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I. Introduction 

The regular method of investigating ultraviolet asymp-
totics in quantum field theory is based on the use of the 
renormalizstion group-*-' (RG^The calculations performed by 
this method utilize as a starting point perturbation expan
sion and allow to effectively Improve its approximation pro
perties. However it is well known that such calculations 
lead, as a rule, to the difficulty of principle connected 
with the departure from the framework of weak coupling. The 
lowest approximation of the RG equation which is equivalent 
to the summation of the main logarithmic terms leads in 
quantum electrodynamics and two-charge meson-nucleon theory 
to the ghost-pole trouble( the so-called "zero-charge" prob
lem ). The analysis of the next approximations ( see also 
43.2 in ) shows that in the vicinity of the ghost pole the 
lower logarithmic terme become important. This does not 
permit making any solid statement about the existence of the 
ghost pole on the basis of the first approximation. In quan
tum electrodynamics the lower logarithmic terms are calculated 
up to the sixth order . All these terms appear to be positive. 
Therefore they merely shift the position of the ghost. As 
a result, it became a general belief that the account of 
the lower logarithmic terms does not change the situation 
qualitatively» 

Recently it was discovered ' that masaleea Yang-Mills 
theory possesses a remarkable ultraviolet behaviour, quite 
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different from the one mentioned above. In this theory the 
invnriant coupling constant (ICC) tenda asymptotically to 
zero t see below eq.(9)). Such a theory, considered aa a 
model for strong interactions, leads to the scale invariant 
behaviour without anomalous dimensions. However massleaa 
Yang-Mills theory cannot evidently pretend to describing 
strongly interacting vector mesons. Moreover, it possesses 
serious troubles due to infrared divergences. 

At present the only known method of ascribing mass to 
vector fields in a gauge invariant way is based on the Higgs 

a 
mechanism of spontaneous symmetry breaking • All such mo
dels include inevitably the interaction of massive vector 
fields with scalar fields and also quartic self-interaction 
of scalar fields. Thus, the second coupling constant arises 
in the theory. The solution of the renormalization group 
equations for this ICC corresponds in the main logaritmnic 
approximation to going outside the framework of weak eoup-

n 

ling ( see below eq. (10) ). In paper the wide class of 
gauge theories including scalar fields was considered. Unfor
tunately the authors have not succeeded in finding any phy
sically acceptable model which is asymptotically free with 
respect to both coupling constants» Therefore they were forced 
to hope on some hypothetical "dynamical'* mechanism of sym
metry breaking. 

In the present paper we investigate the role of lower 
logarithmic terms in the theory of fang-Hills field interac-
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ting with Bcalar and spinor particlee, including spontaneously 
broken models* We also consider the effect of additional 
Yukawa-type coupling which arisea in some models of stronr 
and weak interactions. 

2, The P.ole of Scalar Particles 

Consider the simplest nonabelian spontaneously broken 
gauge model • The original Lagrengian looks as follows 

where £•/= y&:-\&; + ^ % x ,r^ 
and 3C * 3 a nonhermitian isospinor, X " \ Y I * 
Due to spontaneous aymmetry breaking the vacuum expectation 
of the field /( is different from zero. This provides vector 
mesons with nonzero masses* With the help of the canonical 
transformation one can go over from the fields X t o t n e 

fields y,(T having zero vacuum expectation* In terms of these 
fields the Lagrangian (I) has the form 

+ 3 — cr( CT + q> ) - -2 и t4> J . 
4 M 5 2 М г 

(2) 
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Gauge invariance of the Lagrangian (2) makes it possible 
to develop a renormalizable perturbation theory. The trans-
versa! gauge '"•) £» - 0 is particularly convenient. In this 
gauge the free vector meson propagator looks as follows-

The interaction Lagrangian includes, besides the vertices 
written explicitly in eq.CH), the additional term describing 

12 the interaction v/ith the so-called Faddeev-Popov ghosts 
f . 

