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I, Introduction

The regular method of investigating ultraviolet asymp-
totics in quentum field theory is based on the use of the
renormalization grouvaz(RG)The celculations performed by
this method utilize ss & starting point perturbaticn expan-
sion and sllow to effectively improve ita approximation pro
perties. However it is well known that sguch celculations
lead, as a rule, to the difficulty of principle connected
with Lhe departure from the framework of weak coupling. The
lowest approximation of the RG equation which is equivalent
to the summation of the main logsrithmic terma leeds in
quantum electrodynamica and two-cherge meaon-nucleon theory
to the ghost-pole trouble( the mo-called "zero-charge" prob-
lems). The analysis of the next epproximationa4 ( see also
43.2 ins) shows that in the vicinity of the ghoat pole the
lower logerithmic terma become imporiant., This does not
permit making eny solid statement about the existence of the
ghost pole on the bssis of the first approximation. In quan-
tum electrodynamics the lower logarithmic terma sre calculated
up to the sixth orders. All these terms appeer to be pomitive.
Therefore they merely shift the position of the ghost. As
a result, it became & general belief that the account of
the lower logerithmic terms does not change the situation
qualitatively,

7,8

Recently it was discovered that messless Yang-Mills

theory possesges 8 remarkable ultrasviolet behaviour, quite



different from the one mentioned above, In this theory the
invariant coupling constant (ICC) tends asymptotically to
zero ( see below €Q.(9)), Such a theory, considered as a
model for strong interactions, leads to the scale invariant
behaviour without snomalous dimensions. However massleas
Yang-Mills theory carnot evidently pretend to describing
strongly interacting vector mesons, Moreover, it possesses
serious troubles due to infrared divergences,.

At present the only known method of ascribing mass to
vector fields in a gauge invariant way is based on the Higgs
mechanism of spontaneous symmetry breakingg. All. such mo=~
dels irclude inevitably the interaction of massive vector
fields with scalar fields and also quartic self-interaction
of scalar fields., Thus, the second coupling constant arises
in the theory. The golution of the renormalization group
equations for this ICC corresponds in the main logaritamic
approximaetion to going outside the framework of weak coup-
1ing ( aee below eq. (I0) ). In paper7 the wide class of
gauge theories including scalar fields was considered. Unfor-~
tunately the suthors have not succeeded in finding any phy-
sically acceptaeble model which is asymptotically free with
respect to both coupling constants. Tharefore they were forced
to hope on some hypothetical "dynemical® mechanism of sym-
metry breaking.

In the present paper we inveetigate the role of lower

logsrithmic terms in the theory of Yang-Mills fisld interac-



ting with scaelar and spinor particles, including sponteneously
broken models, We also consider the effect of mdditional
Yukawa-type covpling which arises in some models of stronye

and weak interactions .IO

2, The Role of Scalar Particles

Consider the simpleat nonabelian spontanecusly broken

gauge modeln. The originel Lagrengian looka =2s follows

L= 3 BRI g T8I 2 500, .
where /L:v“': "D/.‘B:L 28 & +gg LB;BDC, ‘ X’
and X is & nonhernutlan isospinor, = ( X‘> .
Due to spontanecus aymmetry breaking the vecuum expectation
of the field X is different from zero. This provides vector
mesons with nonzero messes, With the help of the canonical
transforeation one can go over from the fields X to the
fields ‘)0:'6’ having zero vacuum expectation, In terms of these

fields the Lagrangian (I) has the form
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Gauge invariance of the Lagrangian (2) mekea it possible
to develop & renormalizable periurbation theory. The trans-

> .
versal geuge ’%” A =0 is particularly convenient. In this

gauge the free vector meson propegstor looke as follows.

