СООБЩЕНИЯ ОБЪЕАИНЕННОГО ИНСТИТУТА
 ЯАЕРНЫХ
 ИССАЕАОВАНИЙ

АУБНА

V.N.Pervushin

SUPERPROPAGATOR REGULARIZATION
OF THE S - MATRIX FOR
CHIRAL LAGRANGIAN

$1 \because 2<$

V.N.Pervushin

SUPERPROPAGATOR REGULARIZATION OF THE S - MATRIX FOR Chiral lagrangian

Submitted to Nuclear Physics

1.Introduction

Chiral-invariant effeotive Lagrangians proposed as a oompact means of desoribing low-energy theorems ${ }^{1}$), are sucoessfully applied now for oonstruoting dynamical quantum field thear $\mathrm{s}^{2)}$.

Calculations of oontributions from one-loop diagrams mede 1n works ${ }^{3}, 4,5$) provide a satisfactory fit to experimental data on $\pi_{1}-J^{-s o a t t e r i n g ~}{ }^{3,4)}$ and pion form factor ${ }^{5}$). In these Works ${ }^{3}, 4,5$) the superpropagator (s.P.) method ${ }^{6}$) was used for caloulations.

The present paper is devoted to the construotion of the regularized S-astrix by the superpropagator method in the Honerkan covariant perturbation theory ${ }^{7}$).

The seoond section deal. With brief sketoh of the oovariant perturbation theory; a Lagrangian is oaloulated and transition to the S eatrix Fith nozmal-prdered Lagranganisisperformed.

The third sectien prosenta an analyais of the standard renormalization theory for the one-leops diagrame, and basing on this a regularisation of the normal-ordered Lagrangian is carried out by the S.P. method. An experience stored in exploiting the S.P.method for oaloulations of diagrans with an arbitrary number of vertioes, allows ene to suppose that the S-matrix construoted contains neither iffrared nor ultraviolet dirergences te all orders.

All cumbersome oomputations are remored to Appendioes A, $\mathrm{B}^{*}, \mathrm{C}$ and D .

In Appendix A the Honerkamp Lagrangian is calculated.
The normal-ordered Lagrangian is obtained in Appendix B. In Appendix C the renormalization of the $\pi-\pi$-scattering amplitude is given. In Appendix D the calculation results are presented for $\pi-\pi$-scattering amplitude in the one-loop approximation ${ }^{4}$) by the S.P. method and superpropagator with derivatives is calculated by rules proposed by A.Salam ot al. B).

2. Covaiont perturbation theory.

To calculate a usual one-loop diagram by the superpropagator method one has to know the sum of all twowertex diagrams. Within oonventional perturbation theory the sum of diagrams with fixed number of vertices depends on the choice of pion field coordinates, and the procedure of calculating superpropagator is noncovariant.

- However, the chiral Lagrangian has suoh a speciflc property that it oontains a field derivative squared. Within conventiom nal perturbation theory, pion lines can be contraoted transferring two derivatives at vertices into ono propagator, and in so doing a diagram with n vertices may be oonverted into a sum of "noncontractiblen diagrams with smaller amount of vertices+).
Thet $\mathscr{D}(n) \quad$ be the expression corresponding to the diagram
with $n \quad$ vertices. Then for the ncontractiblen diagram
$\mathscr{D}(n)=\sum_{k * i}^{n} \mathscr{D}(x) C(k) \quad ; \quad$ the diagram $\quad D(n)$
is noncontractible n, if $\quad C(n)=1 \quad$ and $C(k \neq n)=0$

Therefore that part of two-vertex diagrams whioh must be summed up to apply the S.P. method is present in all diagrams with an arbitrary number of vertioes.

The main advantage of oovariant perturbation theory ${ }^{7}$) equivalent to the standard one ${ }^{9 \text {) . is that the sum of all }}$ diagrams with fixed set of vertices is now independent of the choice of the pion feld coordinates. On the other hand, vovariant theory deals just with nonoontraotible" aiagrams.

This work rests on the covariant perturbation theory ${ }^{7}$, so it makes senoe to present here its short formulation.

