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The equations for determining the coefficient functions 
of the ground state functional for the aforementioned 
model of quantum field theory (in the case of non-degene­
rated vacuum) can be reduced to the form 

к2, л 2 2 

A ( q , < r ) = q + f 

+ 6 / [ D 4 ( q , - q , s , - s ; f ) -D 4 (0 ,0 , s , - s ; Olds 

D 4 ( 4 I . q , . q 3 , q 4 ; 0 Z 4 = 2 + 1 5 / D 6 ( q v . . . , q 4 . e , - s , O d s 

D 6 2 6 + 4[D 4D 4] =a3 / D 8 ( q r . . q 6 , s , - s , f )ds (1) 

where n 
2 n 3 | , A ( q , , , ) . 

The first eq. of (1) shows, that 

A2(0,<-) = f

 2 , (2) 

and correspondingly 

A(0, f ) = f > f > 0 (3) 

or 
A(0 ) f ) — f (4) 

Only the first possibility (3) defines the ground state 
functional. 
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Small values of f correspond to the case of strong 
coupling: 

<r 2-0, f

2 > 0 ( 5 ) 

In ' '' it is supposed, that the system (1) for zero 
value of e has the solution A (q,0) , D (q;0) , D (q;0) . . . 
such that 

A(0,0)-0 (3a) 

and all the functions D4(q;0) , D6(q;0)... a re finite for 
all values of their arguments q, including q=0, as 
well. 

In the present paper developing this assumption we give 
the argumentation in favour of that a solution of the system 
(1) in the case of strong coupling (5) can be represented 
as a Taylor ser ies in powers of t > this ser ies having 
non-zero convergence radius. 

1. So, we shall search for a solution of the system (l)in 
the form 

2 
A ( q , f ) = A 0 ( q ) + f A , ( q ) + « A . , ( q ) + . . . 

V4><) = D 4 0

( 4 > + f D 4 1 ( 4 > + £ 4 2 ( q ) + - («) 
Substituting these expansions into the second and 
subsequent equations from (1), gives the system of integral 
equations, through which it is possible to express the 
functions D 4 1 , D 4 2 ... Цц , D 6 2 via the functions A 0 , D 4 0 , 
Deo--- >Ai .Аг , . . . In particular, there will be 

4 

D 4 i ( i r 4 2 . q 3 . 4 4 ) = i ! I V < i i ) f i ( q 1 , q 2 , 4 3 , q 4 ) + 

+ / F ( q r q 2 . q 3 , q 4 ; s ) A 1 ( s ) d s 
4 

D 4 2 ( 4 l ' 4 2 . q 3 q 4 ) = 2 = A 1 ( q ^ A 1 ( q . ) f . . ( q ! ^ , ^ . ^ ) + 
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4 
+ 2 Aj tq .HF. ( q ^ A ^ s J d s - b / F(q,s,t)A,(s)A,(t)ds dt + 

+ f A A ) f i l v v 4 s ' 4 4 ) + / F ( v 4 « ' 4 3 'V s ) A 2 ( s ) d s -
(T) 

Here f n > f | . f . F i .F are some bounded functions, 
decreasing fast enough for large arguments. Substituting 
(6) and (7) into the first eq. (1) gives 

2<r A 0 (q)A 1 (q)+2 f

2 A 0 (q) A,, + <r2A,2(q)+ ... 

= f

2 -2 f [A ! (q ) a (q ) -A 1 (0 ) a (0 )+ / ;3 (q , s )A 1 ( s )ds ] 

-2 f

2 [A 2 (q)a(q)+/ i e(q ,s )A 2 ( s ) d s ] - f

2 [ tif (q) у (Ч) - A* (0)y (0) 

+ A 1 (q) /S(q,s)A,(s)ds-A I (0) ;S(0,s)A 1 (s)ds 

+ /fi»(q ,s , t)A ] (s)A 1 ( t)dsdt]+ ... (8) 

Here a ,f$.,y,8,io a re some functions; 
j8(0,s)=0 
<u(0,s,t)=0. ( 9 ) 

It follows from (3) and (6) that 

A j W - l , A 0(0) = A2(0> = A 3 (0)-. . .=0. (3b) 

Equating to zero the coefficient for the first power of 
f in (8) we obtain 

[a(q)+A 0(q)]A I(q)=a(0)-/ /8(q,s)A 1(s) U=i (Ю) 

so the function A ,(q) is defined ; it follows from (9) 
that the solution of (10) (if it exists), satisfies the condi­
tion (3b), if 

a ( 0 ) ^ 0 . (11) 
Similarly, the equation for A 2 (q) is 

U(q) +AQ(q) ]A 2 (q ) + / / 3 (q > s )A 2 ( s )ds= l -A 1

2 (q )+y(0 ) -
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-y(q)A^(q)+/S(0,s)A 1 (s)ds-A 1 (q) /5 (q . s JA^sJds -

- / c U ( q , s , t ) A 1 (s)Aj (t)dsdt; (12) 

it follows from (9) and (11) that if the function A2(q) sa­
tisfies (12), it satisfies also the condition (3b). 