(3)

(0) 4 C
Do = (07 5

The intersction Lagrengian includes, besider the verticea

written explicitly in eq.{2}, the additionel term describing
the intermcticn with the so-called Feddeev-Popov ghostsIz

ot
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where
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Asymptotics of all Green functions are known to be ex-

pressed in terms of asymptoticel ICC's which wechoose in the

form
2z

- 223 -
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Here /_:B and /;5 are normallized eymmetric vertex fur.:

Du_ and Ds are dimensionless Green functions, e.g.,
1€>
D,,w('ﬂ = DP,MBDB ()

2
and L = Z/z (—KZ/J\2>, whare )\ ig the point of subtrac-
tion. The factor 3/4,7,2 is introduced to simplify enauring

- -2
expressions. The ICC's 4 and ] satlefy the system of

differentinl Lle equations 2,13

c(/z (L) _
ZL CP(J ) (1a)

_JL_-_—L‘_ :L’U(gz}g,)\ (Tv)
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—

The functions (P and \.P are defined by the condlitiona

. d/;/ NIV oy
(g h)=22 (
Prg.h) Tl 0 g° h)= -

AL

and can be obtained from the perturbation calcuiations us

the series in ga and 4 ;
Lp(ga)h.)= dhz— [5}15- Igz,/‘L + S(gz)za...
Volghh) = “5(5/2)2 d(gz)z/z;+ e(gzﬂx..
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Note that if we do not limit ourselves by Kibble mo <. and
conpider the cage 42<0O ( see below Sect. III), we do not obtair
the asymptotical freedom with respect to 4 . Indeed, nowA/L)
decreases in mbsolute value es /[ -»=° and enters the region —/z_~j”’,
where ae terms ~ ) and 3 in the r.h.s. of (7a) “ecome essen-
tial. We get instead of Eq. (8a):

Y R T (8c)
The system (8b),(8c) was studied in 7 . For all cases of physical
interest the r.h.s. of Eg.(8c) is positive. Therefore as ( gruws
the ICC /l— increasea, pusa through zero, becomes positive, enters
the region /:'v 52 , then the region /z_-j and goes out the
domain of weak coupling.

Hence the next terms in the perturbation expansion of -P
in A should be congidered. Eq. (10) corresponde to the summation
of the main logarithmic terms (ﬁL)n. Taking into account of the
next correction to the r. h.s. of (7a) is equivalent to summing of
lower logarithms Alhl )n .

To determine this correction it is necessary to calculate
lower logarithuic asymptotics of the diagrams shown on Pig.2.
Diagram 2(c) is the product of two lower order diegram, and there-
fors does not give terms ﬁzl we are interested in. Indeed, after
subtraction asymptotic of the simple closed loop (Fig.l (f)) ise
proporiional to AZ . Therefors the diagram 2(c) gives a contribu-
tion ~/zz££ . S0, it is sufficient to consider only diagrams 2(a)
and 2(b). The calculation method is described in the Appendix.

The diagrams 2(a) and 2(b) give contributions .%/Izz and
- %‘/zz[ correspondingly. Coneequently, the coefficient [5 in the

56 sa

function (P(g_z, /_1:) is squal to —2-§ - 20



nnd the Lie e untian for £ {1 thig spproximation looxks ag
Tollows
h A -

dh YT ’"Pz”’) .

diL (12)
Cne can see thnt sccount of the next approximation changes
+he solution drasticelily. breviousiy the function A(L)waes gin=-
rular at Some finite veiue of Z . Contrary to thut, the solu~
tion of eq. {I?) has no sinyulerities in ihe asymptotical re-

3

rion end tends to the constant M= ;i as Lasold,

The simpleat way to see that is te rewrite the equation
P het))
in the Gell-Mann-~Low form
AlL)
) = dh'
J o) (13)
A

2
The solution (I0) corresponds to the approximation P, ( hYy=dh

for which the r.h.s. of eq. (I3) is finite for an arbitrary
upper limit h(L), Hence eqe(I3) cannot be valid for aufficiently
lerge L. In other words, the solution (I0) is contradictory, In
the case (I2) the function LP;(") has » zere at some finite valus
of £ and the integral (I3) diverges as h = 34z . It follows
that when [ -»©> /4 (L) tends to the constant valus H‘—_;, .

