOЙ
Физини

L.G.Zastavenko

STRONG COUPLING DECOMPOSITION
OF THE GROUND STATE FUNCTIONAL
IN THE QUANTUM FIELD THEORY MODEL OF NEUTRAL SCALAR FIELD
WITH THE SELFACTION $g \phi^{4}$
IN THE CASE
OF TWO-DIMENSIONAL SPACE-TIME

Submited to TMO

The equations for determining the coefficient functions of the ground state functional for the aforementioned model of quantum field theory (in the case of non-degenerated vacuum) can be reduced to the form

$$
\begin{align*}
& A^{2}(q, \epsilon)=q^{2}+\epsilon^{2} \\
& +6 \int\left[D_{4}(q,-q, s,-s ; \epsilon)-D_{4}(0,0, s,-s ; \epsilon)\right] d s \\
& D_{4}\left(q_{1}, q_{2}, q_{3}, q_{4} ; \epsilon\right) \Sigma_{4}=2+15 \int D_{6}\left(q_{1}, \ldots, q_{4}, s,-s, \epsilon\right) d s \\
& D_{6} \Sigma_{6}+4\left[D_{4} D_{4}\right]=2 B \int D_{8}\left(q_{1} \cdots q_{6}, s,-s, \epsilon\right) d s \tag{l}
\end{align*}
$$

where ${ }^{n}$

$$
\Sigma_{n} \equiv \sum_{=1}^{\infty} A\left(q_{1}, c\right)
$$

The first eq. of (1) shows, that

$$
\begin{equation*}
A^{2}(0, \epsilon)=\epsilon^{2} \tag{2}
\end{equation*}
$$

and correspondingly

$$
\begin{equation*}
A(0, \epsilon)=\epsilon, \epsilon \geq 0 \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
A(0, \epsilon)=-\epsilon \tag{4}
\end{equation*}
$$

Only the first possibility (3) defines the ground state functional.

Small values of ϵ^{2} correspond to the case of strong coupling:

$$
\begin{equation*}
\epsilon^{2} \rightarrow 0, \quad \epsilon^{2}>0 \tag{5}
\end{equation*}
$$

In ${ }^{/ / /}$it is supposed, that the system (1) for zero value oif ϵ has the solution $A(q, 0), D_{4}(q ; 0), D_{6}(q ; 0)$ such that

$$
\begin{equation*}
A(0,0)=0 \tag{3a}
\end{equation*}
$$

and all the functions $D_{4}(q ; 0), D_{6}(q ; 0) \ldots$ are finite for all values of their arguments q , including $\mathrm{q}=0$, as well.

In the present paper developing this assumption we give the argumentation in favour of that a solution of the system (1) in the case of strong coupling (5) can be represented as a Taylor series in powers of f, this series having non-zero convergence radius.

1. So, we shall search for a solution of the system (1) in the form

$$
\begin{align*}
& A(q, \epsilon)=A_{0}(q)+\epsilon A_{1}(q)+\epsilon^{2} \lambda_{2}(q)+\ldots \\
& D_{4}(q, \epsilon)=D_{40}(q)+\epsilon D_{41}(q)+\epsilon^{2} D_{42}(q)+\ldots \tag{6}
\end{align*}
$$

Substituting these expansions into the second and subsequent equations from (l), gives the system of integral equations, through which it is possible to express the functions $D_{41}, D_{42} \ldots D_{11}, D_{62}$ via the functions A_{0}, D_{40}, $\mathrm{D}_{60} \ldots, \mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots$ In particular, there will be

$$
\begin{aligned}
& D_{41}\left(q_{1}, q_{2}, q_{3}, q_{4}\right)=\sum_{i=1}^{4} A_{1}\left(q_{i}\right) f_{i}\left(q_{1}, q_{2}, q_{3}, q_{4}\right)+ \\
& +\int F\left(q_{1}, q_{2}, q_{3}, q_{4} ; s\right) A_{1}(s) d s \\
& D_{42}\left(q_{1}, q_{2}, q_{3}, q_{4}\right)=\sum_{i, j=1}^{4} A_{1}\left(q_{i}\right) A_{1}\left(q_{j}\right) f_{i j}\left(q_{1}, q_{2} q_{3}, q_{4}\right)+
\end{aligned}
$$

$$
\begin{align*}
& +\sum_{i}^{4} A_{1}\left(q_{1}\right) \int F_{i}(q, s) A_{1}(s) d s+\int F(q, s, t) A_{1}(s) A_{1}(t) d s d t+ \\
& +\sum_{1}^{4} A_{2}\left(q_{i}\right) f_{i}\left(q_{1}, q_{2}, q_{3}, q_{4}\right)+\int F\left(q_{1}, q_{2}, q_{3}, q_{4} ; s\right) A_{2}(s) d s . \tag{7}
\end{align*}
$$

