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The equations for determining the coefficient functions
of the ground state functional for the aforementioned
model of quantum field theory (in the case of non-degene-

rated vacuum) can be reduced to the form

2 2 2
A (q;€)=q + €

+6 [ [D4(q,—q,s,—s;e)-—D4(0,0,s,—-s;e)]ds

D4(q,,q2,q3.q4;r) 24=2+15 fDﬁ(ql,...,q4,s,—s,c)ds

Dﬁzﬁ + 4[D4D4]=B I Da(ql...q6,s,—s,c)ds

where n
z, =2,A (q,.¢).
The first eq. of (1) shows, that

A%0,6) =2

and correspondingly

AW e)=¢,ex 0

or
A(0,¢) =-¢

)]

(2)

6]

C))

Only the first possibility (3) defines the ground state

functional.



Small values of ¢2 correspond to the case of strong
coupling:
e2s 0, ¢ 250 (5)
17
in /' it is supposed, that the system (1) for zero

value of ¢ has the solution A(q,0) , D (g;0) ,D (g0) . . .
4 6
such that

A(0,0)=0 (3a)

and all the functions Dy(q;0) , Ds(q;0)... are finite for
all values of their arguments q, including q=0, as
well.

In the present paper developing this assumption we give
the argumentation in favour of that a solution of the system
(1) in the case of strong coupling (5) can be represented
as a Taylor series in powers of ¢, this series having
non-zero convergence radius.

1. So, we shall search for a solution of the system (1)in
the form

A(q, e)=Ap(qQ)+eA (@)+ 52.\2(q)+

2
D4 (q,s)=D40(q)+ eD“(q) +€ D42(q)+ (8)

Substituting these expansions intoe the second and
subsequent equations from (1), gives the system of integral
equations, through which it is possible to express the
functions Dy ,D4g ... By ,Dgy  via the functions Ay ,Dyy,
Dgo ... A1 ,Ag,... In particular, there will be

4
D, @)295095:9,)= 2 Aq;)f(d,,95,95,9,) +
+[F(4,4,9,,9,;8)A (s)ds

4
D409 924, 9,) ii‘l“ (904 (9 k; (9.9 95.9,) +

4



4
+_Ei Al(qi)fFi(q, s)Al(s)ds+ f F(q,s,t)Al(S)Al(l)ds dis

4
+ 3z Aylq ) (q,q,,4,,9,) + [ F(q .9, ¢,4q,;8)A (s)ds.
. )
Here f;;,f; ,f, F ,F are some bounded functions,
decreasing fast enough for large arguments. Substituting
(6) and (7) into the first eq. (1) gives

2e Ag(q)A (q) +2€2A0 (q) A, +€2A12_(q)+
= ¢*=2¢[A, (9)a(q)—A,(0)a(0)+ [ B(q,5) A, (s)ds]
-2 A, (@)a@)+ [B (254, (s)ds1-2 A (@)y(@)-A; @70

+ A(q) [3(q,5)A, (s)ds ~A (0) [5(0,5)A, (s)ds

+fa:(q,s,t)A](s)Al(t)dsdt]+ (8)
Here a ,B.y,8,0 are some functions;
B(0,s)=0
»(0,5,t)=0. €)

It follows trom (3) and (6) that
A =1, A (0)=A,(0=A,(0)~... =0. (3b)

Equating to zero the coefficient for the first power cf
€ in (8) we obtain

la(@)+Ay@)]A;(q)=a (0~ [B(q,s)A (s)us 10)

so the function A (q) is defined ; it follows from (9)
that the solution of (10) (if it exists), satisfies the condi-
tion (3b), if

a(0)£0. (1)
Similarly, the equation for A 2(q) is

[aq) +A(a) 1A, (2)+ 1B(q,5)A, (5)ds =1 A (@) +y(0) -



2
~7 (@A, @+] 50,94, (5)ds A (@) [ 5 (q,5)A, (5)ds—

—-f w(q,s ,t)Al (s)A1 (t)ds de ; (12)

it follows from (9) and (11) that if the function A,(q) sa-
tisfies {12), it satisfies also the condition (3b).

1.1. So, appareatly no obstacles are to determine the
coefficient functions of the expansions (6): the solation
of the system (1) in the case of strong coupling (5) can be
represented as a Taylor series in powers of «.

2. To gain anry idea about the concrete form of the
functions a (q), Blq,s)... it is useful, e.g., to consider
the system

A @, 0=q" +c*+6 [ID,(q,~q,5,—5;)=D,(0,0,5, -s:e)is
D,24=2+15[ Dy ds

Dg ( %g+6)+4([D,D,1=0 a3
which is obtained by some truncation of (1). Concerning
the system (13), cne can definitely assert that its solution
in the case of strong coupling {5) can be represented by
the series (6), and this series has non-zero radius of
convergence.

3. It is possible to illustrate the present work by simple
example of unharmonic oscillator. This quantum-mechani-
cal system defined by Hamiltonian

1 & 1.2 4

---2—'5-)(—2-+-2—x +gX (14)
is 2/ somewhat related to the considered model of

quantum field theaory.

After the substitution

x=g=—1/
Hamiltonian (14) takes the form

H=g!/3h (15)
where



2 -2/3
3 4 23 A

- vy +g y2 =herg by (16)
ay

1
h=->

Let us consider h; as a perturbation (g-+«). At large
distances the perturbation potential is relatively small
(in comparison with y4), s0 the Taylor seriesin powers
of z , z=g"2/3, representing eigenfunctions and eigen-
values of operator (16), have non-zero radius of conver-
gence whereas similar series in powers of g for the
operator (14) have no circle of convergence 3/ the per-
turbat%on potential in (14) is stronger at large distances,
than x

2|
4. For completeness we shall derive (1) /from the
basic Hamiltonian of the theory /2

2
8 2
-1 _
H=— [dkl- 53¢ 5¢(—_1‘)+(Mz+k )6 (k) (~k) 1+
1 4
tof el )dk ) 5 (X k) a7y

and the Schridinger equation

(H—Eo)alono. (18)
We take the ground state functional €y in ihe form 2/

Qg=e™%, 9

then (18) transforms into

g

1 Sk &k 2,2 5 x
Looggp- B 8k ; N W A S
> A ST e T (MK sl ST

4
+gf[i(¢(kl)dk‘)8(2ki)=E0. (20}

~fter the substitutions



k=vgyg

1
d(k)= = v (q)
Ve 1

M2=m2+gL
2-m?/g, @)
eq. (20) and (17) get the form
1 F) 5 2
5 JSdgl- “ = + (92+f 2+L)'.’1(q)'./1(—q)+—5.."___
3y(q) 8¢(—q) 8¢ (q)6y (~q)
§ (e, dq )5(5q, )= =8 22)
+ . )dq, )= =
1 i i i \/E_ (

2
-y gtfdgl-r —2 + @b AL gl

2 5¢(q)8y(~q)
4
+ f Q(sﬁ(Q, )dqi)5( Eqi ). 23)

Eq. (22) with the representation:

2x = [A(q, €) ¥ () (~q)dg
+ 4
+/D,(4,,9,:9 5,4 ) M (¥(a)dq, )3(2q,)

LYo
+ e 20

gives eq. (1), if we take

L=~6 {D, (0,0,5,—s ;¢)ds . (25)



5. ¢ dependent term in (17), (23)

¥[8k - 1”500

is small at large values of ¢ as compared with the last
quadric term in (17), (23):

g S $(X)4dx.

This is just the reason to expect that the strong coup-
ling series (6) have non-zero radius of convergence.
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