,R*f«.)...P>^„i^-)Tu,b<,f«,.Ai)...^,Dllfii„-xoJx,...dn„ , (4) 

(5) 
Asymptotics of all Green functions are known to be ex

pressed in terms of asymptotical ICC'a which wechoose in the 
form 

Г"->=9'ГЛ>; ; з ^ = 9

8 

h(^ = hizi>; 
hto)= h =/±)3'm 

(6) 
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Here / 3 B and / 4 f f are normalized symmetric vertex fur.-' 
Jj and Jj are dimensionless Green functions, e.g., 

and [^ =. C^Z (-/с/\г ) ' wt|are Д is the point of subtrac
tion. The factor ^/^жг ie introduced to simplify ensuring 
expressions. The ICC's h and (j satisfy the system of 

2 14 differential Lie equations t,-L-' 

The functions CI) and Vp are defined by the conditions 

- О 
and can be obtained from the perturbation calculations us 
the series in Q and h \ 

y(9\k)= Л-pk'-tfh* Si?)2*... 
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-•;. i :, i Ле riip 1 jnuii i. ^f weak c o u p l i n g . 



Note that if we do not limit ourselves by Kibble mo -J± а-.-.л 

consider the case k < О ( see below Sect. Ill), we do not obtain 
the asymptotical freedom with respect to h . Indeed, now//^) 
decreases in absolute value as L,-* c,° and enters the region -h~~9'~f 

where ae terms ~ У and о in the r.h.s. of (7a) become essen
tial. We get instead of Eq. (8a)j 

j^ = Л'- хдгЬ + tiff • (ее) 
The system (8b),(8c) was studied in . For all cases of physical 
interest the r.h.s. of Eq.(8c) is positive. Therefore ав L grows 
the ICC h increaaea, pass through zero, becomes positive, enters 
the region k "- Q , then the region h -<j and goeB out the 
domain of weak coupling. 

Hence the next terms in the perturbation expansion of ф 
in к should be considered. Eq. (10) corresponds to the summation 
of the main logarithmic terms f^-L) . Taking into account of the 
next correction to the r.h.s. of (7a) is equivalent to eumming of 
lower logarithms 

To determine this correction it is necessary to calculate 
lower logarithmic aeymptotics of the diagrams shown on Pig.2. 
Diagram 2(c) is the product of two lower order diagram, and there
fore does not give terms k L we are interested in. Indeed, after 
subtraction asymptotic of the simple closed loop (Fig.l (i)) is 
proportional to hL . Therefore the diagram 2(c) gives a contribu
tion — A L • So, it is sufficient to consider only diagrams 2(a) 
and 2(b). The calculation method is described in the Appendix. 

The diagrame 2(a) and 2(b) give contributlone Sh ^ and 
- 3^Z correspondingly. Consequently, the coefficient p> in the 
function (pf^i £)is equal to -<?*f + §-b = j ' 
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ми! the Lie t-.U'it-ion !'or /: ' -1 : tdifl h]t\>roxia;<t ion links /m 

follows 

t i i - (12) 

One can see thit Recount of the next approximation changes 
•he solution drnat icHlly. Previousiy the -function fl(L}vas sin
gular nt oome finite veiue of L • Contrary to that, the solu
tion of eq. (IP.) has no singularities in ; he aeymptotical re-
rion and tends to the constant H~ jj аа L *°° • 

The simploet wny to aee that ia to rewrite the equation 

in the Gell-Mann-Low form 

J ^p(h') (13) 
h 

The solution (10) corresponds to the approximation ^ ^ Л ) - ^ 
for which the r.h.s. of eq. (13,* ia finite for an arbitrary 
upper limit hIL), Hence eq.(I3) cannot be valid for sufficiently 
large L. In other words, the eolution (10) is contradictory. In 
the case (12) the function Cprt)has a Mr* at BOB* finite Taluc 
of h and the integral (13) diverges aa h -» 3/iS • 1 г follows 
that when i - f M h It.) tends to the constant value H = ̂  .' 
The eolution of eq.(I2) can be represented as follows 

h 

H IH-lli-) h J 
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This result meana that charge rt-noro;. Ii;..'ition it-, tin» * -i,' ту 

cf self-interacting scalar field .1езсп bed by •. lie ^ I - V M V i-.r. 
г7 С l-Pi ̂ , , i a finite in the 9i4'oni! Lo^ari: ).глс ';:r.-^;-

mntion. If this fact remained valid '•.?* or *nki:i/ m t j MlMvjr,'. 
the next terms in the expansion of ^ • ̂  • , л- h •''' •• we •*. ..!.. 
have a gauge invariant renorma: .izsblc theory .if n:HSt*ivt> vn-' r 
fields in which both ICC exhibit physically acLoptfiblt- b ev.v_' •• 
u -* С h ^ К < "̂̂  Indeed, in that case all it-rmr, in 

eqs-( 7a ) and {7b ) which ore cf higher decree in .̂м;. 
be omitted, and the equations are L;Ct ually independent ч ч* 
least for sufficiently small И ). 