The solution of eq,(I2) can be represented as follows
A

(- 4nl o+ folnf B T)f

hio) =

(14)




This result mesns that charge reperGeallantlidn in the e s

cf self-interacting scalar field Zescribed by the Louarrneion

h (\yakpl> ig finite in the sccond logerittris -« rov -
mation. If this fact remained valid after taking ints no.ou
. . noo il .
the next terms in the expansiszn of Y -5:!, ~#h 7% we wooll

have 8 gauge invariant renormnlizuble theory of massive ve

fields in which both ICC exhibit physically acceptable berviv.

S

gr# A x T e Indeed, in that case all terms :in
eqs.(78 ) and {7b ) which are of higher lepgree in - T
be omitted, and the equations are uctunlly independenl . at

lesst Tor sufficiently smali V4 T

Such 2 theory might be considered as a realistic o~
of strong interactions for the finitenesa of asyaptoatical 177
srovides & scale invarient behavisur of the Sreen Tunct:nna
! with enomalous dimensions different from zero, gencrally sueas-
king).

So, the question of reletive contribution of the nexl terms

in the functiomn q7fh) is very crucial. Below we 1nvealijguote

it for the model of self-interacting scalar field
oy P4 2
_ _ 47 ’ SR R
ZM = h{Pd) e o~ (15)

All conclusions may be extended in s cleer way to the case

when the scaler field interacte slso with a gauge vector field.
) - 4

It appears that the function ‘4“ N) calculeted up to the /2

looks es follows *)

® An analogous result was obtained by Belavin A.A. and

Avdeeva G.M.



P (k)= Hib gt 2Byt [rosntsr an+119.2]h (16
Zontributions of separate diagrams to eq.(I6) are written in the
table.

The equation q% (h)= O has no real roots for any natu-
ral /V . This means that we have ccme back to the situati.n
qualitatively equivalent to the main logarithmic approximation

q& (#) . By inspection of formula {I6) one can see that the
order of magnitude of the first, second and third coefficicnts
in the series

- ”
Pry=) P.h

(17}

w3

.

is determined by purely combinatorial factors ( the second co-
lumn of the table ). Once this property is aupposed to remain
valid in higher orders as well one can show that CR,~f-l)ql7!
This means that the series (I7) is asymptotical and it ias impos-
sible to draw any reliable conclusion concerning the existence
of zeroes of the function CP(h) by examining any finite number
of 1ts terma. In this disappointing situation one fact may be
congsidered as a source ot jome expectations., Contrary to the
electrodynamics, the signs of the terms in the perturbation se-
ries for the Gell-Mann-Low function slternate, So, one may sup~
pose the existence of some "compensation mechanism" leading to

P(H)=O «

zero



Accepting such a hypothesis one can Analyse the trer=eticnl nnd

experimental consequences., It follows from ¢ s.( ' describing

spontaneously broken gauge theory that the point -

will be & stable knot for sufficiently small - .

3. The_Influence of Yukaws Interaction

The models of weak and electromagnetic internctionslo 1n-

clude in addition to the minimal gauge-invariant interaction
the Yukawa type interaction ;:rf‘Pwhich is necessary for the
description of lepton mass spectrum, It is important to know
the effect of this interaction on the results of the preceding
section, It can also be useful for possible application of
nonabelian gauge fields to the theory of strong interactions
becsuse such theoriea contain usually a direct meson-nucleon
interaction,

As can be seen from section 2, the "additional” vertices
with dimensional coupling constants ( from the lest line of
eq.(2) ) as well as the mass terms originated from the canonical
transformation are nonessential for an asymptotic analysis,
Thus, in analysing simultaneously the Yeng- Mills and Yukawa
interactiona we uae for brevity Lhe Lagrangien (1)

- IS
2; = ZY" (E)) + ( PR 1—95;‘]’:‘6{‘)\‘, +
. 2 — « o .ey¢ (I8
PR A R S TR AL A RIS

") Here .2 is the Jeponese charscter from the katakana alphabet

pronounced as "Ju".



Here /2 ia the geuge field connected with the group SU(n),
the rields Y snd (P realize some representations of this
group. For simplicity we conaider only one type of the Yukawa
interaction.