The aotion and Lagrangian aro considerad in the following form:

$$
\begin{equation*}
W=\int d^{4} \times d(\pi) \quad ; \quad \alpha(\pi)=\frac{1}{2} g_{i j}(\pi) \partial_{n} \pi^{i} \partial^{\mu} \pi^{j}, \tag{1}
\end{equation*}
$$

$\begin{array}{ll}\text { ahere } g_{i}(\pi) & \text { is tho metrio in a ourved isospace of } \\ \text { oonstant ourvature } F_{\pi}^{-2}, & F_{\pi}=92 \text { meV pion deoas oonstant. }\end{array}$

- S - Ratrix as a funotional of asymptotic field 1z written in the forin of functional integral ${ }^{2}$:
$S\left(r^{(i n)}\right)=N^{-1} \int \eta_{i} \Pi_{x} d r^{i}(x) \sqrt{g} \exp \left\{i W-i \int d^{4} \partial_{x}+\partial^{2} \pi_{x}(i n)\right\}$,
where N is a normalisation oonstant, $g=\operatorname{det} g_{i} ;$

Covariant perturbation theory by Honerkamp ${ }^{7}$) oonsists in expanding the aotion of eq.(2) in powers of derivative of geodetic interval with respeot to the olassioal field φ_{i}. The geodetic interral is taken between the points φ^{i} and integration variable f^{i} in a ourred isospace. We would like to remind how to derive this expansion.

$$
\text { Let } \xi^{i}(\lambda) \text { be the geodesios from }\left\{^{i}(\lambda=0)=\varphi^{i} \text { to }\right\}^{i}(\lambda=1)=\pi 1^{i}
$$ where the parameter λ measures the length of the ourre. The olassioal field φ^{i} is a solution of the equation

$$
\begin{equation*}
\left.\frac{\delta}{\delta \varphi^{i}} W=-\square \pi_{i}^{(i n)} \quad ; \quad g_{i x}\left(\square \varphi^{k}+\mathcal{T}_{\ell j}^{k} \partial_{\mu} \varphi^{l} \partial^{\star} \varphi^{j}\right)=\square \mathcal{H}_{i}^{(i n)}\right) \tag{3}
\end{equation*}
$$

Where ${\overrightarrow{\mathcal{J}_{j}}}^{\kappa}=\frac{r}{2} g^{k z}\left(\partial_{\ell} g_{z j}+\partial_{j} g_{z \ell}-\partial_{z} g_{\ell j}\right)$ is the Christoffel symbol and $\partial_{z}=\frac{\partial}{\partial \varphi r}$. The equations of the geodesios $\xi^{i}(x)$ and the geodetio interval I are the following

$$
\begin{equation*}
\frac{d^{2} \xi^{i}}{d \lambda^{2}}+\mathcal{J}_{k p}^{i} \frac{d \xi^{k}}{d \lambda} \frac{d s^{p}}{d \lambda}=0 ; \quad \zeta^{i}(0)=\varphi^{i} ; \xi^{i}(1)=\pi^{i} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
I(\pi, \varphi)=\int_{0, \varphi^{i}}^{1, \pi^{i}} \frac{1}{2} g_{i j}(\xi(\lambda)) \frac{d \xi^{i}}{d \lambda} \frac{d \xi^{j}}{d \lambda} \tag{5}
\end{equation*}
$$

Let us expand the aotion $W\left(\zeta^{(}(\lambda)\right)$, In powers of the parameter λ around the point $\lambda=0$

$$
W\left(s^{i}(\lambda)\right)=W(\xi(0))+\lambda\left(\frac{d s^{i}}{d_{1}} \frac{\partial}{\partial \xi^{i}} W\left(\xi^{i}\right)\right)_{\lambda=0}+\cdots
$$