Such a theory might be considered as a realistic Ш _ ! Р 1 
of strong interactions for the finiteness of ааущр: о' icil . '?. 

provides a scale invariant behaviour of the 7*re«n funct: ̂ ns 
; with anomalous dimensions different from zero, generally prefi
xing) . 

So, the question of relative contribution of the n*»xt terms 
in the function ip{h) is very crucial. Below we invest i/r<'-!e 
it for the model of self-interacting scalar field 

X ^ = - j ' ^ ' ^ f , ) 1 <-^. - (ib> 

All conclusions may be extended in s clear way to the case 
when the scaler field interacts also with a gauge vector field. 
It appears that the function -̂p{ h ) calculated up to the h 

looks ea follows 

An analogous result was obtained by Belavin Л .A. and 
Avdeeva G.M. 
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Contributions of separate diagrams to eq.(I6) are written in the 
table. 

The equation f̂. (h)~o has no real roots- for any natu
ral p/ . This means that we have come back to the situation 
qualitatively equivalent to the main logarithmic approximation 

У, (A) * By inspection of formula (16) one can see that the 
order of magnitude of the first, second and third coeffioidnts 
in the series 

^ (17) 
is determined by purely combinatorial factors ( the second co
lumn of the table ). Once this property is supposed to remain 
valid in higher orders as well one can show that 4",„'"f~-0 • n • 

This means that the series (17) is asymptotical and it is impos
sible to draw any reliable conclusion concerning the existence 
of zeioes of the function by examining any finite number 
of its terms. In this disappointing situation one fact may be 
considered as a source oi jome expectations. Contrary to the 
electrodynamics, the signs of the terms in the perturbation ae
ries for the Gell-Mann-Low function alternate. So, one may sup
pose the existence of some "compensation mechanism" leading to 

4> ( H ) = о .. 
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Accepting such a hypothesis one can Analyse the t * ,.»-PI im 1 umi 
experimental consequences. It follows from с ;p. ( м '!смгпЬ1г>х 
spontaneously broken gauge theory that the point -
will be a stable knot for sufficiently small h 

3. The Influence of Yukawa Interaction 

The models of weak and electromagnetic interactions in
clude in addition to the minimal gauge-invariant internet ion 
the Yukawa type interaction rj "7" Twhich is necessary for thp 
description of lepton mass spectrum. It is important to know 
the effect of this interaction on the results of the preceding 
section. It can also be useful for possible applicition of 
nonabelian gauge fields to the theory of strong interactions 
because such theories contain usually a direct meson-nucleon 
interaction. 

As can be seen from section 2y the "additional" vertices 
with dimensional coupling conatants ( from the last line of 
eq.(2) ) as well as the mass terms originated from the canonical 
transformation are nonessential for an asymptotic analysis. 
Thus, in analysing simultaneously the Yang- Mills and Yukawa 
interactions we use for brevity the Lagrangian (1) и 

+ l ^ ^ s ^ ^ V ^ ^ V ^ - b ^ v Y !18) 

Here J- is the Japonese character from the katakana alphabet 
pronounced as "ju". 
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Here fi> is the gauge field connected with the group SU(n), 
the fields 4* and '•f realise аоие representations of this 
group. For simplicity we consider only one type of the Yukawa 
interaction. 

- a ~ — i 
In this case besides g and h we have the third ICO Д-

Д*. л*1)°Г4,Ъ* ( I 9 ) 

and the system of the Lee equations is of the form 

d L „ - (20a) 

- ali.')*- bi'g* , 
(20b) 

d i fl 3 J J (20c) 
dh 
d 

The r.h.a. of these equations are written in the lowest approxi
mations under the assumption 

д'~л*-А. (21) 

The numerical parameters a, b, and с are 
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with £т*т J = '-j- т ; 

We do not write down explicitly the coefficients of the last 
equation. Note only that all of them are positive. Once the gene
ral solution of the first equation (20a) i3 known, we consider 
the second one (20b). Its general solution can be expressed in 
terms of Q (L ) ( see eq.{9) ) as follows 

where 

If 

Co 

Ic > о 

(25) 

(26) 

we have 

1 г 

In the opposite oaee <T0 < — the ICC JL attends to infinity 

Д C O -»0 as i."» " .. • (27) 

3* in a "ghost-type" manner. 
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The whole picture looks very transparent on the phase plane 
( see Fig.3). The condition (25) means that the singular solu
tion 

(28) 

lies in the first quadrant, in other words, eq.(25) is the 
condition of the existence of the region 

О < -i < 0"o 

in which the рпаве curves tend to the origin. Eq.{26) imposes 
в restriction on the low-energy values 

Л" = Л lo) ; я =r q /о) . 