1.1. So, apparently no obstacles a re to determine the 
coefficient functions of the expansions (6): the solution 
of the system (1) in the case of strong coupling (5) can be 
represented as a Taylor series in powers of 

2. To gain any idea about the concrete form of the 
functions a (q), /3(q,s>... it is useful, e.g., to consider 
the system 

A (q,f) = q +c +6 / t D 4 ( q , - q , s , - s ; f )-C 4 (0,0,s,-s; f )]ds 

D 4 X 4 = 2 + 1 5 / D 6 ds 

D 6 ( 2 6 + 6 )+4[D 4 D 4 ] =0 (13) 
which is obtained by some truncation of (1). Concerning 
the system (13), one can definitely asser t that its solution 
in the case of strong coupling (5) can be represented by 
the ser ies (6), and this ser ies has non-zero radius of 
convergence. 

3. It is possible to illustrate the present work by simple 
example of unharmonic oscillator. This quantum-mechani­
cal system defined by Hamiltonian 

/ 2 / 
is somewhat related to the considered model of 
quantum field theory. 

After the substitution 
x - g - , / ( V 

Hamiltonian (14) takes the form 
H=g!/3h (15) 

where 
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1 Д 4 —Z/3 f> —2/3 
h = - i - — V ^ y + g y 2 = h 0 + g h, . ( i 6 ) 

2 3y 2 

Let Us consider hj as a perturbation (g-»~). At large 
distances the perturbation potential is relatively small 
(in comparison with y 4 ) , so the Taylor series in powers 
of z , z = g ~ 2 / ' 3 , representing eigenfunctions and eigen­
values of operator (16), have non-zero radius of conver­
gence whereas similar ser ies in powers of g for the 
operator (14) have no circle of convergence •/3/ '• the per­
turbation potential in (14) is stronger at large distances, 
than x 2 . 

/ l / 4. For completeness we shall derive (1) from the 
basic Hamiltonian of the theory / 2 / 

+ : / n uoodiosak, ) (17) 

and the Schrbdinger equation 

( H - E 0 ) U 0 = 0 . (18) 

We take the ground state functional AQ in 'he form 

О о - е - * , (19) 

then (18) transforms into 

T f dfc[" W 3&Г + ( м 2 + к 2 ) * ( к Ж " к ) + дано] 

+ g / n ( ^ ( k 1 ) d k i ) 3 ( 2 k . ) = E 0 . ( 2 0 ) 

After the substitutions 
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k - V g q 
_i 

Vg 
Ф(к)=Х=.ф^) 

2 2 
M = m +gL 

< 2 = n , 2 / g , (21) 

eq. (20) and (17) get the form 

i . / d q [ - - £ l _ - ! ^ - + ( q

2

+ f 2 + L ) ^ ( q ) ^ ( - 4 1 ) + _ ^ 1 
1 8ф(Ч) 8<fr(-q) 8ф(Ч)8ф(~Ч) 

+ f DWq )dq )8(Sq ) «. 5iL (22) 
Vg 

2 

н = V~7i /dq t -5 + 4-(q2+12+ь)^(Чж-ч)] 
2 S^(q)SvK-q) l 

4 
+ /n<<fr(q, )dq , )« ( Sq, ). (23) 

Eq. (22) with the representation: 

2к = j -A(q , e )v4q)^ ( -q )dq 

+ ; D 4 ( q i , q 2 > q 3 , q 4 ; f ) n ( ^ ( q . ) d q . )8(2q. ) 

+... {1С, 

gives eq. (1), if we take 

L=-6 / D 4 (0,0,s,-s ; *)ds . (25) 



5. <: dependent term in (17), (23) 

Y»2 !Ф(к)ф(.~к)4к = i-M2J>(x)2dx 
is small at large values of ф as compared with the last 
quadric term in (17), (23): 

4 
g / ф (x) dx . 

This is just the reason to expect that the strong coup­
ling ser ies (6) have non-zero radius of convergence. 
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