Making use of eq.(4) and writting the derivative of geodesios
$\xi(\lambda)$ with respeot to the parametor $\lambda \quad$ Via the derivative of interval with respect to the olassical fiedd (by virtue of the Jaoobl equation),

$$
\partial_{i} I(x, \varphi)=\left(\frac{d s^{i}}{d \lambda}\right)_{\lambda=0} \equiv L^{i}(\pi, \varphi)
$$

we get for $\lambda=1$:

$$
\begin{equation*}
W(\pi)=W(\varphi)+\sum_{n=2}^{\infty} \frac{1}{n!} W_{;}, ; l_{1} ; \ldots ; l_{n}(\varphi) L^{\ell} L^{l_{2}} \ldots L^{l n} \tag{6}
\end{equation*}
$$

Where $W_{j} p_{1} ; \ldots j_{n} \quad$ stand for oovariant derivatives

$$
W_{; e_{1}}=\delta_{e_{1}} W \quad \because \quad W_{e_{1} ; e_{2}}=\delta_{e_{2}} W_{;} \epsilon_{1}-J_{e_{1} e_{2}}^{n} W_{j} ; \cdots
$$

Taking new integration variables

$$
\begin{equation*}
\cdot \Gamma_{a}^{a}=e_{i}^{a}(\varphi) L^{i}(\pi, \varphi) \tag{7}
\end{equation*}
$$

(where e_{i}^{a} are drel-bein fields: $e_{i}^{a} e^{a j}=\delta_{i j} ; e_{i}^{a} e_{j}^{a}=g_{d j}$),
we obtain for the funotional $S_{\text {-atrix the following }}$ expression 6)

$$
\begin{equation*}
S\left(\pi^{(4)}\right)=e^{i W_{i \text { iel }}(q)} N^{-1} \prod_{a} \prod_{x} d \Gamma_{(x)}^{4} \sqrt{\frac{g(p)}{g(x)}} d e t \frac{\partial \pi^{i}}{\partial L^{4}(\Gamma, q)} e^{i W(\varphi \mid \Gamma)} \tag{s}
\end{equation*}
$$

Bhere

$$
i W_{t \text { ree }}(\varphi)=i W(\varphi)-i \int \partial_{\mu} \varphi^{k} \partial \mu \pi_{k}(i n)
$$

is the generating funotional desoribing tree graphsi

$$
\begin{equation*}
W(\varphi \mid r)=\sum_{n=2}^{\infty} \frac{1}{n!}\left[W_{;}, \rho_{n}, j e_{n}(\varphi) e^{\alpha_{0} e_{0}}(\varphi) \cdots e^{q_{n} r_{n}}\right] r^{n_{1}} \ldots \Gamma^{a_{n}} \tag{9}
\end{equation*}
$$

As is shown in ref. ${ }^{10)}$, all higher oovariant derivatives of the action W are expressed through the metric tensor and Christoffel symbol because of the oonstant curvature of iscspace. In Appendir A we obtain the explicit form of Lagrangian in the oovariant theory:

$$
\begin{align*}
& W(r \mid \varphi)=\int d^{4} x \alpha(r \mid \varphi)=\int d^{4} \times \frac{1}{2}(\partial r)^{2}+W^{r}(\Gamma \mid \varphi) \\
& \alpha(r \mid \varphi)=\frac{1}{2}\left(\partial_{\mu} r^{a}+j_{\mu}^{a}(\varphi) r^{c}\right)\left(\partial \alpha r^{b}+\rho r(\varphi) c^{\prime} r^{\prime}\right) g_{a b}^{a}(z)+ \tag{10}\\
& +e_{i}^{a}(\varphi) \partial_{\mu} \varphi^{i}\left[\left(\partial \mu r^{b}+\rho \mu_{c} \delta_{c}\right)(1-g(z))\left(\delta_{a b}-\frac{r^{a} r^{b}}{r^{2}}\right)+\right. \\
& +\frac{1}{2} e_{i}^{a}(\varphi) \partial_{\mu} \varphi^{i} e_{j}^{b}(\varphi) \partial \mu \varphi^{j} \frac{f(z)}{\Gamma_{x}^{2}}\left(\Gamma^{a} r^{-} b_{-} \Gamma^{2} \mathcal{S}_{a b}\right) \tag{11}
\end{align*}
$$

