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The principal features of high energy hadronic 
reactions suggest a simple picture of hadrons as 
composite systems of a finite spatial dimension 
R ~ l (f ermi) built up of point-like constituents * . 
Here we discuss a simplified dynamical realization 
of such a picture for mesons, describing them as 
composed of a fermion С and antifermion с , 
glued by a relativistic potential, which is the ker
nel of the Euclidean Bethe-Salpeter equation 
(BSE) Z 2 , 3 / . An appealing idea is to treat such a 
potential as a bootstrap potential, i.e., to consider 
it as determined by the exchange of resonances 
R which are built of the same constituents С glu

ed by the same potential. Usually the potential is 
approximated by several low-lying resonances 
(see, e . g / 4 / ) . However, if the mass spectrum is 
asymptotically exponential as proposed by R.Ha 
gedorn / 5 / / , then this is a poor approximation, and 
a better approximation can be obtained by taking 
into account an average contribution of infinitely 
*For a recent discussion and references see, 
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massive resonances. We try to do this by writing 
the potential in the form 

b ( r , s ) = f „dm 2 p , ( m 2 , s ) Л „ ( т 2 ,r ) , (1) 

where r 2 = r 2 + r | , A F(r ) is the Feynman 
propagator. E=s^ is the CM energy of consti
tuents and the dependence on s is introduced to 
allow complex potentials for s > s 0 > о . 

If the potential is defined by the exchange of 
infinitely narrow scalar resonances, then p e f = 
= 2 g 2 ( R n ) s (m 2 - mn

2 ) which is a scalar 
function of m2 approximately proportional to the 
mass distribution of resonances (the dependence 
of g 2 on R„ is supposed to be weak enough). For 
finite width resonances, p e f is a smooth function 
of m2 assuming that the average mass difference 
is much less than the average resonance width. 
If exchanged resonances R have non-zero spins 
J R the summation over j R is necessary. To do 

this the knowledge of the resonance spin distribu
tion and of the average dependence of g on J R is 
required. We suppose that J R vanishes exponen
tially (or faster) with m -* « * and that g is 
weakly dependent on J R -Then, as was shown in 
ref/ 6 / , the potential has the form (1), with pei be
ing a spinoria.1 matrix, i.e., 

"-f " f ГС° * Гб" P« > i = S , ' V , A , P , T . (2) 

For small m (large г ) the main contribution in 
Jiq. (2) is due to pseudoscalar (P) and vector (V) 
* This is true for the statistical and dual models''5/ 
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resonances. But for large m (small г ) all terms 
in Eq. (2) are , a pr ior i , of the same order. 

The local approximation (1) for the potential 
is certainly incorrect for r «R,However, as was 
shown in r e f . / 6 / , the potential corresponding to 
p e f - cm ь exp(ma) has an infinitely high bar r ie r (IB) 
at r=a (where a is of order R ) and is finite for 
r -» о * -Then the characteris t ic features of our 
model are defined by IB and are correctly incor
porated in the local approximation. 

The maximal radius ofu (rjis due to the ^ -
exchange, and so, m0 > ™„ In the crudest appro
ximation we assume that m0 = mn and use the 
asymptotic form of p e f for m n <_ m < <* . The 
next approximation, in which the n -exchange is 
considered separately and m 0 i s >_7mn can be 
develope_d only after the pion is constructed from 
С and С .It is this problem that is shortly treated 

in the present paper. We solve it with the s imp
lest IB potential (IBP), corresponding to p e f ~ 
~ m ~*2 exp (ma) and using zero pion mass appro
ximation / 7 ' 7 .** 

* Note that in this case Eq. (1) does not define и 
for г < a and to find V for all г another r ep re 
sentations are used (see /*' and what follows). 