- e s
In this caae besides 92 and /4 we have the third ICC 2

—e 22 2
1 = :DWJHPD\‘

(I9)
and the syatem of the L:ue cquations is of the form
d“a —~242
=gt (20a)
di’ _ (3. b3°§°
aL D.{J- ) 5 ’
(20b)
- 2 . - ) )
b o gh- b”’?l* xh12+g(ﬂ‘)’.f(1‘)z,
dL (20c)

The r.h.s. of these equations are written in the lowest approxi=-

mations under the asaumption

2 2
The numerical parameters a, b, and ¢ are
S Y ¢ S A |
b1°c = 3~ 3,- o1,
s -
{61 a = 5I*+3't“,—l’1 (22)
167°6 = o(T]-4)+ 37,



& (3

be
. a ey
with [T‘T}- iy T
2 F a by _ ab
T= 7T, Sp(TTT)=4%.
We do not write down explicitly the coefficients of the last
equation. Note only that all of them are positive. Once the gene-
ral solution of the first egquation (20a) is known, we consider

the second one (20b). Ite genersl splution can be expreased in

terms of ngi) { see eq.{9) ) as follows

-2 a
2Ly = g ) s ’ 23)
q 1+/\'(__:__)P ¢
?‘u)
where
b-¢ ¥ Lo bt
Go= & s k=501 p= = (20)
ir
G, > 9 (25)
and
Ja
kK >0 i.e. —g—'—l < 0,
(26)
we have
3‘ay»o as L= (27)
2

e

_e
In the opposite case G, < —; the 1CC 2 ( tends to infinity

in a "ghost-type® manner.



The whole picture lonks very tranaparent on the phase plane
( see Fig.3). The condition {25) means that the singular solu-

tion
{28)

lies in the first quadrant, in other words, eq.(25) is the
condition of the existence of the region
2z
0 < X (6,

in which the phese curves tend to the origin. Eq.{26) imposes

e regiriction on the low-energy values

a2 -

2= 3%y 3*: ﬂ"(o),

The fulfilment of eq.(25) would mean that in the presence
of the Yang-Mills field the Yukawa interaction can ssymptotically
be free. For the simplest possibility when the group is SU(2)
and ¥ is en isodublet and ¢ & triplet
13
2

167'a = 5 .16”16=22 , 167t =

snd eq.(25) is not setisfied. However for the octet representation

of SU(3) group
43

167’0 =12 , {16r°b=18 , L6nc: Z
Consider now the last .(quation (20c). As followe from eq.(2d)},
5 . =2 =z
in the limit L™ the ICC 1 tends to zero more quickly than g .
. R -t -2
{ The singular solution 1 ~'5 is unstable ). This means that

- : ey =2
in the asymptotic analysis of eqs. (20¢) one csn neglect 2



with respect to §2 « So, we get sn equation without the
Yukawa interaction considered in ref.7.

Aa this equation has no asymptotically free solutions for
physirally interesting cases the ICC h becomes > 92~-i1
when | -» <o , and the initial essumption, eq.(2I), is violated,
Hence the terms depending on ; become essentimsl in the
r.h.s, of eqs, (208) and (20b). The eccount of such terme can
change the behaviour of ga and .iz completely. In the
r.he.8, of €q.{20b) for any finite H the term A becomes
asymptotically dominent., This term, being positive, destabilize
the origin, In other words, the effective Yukawa coupling
goes outside the weak coupling domaine. In eq.(208) the corres-—
ponding term is proportional to g’lﬂz « For H large enough
it can compete with - Cgﬁ .