Here $f_{i j}, f_{i}, f, F_{i}, F$ are some bounded functions, decreasing fast eriough for large arguments. Substituting (6) and (7) into the first eq. (1) gives

$$
\begin{align*}
& 2 \epsilon A_{0}(q) A_{1}(q)+2 \epsilon^{2} A_{0}(q) A_{2}+\epsilon^{2} A_{1}^{2}(q)+\ldots \\
& =\epsilon^{2}-2 \epsilon\left[A_{1}(q) a(q)-A_{1}(0) a(0)+\int \beta(q, s) A_{1}(s) d s\right] \\
& -2 \epsilon^{2}\left[A_{2}(q) a(q)+\int \beta(q, s) A_{2}(s) d s\right]-\epsilon^{2}\left[A_{1}^{2}(q) \gamma(q)-A_{1}^{2}(0) \gamma(0)\right. \\
& +A_{1}(q) \int \delta(q, s) A_{1}(s) d s-A_{1}(0) \int \delta(0, s) A_{1}(s) d s \\
& \left.+\int \omega(q, s, t) A_{1}(s) A_{1}(t) d s d t\right]+\ldots \tag{8}
\end{align*}
$$

Here $\quad a, \beta: \gamma, \delta, \omega$ are some functions;

$$
\begin{align*}
& \beta(0, s)=0 \\
& \omega(0, s, t)=0 . \tag{9}
\end{align*}
$$

It follows from (3) and (6) that

$$
\begin{equation*}
A_{1}(0)=1, \quad A_{0}(0)=A_{2}(0)=A_{3}(0)=\ldots=0 \tag{3b}
\end{equation*}
$$

Equating to zero the coefficient for the first power of ϵ in (8) we obtain

$$
\begin{equation*}
\left[a(\mathrm{q})+\mathrm{A}_{0}(\mathrm{q})\right] \mathrm{A}_{1}(\mathrm{q})=a(0)-\int \beta(\mathrm{q}, \mathrm{~s}) A_{1}(\mathrm{~s}) u s \tag{10}
\end{equation*}
$$

so the function $A_{1}(q)$ is defined ; it follows from (9) that the solution of (10) (if it exists), satisfies the condition (3 b), if

$$
\begin{equation*}
a(0) \neq 0 . \tag{11}
\end{equation*}
$$

Similarly, the equation for $A_{2}(q ;$ is

$$
\left[a(q)+A_{0}(q)\right] A_{2}(q)+\int \beta(q, s) A_{2}(s) d s=1-A_{1}^{2}(q)+\gamma(0)-
$$

$-\gamma(q) A_{1}^{2}(q)+\int \delta(0, s) A_{1}(s) d s-A_{1}(q) \int \delta(q, s) A_{1}(s) d s-$
$-\int \omega(q, s, t) A_{1}(s) A_{1}(t) d s d t ;$
it follows from (9) and (11) that if the function $A_{2}(q)$ satisfies (12), it satisfies also the condition (3b).
1.1. So, apparently no obstacles are to determine the coefficient functions of the expansions (6): the solation of the system (1) in the case of strong coupling (5) can be represented as a Tayior series in powers of s.
2. To gain any idea about the concrete form of the functions $a(q), \beta(q, s) \ldots$ it is useful, e.g., to consider the system

$$
\begin{align*}
& A^{2}(q, \epsilon)=q^{2}+\epsilon^{2}+6 \int\left[D_{4}(q,-q, s,-s ; \epsilon)-D_{4}(0,0, s,-s ; \epsilon)\right] d s \\
& D_{4} \Sigma_{4}=2+15 \int D_{6} d s \\
& D_{6}\left(\Sigma_{6}+6\right)+4\left[D_{4} D_{4}\right]=0 \tag{13}
\end{align*}
$$

which is obtained by some truncation of (1). Concerning the system (13), one can definitely assert that its solution in the case of strong coupling (5) can be represented by the series (ϵ), and this series has non-zero radius of convergence.
3. It is possible to illustrate the present work by simple example of unharmonic oscillator. This quantum-mechanical system defined by Hamiltonian

$$
\begin{equation*}
H=-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} x^{2}+g x^{4} \tag{14}
\end{equation*}
$$

is ${ }^{/ 2 /}$ somewhat related to the considered model of quantum field theory.

After the substitution
$x=g^{-1 / G}$
Hamiltonian (14) takes the form

$$
\begin{equation*}
\mathbf{H}=\mathrm{g}^{1 / 3} \mathrm{~h} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
h=-\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}+y^{4}+g^{-2 / 3} y^{2}=h_{0}+g^{-2 / 3} h_{1} . \tag{16}
\end{equation*}
$$