*Note that in our case U(r) is finite for r-0 and 
there is no Goldstein difficulty. 
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In this case BSE for pions is reduced to the 
equation 

— - [ M 2 + 4 - f _ 2 + u * ( f > ] u < r ) - ° • (3) 
d f 2 4 w 

where BS wave function \ ( f ) = y 5 [2д г ] u(r) 
is normalized according to the condition 

00 

/ d 4 r I X j 7(f) I 2 = / dr | u ( r ) | 2 = 1 . (4) 
0 

The potential V„ (г) in Eq. (3) depends on all 
terms in Eq. (2). As we are interesetd here only 
in pion states, we simply suppose that и„(0 is 
determined by p e f (m2 ) ~ с m b e m a . The singularity 
point is defined by a , the analytic structure of the 
singularity depends on b and the coupling constant 
is proportional to с . The simplest and most in
teresting potential, corresponding to b = -3/2 has 
the singularity of the f o r m r ~ a ( r - a ) - l .We call 
this IB "semipenetrable" barrier because defining 
the singularity as V.R(r-ar 'we find that the wave 
function u(r) is continuous at r = a and satis
fies the condition 

[ u ' ( a + t ) - u ' ( a - < ) ] , о (5) 
e -»0 

which provides the unique correspondence between 
the solutions for г < a and г > a . If и (t) 
^ ; + 0 ( r - a) ~ l and U n (c) is finite for г "-, a - o, 
then there is no unique correspondence and the 
barrier is impenetrable. It is impenetrable for 
ь >-3/2 and penetrable for Ь <-^/2 . Impenetrab
le IBP can keep the quarks inside hadrons and 
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are consistent with the quantum field theory 
axioms (excepts possibly, the strict localizability). 
They are also useful for qualitative estimation of 
the effects of penetrable IBP. However, statistical 
and bootstrap models suggest a less hard 
b a r r i e r 7 5 ' 6 / and so we investigate the simplest 
IBP. 

First we give a definition of Vn for all г and 
of its Fourier transform into momentum space. The 
equation (1) is the Kallen-Lehmann representation 
for the effective propagator, describing resonance 
exchanges between с and С and pe{(-p2),p2 =-m2, 
is its imaginary part on the cut -«. < p 2 < - m|. 
Therefore, to find the potential is to find the pro
pagator with the exponentially rising imaginary-
part. This problem was solved in the context of 
non-polynomial field theories and such propagators 
are usually called superpropagators (see /e.a/ j 
where there are further references). 

To formulate accurately the receipt for con
structing the potential identified with the super-
propagator we introduce a scalar gluon field ф 
interacting with Фс and Ф c through anon-poly
nomial Lagrangian 

L = * Jo d n ( " ' ) " ' ( g ^ ) " - (6) 

Then, in ^-approximation и„. is formally defined 
as 

U^(r) = f 2 s c n [ g 2 * F ( r ) ] n , c „ = d * ( „ . - Г 1 . (7) 
II = I 
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The potential (7) has IB if c n ' " ^ l the singula
rity point a being defined by the equation 
g 2 Дг ( a) = 1 and the analytic structure of IB by 
the dependence of c„ on n for n •* « . For c„ = 1 
this structure is of the "Coulomb" form r ~a (r-a) -. 1 

As was shown in r e f / 8 / w i t h mass less Ф the co
ordinate and momentum representations of Vn a re 
U„(r) = V . P . | f 2 ( r * - a 2 ) - M . U„(p) = - f 2 ~ - Y , ( a p ) , 

2 -
a = _£_ , f 2

= Avi2 . (8) 

The imaginary part of U„ (p) on the cut p 2 = 
= - m 2 < 0 is asymptotically proportional to 
m ~^2exp (m a ) . By properly choosing d„ , f and g 

one can find a superpropagator corresponding to 
exponential p e f with arbi t rary a , Ь and с . 

Now, BSE for pions may be solved in both the 
coordinate and momentum spaces . Here we con
sider the coordinate equation (3), and solve it by 
WKBJ method (for some exact solutions and fur
ther details see № ). Then the eigenvalue equation 
for mass less pions is ' 6' 