by means of a oaloulation technique somewhat different from that used in the work ${ }^{10)}+$), namely, by expanding the Lagrangian (1) itself. Here $g_{a b}^{G}(z)$ is the metrio tensor in Gursey

$$
\begin{align*}
& \text { coordinates } \\
& g_{a b}^{G}(z)=\delta_{a b} f(z)-(f(z)-1) \frac{\Gamma^{4} \Gamma^{b}}{\Gamma^{2}} \\
& f(z)=\left(\frac{\sin z}{z}\right)^{2} ; g(z)=\frac{\sin 2 z}{2 z} ; \quad z=\sqrt{\Gamma^{2}} \\
& \rho_{\mu}^{a b}=e_{n}^{a} \partial_{\mu} e^{b_{n}}+e_{n}^{a} J_{k, m}^{n} \partial_{\mu} \varphi^{m} e^{b_{k}}=\frac{1}{2 \sigma_{\pi}^{2}}\left(\varphi_{a} \partial_{\mu} \varphi_{z}-\varphi_{b} \partial_{\mu} \varphi_{a}\right)+O\left(\varphi^{q}\right)
\end{align*}
$$

[^0]In the Honerkamp Lagrangian the olassioal fields enter covariantly, while the part of the Lagrangian (11) dependent on internal fields only, is the chiral Lagrangian in terms of the Gursey ooordinates. This is not astonishing, as the Gursey ooordinates are the only ones for whioh "oontractible". diagrams without external legs are absent and in this case the covariant perturbation theory coincides by form with the odriventional one.

Atheory with the Lagrangian (12) 1s localizable. From the Honerkamp covariant perturbation theory it follows that the looal properties of theory do not depend upon the choice of pion field coordinates and are defined rather by the transformation group under which the Lagrangian is invariant.

> Quantizing the theory with Lagrangian (11) results in the S matrix

$$
\begin{equation*}
S\left(\pi^{(i n)}\right)=e^{i W_{t} a_{6}} N^{-1} \int_{a} \prod_{x} \Pi_{\Gamma}^{a} \sqrt{g^{a}} e^{i W(r / \varphi)} \tag{13}
\end{equation*}
$$

Henoe comparing (B) and (13) we find:

$$
\sqrt{\frac{g(\varphi)}{g(x)}} d \dot{e} t \frac{\partial_{n}^{i}}{\partial L \dot{j}_{(\bar{n}, \varphi)}}=\sqrt{g^{G}}
$$

To caloulate conorete physical prooesses it is convenient to represent the S^{\prime}-贯atrix (13) in the form of racuum expectan tion ralue of T^{*}-product of the exponent of the normalordered notion.

[^1]\[

$$
\begin{equation*}
S(\varphi)=\left\langle 0 / T_{w}^{*} e^{i N \bar{W}^{I}(\Gamma / \varphi)} \mid 0\right\rangle e^{i W_{t z e e}(\varphi)} \tag{14}
\end{equation*}
$$

\]

$$
\begin{equation*}
\bar{W}^{I}(r / \varphi)=\exp \left\{\frac{i}{2} \int d^{4} x d^{q} y \frac{\delta}{\delta \Gamma\left(x^{a}\right)} \Delta^{c}(x-y) \frac{\delta}{\delta \Gamma^{a}(y)}\right\} W^{I}(r / \varphi) \tag{15}
\end{equation*}
$$

The normal-ordered Legrangian is oaloulated in Appendix B. When caloulting the Lagrangian (15) only the oontraoted productat) of fields without derivatives are taken, because the contracted products of fields with derivatives are compensated by determinant $\sqrt{g^{G}}$ in (13), and those of fields with derivatives and fields without derivatives equal zero.

3. Regularization of the S matrix

It is known that the oonstraints due to ohiral invarianoe are not suffio1ent to derive convergent results even from the one-loop diggrams:

[^2]
(a)

(b)

(c)

F1g. 1
The quadratio divergenoes in diagrams (a), (b) and (o) oan be ellminated by standard renormalization of charge and wave funotion (see Appendix C). Some quadratio divergences In the diagrams (a) and (b) and those of the diagrams (0) cancel. To rule cut the logarithmic divergences one necds to introduce two arbitrary parameters, and the renormalization procedure becomes nonconsistent (See the paper by Ecker and Honerkamp ${ }^{2)}$).