The fulfilment of eq.(25) would mean that in the presence 
of the Yang-Mills field the Yukawa interaction can asymptotically 
be free. For the simplest possibility when the group is SU(2) 
and J1 is an isodublet and ф в triplet 

and eq.(25j is not satisfied. However for the octet representation 
of SU(3) group 

Consider now the last equation (20c). Ав follows from eq.(2H), 
in the limit £-»=° the ICC 5. tends to zero more quickly than | . 
( The singular solution x ~ 5 is unstable ). This means that 
in the asymptotic analysis of eq. (20c) one can neglect 3. 
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with respect to % « So, we get en equation without the 
7 

Yukawa interaction considered in ref. . 
Aa this equation has no asymptotically free solutions for 

-г - * 
physi'ally interesting cases the ICC h becomes » tj . J-

when /. -* <=>o , and the initial assumption, eq.(2I), is violated. 
Hence the terms depending on h become essential in the 
r.h.a. of eqs, (20a) and (20b). The account of such terms can 

-г. -i 

change the behaviour of Q and J- completely. In the 
r.h.a. of eq.(20b) for any finite H the term 3- A becomes 
aaymptotically dominant. This term, being positive, destabilize 
the origin. In other words, the effective Yukawa coupling 
goes outside the weak coupling domain. In eq.(20a) the corres-
ponding term is proportional to J h . "'or H large enough 
it can compete with - С у , 

Note that contrary to the "pure" scslar field theory (15) 
the absence of asymptotical freedom doea not depend on the sign 
of the low-energy value h — h (о) » 
4. Discussion 

Thus, a reliable quantitative ultraviolet asymptotics can 
be obtained for asymptotically free theories only. These models 
can describe only masslees Yang-Milla field interacting solely 
with fermions. Any interactione with scslar fields ( beeidee some 
high unitary groupa discovered in ref. ) inevitably destroy 
asymptotical freedom. This excludes practically all the models 
of weak and strong interactione except for gauge invariant 
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interaction oi' maBsless vector fields with quarkB- Even if we 
take ir.io account that the mass of Yang-Mille field can appear 
as e re в1-it of spontaneous symmetry breaking mechanism different 
frojj the Higge one X'J , we still face the problem of transition 
from the quarx mo'ie I to the description of real had rone. 

Our analysis of lower logarithmic terms (Section 2) shows that 
in principle there exists another possibility which ie quit* 
acceptable from the physical point of view: the Yang-Mills ICC 

fl" tends to zero and the quartic ICC h tends to some 
finite value H. Although the perturbative approach cannot give 
any reliable estimate of this value, we can check the experimen
tal consequences of such hypothesis. The most important of them 
LS the existence of nor-zero anomalous dimensions^ 

Tho popular belief is that the iata on deep inelastic scat
tering prove the absence of anomalous dimensions. However, the 
careful analysis performed i n ref, shows that the existing 
world data do not exclude small anomalous Jimensions* Note here 
that in the model (15) the anomalous dimension of the scalar 
field in the second logarithmic approximation (12) turns out to 
be very small ( /J^CJ - 0.04), This means that even for rather 
large asymptotical H values the anomalous dimensions can be small. 

Due to these facts the models of such a type should n o t D e re
jected ad hoc» Unlike the existing asymptotically free theories 
such models provide the possibility of making computations in the 
high energy region as well as near the maas shell and can be con
sidered aa a basis for realistic description of strong and 
weak interactions. 
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A p p e n d i x 

I . Consider, for example, the ca lcu la t ion of the in tegra l 

corresponding to the diagram of F ig .4 

p f Jt Jt 

where the symbol Rx means R-operation with subtraction at А г» 
This diagram contains one divergent subgraph, Fig.1(f). The 
divergent integral corresponding to this subgraph is 

where Л is the usual Feynman cut-off. 
After subtraction we have 

• * I (f-f> 
-m In -t-rr ' 

Substituting (A.3) into (A.I) we find 

To calculate the integral 

(A.3) 

(A.4) 

(A .5) 
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whr «e i f[ thp r , h . s . o i l r ••»• л:orient я ЧГР • • . i r l i . i e ' i n , 
{•-? 