Let us consider h_{1} as a perturbation ($g \rightarrow \infty$). At large distances the perturbation potential is relatively small (in comparison with y^{4}), so the Taylor series in powers of $z, z=g^{-2 / 3}$, representing eigenfunctions and eigenvalues of operator (16), have non-zero radius of convergence whereas similar series in powers of g for the operator (14) have no circle of convergence $/ 3 /:$ the perturbation potential in (14) is stronger at large distances, than x^{2}.
4. For completeness we sinall derive (1) ${ }^{1 /}$ from the basic Hamiltonian of the theory $/ 2 /$

$$
\begin{align*}
\mathbf{H}= & \frac{1}{2} \int \mathrm{~d} k\left[-\frac{\delta^{2}}{\delta \phi(\mathrm{k}) \delta \phi(-\mathrm{k})}+\left(\mathrm{M}^{2}+\mathrm{k}^{2}\right) \phi(\mathrm{k}) \phi(-\mathrm{k})\right]+ \\
& +\check{\prod_{1}\left(\phi\left(\mathrm{k}_{\mathrm{i}}\right) \mathrm{d} \mathrm{k}_{\mathrm{i}}\right) \delta\left(\sum_{1}^{4} \mathrm{k}_{\mathrm{i}}\right)} \tag{17}
\end{align*}
$$

and the Schrödinger equation

$$
\begin{equation*}
\left(H-E_{0}\right) \Omega_{0}=0 . \tag{18}
\end{equation*}
$$

We take the ground state functional Ω_{0} in ine form ${ }^{/ 2 /}$

$$
\begin{equation*}
\Omega_{0}=e^{-\kappa} \tag{19}
\end{equation*}
$$

then (18) transforms into

$$
\begin{align*}
& \frac{1}{2} \int d k\left[-\frac{\delta k}{\delta \phi(k)} \frac{\delta k}{\delta \phi(-k)}+\left(M^{2}+k^{2}\right) \phi(k) \phi(-k)+\frac{\delta^{2} k}{\delta \phi(k) \delta \phi(-k)}\right] \\
& +g \int \prod_{1}^{4}\left(\phi\left(k_{i}\right) d k_{i}\right) \delta\left(\Sigma k_{i}\right)=E_{0} . \tag{20}
\end{align*}
$$

After the substitutions

$$
\begin{align*}
& k=\sqrt{g} q \\
& \phi(k)=\frac{1}{\sqrt{g}} \psi(q) \\
& M^{2}=m^{2}+g L \\
& \epsilon^{2}=m^{2} / g \tag{21}
\end{align*}
$$

eq. (20) and (17) get the form

$$
\begin{align*}
& \frac{1}{2} \int d q\left[-\frac{\delta \kappa}{\delta \psi(q)} \frac{\delta \kappa}{\delta \psi(-q)}+\left(q^{2}+\epsilon^{2}+L\right) \psi(q) \psi(-q)+\frac{\delta^{2} \kappa}{\delta \psi(q) \delta \psi(-q)}\right] \\
& +\int \prod_{i}^{4}\left(\psi\left(q_{i}\right) d q_{i}\right) \delta\left(\Sigma q_{i}\right)=\frac{E_{0}}{\sqrt{g}} \tag{22}\\
& H=\sqrt{g}\left\{\int d q\left[-\frac{1}{2} \frac{\delta^{2}}{\delta \psi(q) \delta \psi(-q)}+\frac{1}{2}\left(q^{2}+\epsilon^{2}+L\right) \psi(q) \psi(-q)\right]\right. \\
& +\int \prod_{i}^{4}\left(\psi\left(q_{i}\right) d q_{i}\right) \delta\left(\Sigma q_{i}\right) . \tag{23}
\end{align*}
$$

Eq. (22) with the representation:

$$
\begin{aligned}
& 2 \kappa=\int \mathrm{A}(\mathrm{q}, \epsilon) \psi(\mathrm{q}) \psi(-\mathrm{q}) \mathrm{dq} \\
& +\int \mathrm{D}_{4}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4} ; \epsilon\right){\underset{1}{4}}_{\underline{4}}^{\left(\psi\left(\mathrm{q}_{\mathrm{i}}\right) \mathrm{d} \mathrm{q}_{\mathrm{i}}\right) \delta\left(\sum_{1}^{4} \mathrm{q}_{\mathrm{i}}\right)} \\
& +\ldots
\end{aligned}
$$

gives eq. (l), if we take

$$
\begin{equation*}
L=-6 \int D_{4}(0,0, s,-s ; \epsilon) d s \tag{25}
\end{equation*}
$$

5. ϵ dependent term in (17), (23)

$$
\frac{1}{2} M^{2} \int \phi(k) \phi(-k) d k=\frac{1}{2} M^{2} \int \tilde{\phi}(x)^{2} d x
$$

is small at large values of ϕ as compared with the last quadric term in (17), (23):

$$
g \int \tilde{\phi}(x)^{4} d x
$$

This is just the reason to expect that the strong coupling series (6) have non-zero radius of convergence.

References

1. L.G.Zastavenko. Preprint JINR P2-7555, Dubna, 1973.
2. L.G.Zastavenko. TMF , 7, 20 (1971).
3. W.M.Frank. J.Math.Phys., 8, 1127 (1967).

Received by Publishing Department on December 13, 1973.