Nots that contrary to the "pure" scslar field theory (I5)
the mbsence of asymptotical freedom does not depend on the sign

of the low-energy value A =h (o) ,

4, Discussion

Thus, a reliable quantitative ultraviolet asymptotics can
be obtained for asymptotically free theories only. These models
can describe only massless Yang-¥ills field interscting solely
with fermiona, Any interactions with scalar fielda ( besides some
high unitary groupa discovered in ref.7 ) inevitably destroy
asymptotical freedom. This excludea practically all the models

of weak and strong interactions except for gauge invariant



inteructiun o! masslegs vector Tielde with quarks. Even if we
take ir:1o mcczount that the mass of Yang-Mille tield can appear

as B result of spontanecus symmetry breaking mechaniesm different

fron the Higgs one , we atill fase the probler of transition
from Lhe quarx muiel to the descriptiorn of real hadrons.

Our rnalysis of lower logarithmic terms (Section 2) shows that
in principle there exists another posaibility which is quite
acceptable from the physical point of view: the Yeng~Mills ICC
g : tends to zero &nd the quartic ICC /; tends to some
finite velue H. Although the perturbative approsch cannot give
ary relinble estimate of this value, we can check the experimen-
tsl consequances of such hypothesia. The most important of them
13 the eristence of nor-zero anomalous dimensions,

The popular helief iz that the leta on deep inelastic scat-
tering prove the wbuence of anomalous dimensions. However, the
careful analysia performed in ref.IB shows that the existing
world dnta do not exclude small snomalous Jimensione. Note here
that in the model (IS) the anomalous dimension of the scalar
t'teld in the second logarithmic appreximation (IZ2; turns out to
be very small (gyég =z 0.04)s This means that even for rather
large amsymptotical H values Lhe anomelous dimensions can be small.

Due to these facts the models of such a type should not be re-
Jected ad hoec, Unlike the existing asymptoticelly free theories
such models provide the possibility of making computations in the
high energy region aa well as near the nass shell and csn be con-

sidered as a besis for realistic description of strong and

wesk interactions,.
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Appendix
I. Consider, for example, the calculation of the integral

corresponding to the diagram of Fig.4

S dg df .
9 (q-£>2 22 (8- (g-p))° ’

where the symbol R,‘ means Rwoperation with subtraction at PN
This dimgram contains one divergent subgraph, Fig.I(f). The

divergent integral corresponding to this aubgraph is

EX4 = 1'TTZIlI1 i‘ +4 ] (A.2)
s (77))1 G-pJ " ‘

2
where A ia the usual Feynmen cut-off,
After subtraction we have
4-p>
.2 .
-7 Zl’l I (4.3)

Subatituting (A.3) into (A.I) we find

T S L0
grlr-9)" 9% (r-9)* (A.4)
To calculate the integral
9!
S dlﬂn LS gdq 9£" dély L (A.5)
REs ) =



whicere 11 the r~.h,8. nall s mopenta are caclidenn, ar e ©f

17
aottod proncsed in .
! T o Al
(R-L’;‘ - K N
. . ~ . e R . .
#here K= Vee | Kg o= levbn, ° K'--é]_ N AR
and  (, ~are the Chebyshev polynemials .. . pn v
which have the following properties:
I 10
Audeg A, " - " I
) :’f;.'“ﬁ)km(ﬁq:' LI , )
' g o v N Lo
Jo2nt e d ’
(a.3)

Tre aubsatitution nf {A.7Y into {(A.5) ~ives
At

R AT “a
LN B N B G 0 2 P
! S I AR C I A (e

Using (4.7) and pertorming an angular integrotion in (A.9)
we have

A‘d,A[,;l )
”“S 9 b TR gy

. a N\ K P “x
J g
) A ¢
= —;’[I ¢ _;7 SN (A.10)

21



Subtracting (A.I0) at A> we find for (A.5)

."
-1*[; - 4] i (A.ID)
where L = trr. ;-‘:l .
Finally for (A. 1)
< _ d? /n i
-1[ -L- R 5 i 7) _’ . (A.12)

The last integral ia noneasential for symmetricel logerithmic

asymptotics (Pz~ K'2 ©9 ) of (A.I). It contributes to the terms
lvl’lh %; which are important only for higher logerithmic

asymptotics.