. iM.ho^ .if орсярн : 7i 

i • '" i \ ' " . 
^ • ' / - ' • / ; . : * ' ' " ; 

where к = /^ ч к-"̂  = Ccl*t-- ' * "o" -. \ • " '' 
fjnri Cn nre the Che by she v polynomials 
which hqve the following properties: 

J г»' 

The s u b s t i t u t i o n nf {л.<~* i n t o \ A . 5 ) ' i v e s 
л* 

? 

(A. = ) 

l (A.7) .inJ [•( 
ive 

(Д..О 

Using (A.7) .ind performing яп angular inte.^rntion in (А-У) 
we hnve 
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Subtracting (A.IO) et X we find for (A.5) 

-тг* / ^ - L ] , < A , I I ) 

where L - In. ^ • 

Finally for (A.J) 

The laat integral ia nonessential for symmetrical logarithmic 
asymptotics ( p 2 ~ к1-» °° ) of (A.l). It contributes to the terms 

which are important only for higher logarithmic 
asymptotics. 
II. Here we describe the method allowing calculation of the lowest 
logarithmic terms for the arbitrary order diagrams in scaler 
theory. Consider one-particle-irreducible diagram G. The corres-
poding integral is ^ 

where K\- are external momenta, ' is a number of internal lines* 
In the symmetrical case ell Â  are proportional to one momentum 

кг

 t and >G becomes a function of one variable. 
To remove the divergences we are to perform an R-operation 

with subtraction point * = x 

In the o|- representation 

f n

, A t ' 

) (A.I3) 
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Here we изо the notM.ion "Г г е Г , ' , : ^ . 

The R - opera t ion may be w r i t t n n :n the form 

R - r / -M t ' i { 'J - « , / ; .'i % • , I--..-;' 

where Ĵ  is с divergent subgraph of -J, 'M.ri 

M T..-«^ =• П л >- J: -

The asymptotic form of R. x "~П ( к -") i s 

R^T^ '**} -> a m [ £ n ^ i 'Л • * •-'., tn ^ *' - ^ -

To c a l c u l a t e the Gell-Mann-Low funct ion one need.- the coef

f i c i e n t &i 9 

a'= * % Т * Й ^ " Ч ^ • (*.K.) 
Having in mind that and performing 
the change of variables c/,-v^<i( 2^ ̂ ) = ^ w e *S e t 

All diagrams G, # i , -• $к are assumed to diverge loga
rithmically. Then 

1 ,A '-Of»' > \, '* ̂  * ' 
МД.' о - \ f̂ l Л-и S(i-2<0 £ -*— • 

I '1 (A.I7) 
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The intc-gration over M gives 

All other contributions to (A.16) are calculated similarly* Sub
stituting (A.18) and (A.14) to (A,I6) we obtain the coefficient 

&i . Every integral of the type (A.18) diverges, but in Oj 

all divergences are cancelled. 
The quadraticnlly divergent diagrams are treated by the 

same method, but the resulting formulas are slightly different. 
This ciethod wee used to calculate the coefficients at л 

in eq. ClG) with the help of a computer. The results are the 
seme as the ones given in the table. 
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2Г- W 4' V а= I,'1, • -.N 

Diagram Soaibinntorinl 
factor 

Tilt .лГг/гч"! 

x 

N3*-SN2+24N»48 w 3 27 h 

. зм'ч-гги^-ьб . з 
4 g, h L (* - L ) 

5H+22 u 3 
—rr h 

S 2^ (3) 

. N Z+ 20N * 60 b3 L 3..2 _..„. , 
•57" 

( to b» continued ) 
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•vy' - 4 :2!Ц|рШ* h.. j^bt_ 

N2+20N+60 к 3 L . .2 57 " - " + L - 2L 

К 

2 3M8*MII*56 h 3 _ L 3
+ L 2 + 2 I , . 2 J L 

In the table the corrections дГ and д£> to the vertex function 
and the propagator Г= i4 jr^ D = i + ЛТ5 are presented. The 
third column contains the values of the integrals of the type 

774 ' f-Я. >• 
corresponding to the diagrams of the first column. The subtrac
tions are performed at the point *>=4-м = т ' г

|
= ^ . 

The second column contains the combinatorial factors . 

Г^-f) |'р-̂ -Р 
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