/ dr[M 2+ r - 2 + f 2 ( r 2 - a 2 ) - 1 ] X = N f ,N = 1,3,5... -(9) 

where r 0 is the turning point and the pion solution 
corresponds to N = 1 .For M = 0 this condition 
gives the exact result f2 = M'N+2y4For Ma » 1 and 
Ma « 1 it follows from (9) that 

f 2 « 2MaN N(N-2)+ O(CMa)-1), Ma » 1 , 
2 

f 2= N(N+2)+1J-(Ma)2N(N+2)[N(N + 2) + l] " 4 (10) 
+0((Ma)4 ),Ma « 1 . 
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In the statistical and dual models a is of order 
which is consistent with the empirical mass 
spectrum^5/ .Very rough estimate of the pion tra
jectory slope a; near s =0 suggests that а ; 
is of order - l GeV - 1 if a =(4.5*5.5) GeV - 1 and 
M < l GeV; This gives some support to our model 
as the experimental data are consistent with 
а ' - 1 GeV _ I / 9 / . Another test is provided by 
n^n v decay. In our approximation one can easily 
find the following simple expression for f as
suming usual V-A фс фс ц v vertex: 

i n = 2M / dr r2 u ( f ) м K, (Mr ) . (11) 
0 

Using WKBJ expression for м -> ~ and exact so
lution for M -» 0 we find 

i„ z -— M ( M a ) " е х р С - М а + гЧ 

in ~ _ M _ [ 7 _ 3 M a ] 
M a < >A 

(12) 

2v'2 
Now, from the experimental value f 
obtain two possible solutions for M.If 4GeV~V a < 

< 6 GeV - 1 the two solutions vary corres
pondingly in the intervals 62 MeV< V. < 68MeV 
~ -\- mn , 0.9 GeV> M > 0.5 GeV. One has not 
to consider these numbers too seriously due to 
the approximations made and the special poten
tial used. But, the existence of two solutions, one 
with a small mass of с and the other with a much 
Hgher mass, seems to be of more general nature. 
The vanishing of f for м -» 0 follows from sym
metry considerations if we assume V-A ф~ ф ц v 



vertex and use the most general BS equation for 
the bound state pion. The second solution exists 
for all potentials giving M_1x (0) -> 0 .This 

* м -> ~ 
condition is essentially dvnamical and is naturally 
satisfied for IBP, which concentrates the wave 
function near the surface r = a .Here we do not 
consider the process n° > yy and e+e+*y у e+ e+ -> 
-. n° e+ e + which are very good tests (especially 
the last one, with virtual photons) of composite 
models. Using the considerations given above one 
can easily estimate these processes, but the re
sult depends crucially on the number of С partic
les (3 quarks, 8 baryons, 9 quarks,etc.) on appro
ximation for $ Ф >yy transition and on hadronic 
symmetry. 

Instead, we mention a direct test of IBP pre
diction. Consider the pion form factor Fff (q2 ) for 
ч 2 = q 2 - q 2 - + ™ .Using the non-relativistic 
static approximation and neglecting spins, we writs 
F n { q 2) in the form ( r Q = о , r = | Г | ) 

Fn ( q 2 ) = 2 / d г ( q r ) sin ( q r / 2 ) u Z ( r ) . (Щ 

Then for q 2 • + » we have 

F^ ( q 2 ) = F 0 ( q 2 ) + у ( q a ) * ^ cos ( q a / 2 )+ . . . , 

where F 0 is a smoothly decreasing function of 
q 2 ,determined by the behaviour of u(r) near 
r = 0 and the second term depends on IB* . For 
"Coulomb" barrier 0 = 3 and y is of order 4-5 
(for м - lGeV). This asymptotic expansion is valid 

*For potentials with a marginal singularity or 
for regular potentials there is no such oscillating 
term (see, e . g . ' / 1 - 3 ' 9 / / ). 
10 



for -y -qa» 1 or q >-• 0.5 GeV. The static nonrela-
tivistic approximation is of course very crude but 
the principal qualitative fact, the existence of 
oscillations with the period of order 1 GeV, sur
vives evidently in better approximation. The expe
rimental discovery of such oscillations would be 
a very ser ious evidence in favour of the composi
te model discussed above. 

The author is greatly indebted to Drs . S.Gera-
simov, A.Efremov, V.Meshcheryakov, L.Ponoma-
rev, Ya.Smorodinsky and R.Faustov for useful dis
cussions and comments, and to D.Mavlo for 
checking some calculations. 
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