II. Here we describe the method sllowing calculation of the lowest

logerithmic terms for the arbitrary order diagrams in escalar

theory. Consider one-psrticle-irreducible diagrem G. The corres-

poding integral is 22

m —_ APssr.dPe
“Trec Ky = ey
;e 1o (nk ) S o p, y

where K; are external momenta, ¢ is = number of internal linss,
In the symmetrical case sll A, are proportional to one momentum

x2 , and Ts becomes e function of one variable,
To remove the divergences we are to perform an R-opsration

with subtraction point LY
T, cr') — R, Toee®

In the d-representation

2 Ay (4, K%
7;(.(1):Sndd e ..
Dy (d) (A.13)



Here we use the natustion of ref,, | if,
The R - operation may be written :n the form
R = ;’1~1~‘;,¢')(J~Mi"'; oML N
where 3’1 ig e 2iverpent subgraph of 4, nnd

lA‘-A, s P
I ¥ - R
MLy ﬂa,\ P U
l

h n 2 -
)Ju)‘x, I(. ) APt

The ssymptotic form of R T (x*y  ia
— KA s k! RN
R} I,fh\~>amlfm ) 4. e i tn g L

To calculate the Gell-Mann-Low function one needs *the coef-

ficient &,

D

r
- z 1 - 2
= Kk Ioex™) .
Q. pr? R, ¢ }k': A (a.1F)
p v g,
Having in mind that A (a,k*') =k Arany and performing
’ - .
the change of variables d,——»/“'d, R 2,4 =4 we yetl
s
w L

14 - 2 < . .
Bnaa - ‘)[«“4[1 Sn.u SU-J8) ftdrty anip A

All diagrams G, J., - ¥« are assumed to diverge loga-
rithmically. Then
fa) gk’
,q(u)rxa,/l% /«r
MT"§—’S‘§I'%HAJB(1 e & .

iD () D “)
(A.17)
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The integration over /1 gives

Aoy )

D;“)D:,:‘)IAJM) - A‘,‘(ﬂj (4.18)

K;% A, Tb"-‘)(! L= "Sﬂ daf(a-24)

All other contributions to (4.I16) are calculeted similarly. Sub-
stituting (A4.I8) and (A.I4) to (A,I6) we obtein the coefficient
Q4 . Every integral of the type (A.I8) diverges, but in a;
all divergences are cancelled.
The quadraticnlly divergent diagrams are treated by the
same method, but the resulting formulas are slightly different.
This method wes used to calculate the coefficients at »*
in eq. (13) with the help of a computer., The resulte are the

seme As the ones given in the table,

24



-4

S5N+22 . 3
8 =py- h

2

N+ 20N + 60 hS
—

Z= - S (Y fhye A= 1,7, ...N L= !
Diagram Combinatorinl The Lnte ral
factor velue
8 +n
O -  ———h - L
3
" on
W< 47+ 6N + 20,2 ¥
//\ R
<L 4/9 | 5N+22) h° + - L
// "
——tu A o 23N 2 _é,_
O a4 NoeanZs2anean | 3 .
- M eON 24N:48
: <1 an°+22N+56 . 3 ¢
> -4 SSERI22 g -~ L(§-L

-BS(SJ L

L3

| +L=21+2LJ

( to be continued )
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N

aN"T

n
<

- 3
1056 n" e seewy

N
\%/ 5 L2
N/ < +208+60 | 3 2. oL
Rl

N
-I16 -—6—+L

|

2 3
BNV e - o AR 3 Farlier-eaL
- /4
X /_3\ - g MoIoN+16 |3 AL A L
G e 172 -
- NP+ TON+T6 3 1%, 3
NI -yt ~Z+ElL

In the imble the corrections Al and AD to the vertex function
and the propsgator ['= {+al D=1+4D are presented. The

third column contains the vealues of the integrals of the type

i S dps dps aps
¢ G
7 L= pPY.

corresponding to the diagrame of the first column. The subtrac-
e
tions sre performed at the point S=% = u = %r;": 3,

The second column contains the combinatorial factors.

A . 2 . 4-p>
J=J(2)=005 : J(Rp—a)zligdqh 5
QZ(K'?}Z (P—K\a=f'a
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