Calculations of the diagrans (c) by the S.P. method result in the convergent expresaion and fix these arbitrary constants ${ }^{4)}$. However, as was pointed above, nonregularized expressions for these diagrams contain quadratic divergences which cancel aome divergences in the diagrams (a) and (b).

Thus, on the one hand, the otandard renormalization method removes the quadratic divergences but cannot eliminate in a self-consistent way the logarithmic divergences, requiring arbitrary parameters. On the other hand, the S.P. method of calculations of the diagrams (c) fixes these constants but changee the atandard method of renormalization of quadratic divergences. A natural way out of this situation consists in
construction of regularization of the diagrams (a) and (b) which is adequate to that of the diagrams (c) by the S.P. method.

To calculete by the S.P. method it is necessary to know the sum of all one-loop diagrams with an arbitrary number of closed meson lines (Fig. 2).

Fig. 2.

To achieve this one should make a transition to the S matrix with normal-ordered Lagrangian (15), which leada to expressions of the type

$$
\begin{equation*}
J=\sum_{n=1}^{\infty} C(n)\left(\Delta^{c}(0)\right)^{n} ; \Delta^{c}(0)=\frac{1}{(2 \pi)^{4}} \int \frac{a^{4} k}{-k^{2}-i \varepsilon} \tag{16}
\end{equation*}
$$

We suggest to calculate such expression by a method close as much as poasible to the S.P.method ${ }^{4}$) in calculating the
diagrams (c): ${ }^{+1}$

$$
\begin{equation*}
J_{S . p}=g_{\mu \nu} \lim _{q_{\mu} \rightarrow 0} \int_{0} d^{\prime} e^{i \phi x} \sum_{n=1}^{\infty}\left(\Delta^{c}(x)\right)^{n} \partial_{\lambda} \partial_{\nu} \Delta^{c}(x) c(n) \tag{17}
\end{equation*}
$$

(See Appendix D, formulae (D:3), (D.5), where the superpropagators with derivatives for the diagrams (c) of Fig.l are given.)
For coefficients $C(n)$ defined by the transition to the normal-ordered Lagrangian (see B.4) the calculation of (17) results in (see (D.5)):

$$
\tilde{J}_{S^{\prime} P}=0
$$

and, consequently, for (15) we have

$$
\left[\bar{W}^{I}(\Gamma / \varphi)\right]_{S \rho}=W^{I}(\Gamma / \varphi)
$$

4
Therefore the S.P.regularization of the quadratic divergences leads to the following expression for the S-matrix functional:
${ }^{+)}$An analogous regularization method is considered in the work by G.Lazarides and A.Pataní ${ }^{12 \text {). }}$

$$
\begin{equation*}
S^{\prime}\left(\pi^{(n)}\right)=e^{i W_{t_{\text {cep }}(\varphi)}}\left[\left\langle 0 / T^{*} e^{i N W^{5}(\Gamma \mid \varphi)} \mid 0\right\rangle\right]_{s . p} \tag{19}
\end{equation*}
$$

Subscript "S.P." means that we must apply the S.P.method when calculating the physicel quantities.

He expand the S-matrix (19) in powers of W^{I}. The zeroth-order expansion gives all tree graphs. The firat order equals zero due to the normal product. The second order results are convergent ${ }^{4)}$ and are given with slight modifications in Appendix D. Works ${ }^{13 \text {) are devoted to a study of the }}$ highest-order expansions in analogical theories. In particular W.K.Volkov in his work 13) has proved the convergence of theory of any order. Results of these works ${ }^{13 \text {) }}$ aupport the assumption that the S-matrix (19) contains no divergences, and applying the Honerkamp perturbation theory guarantees the calculated physical quantities be independent of the choice of pion field coordinates.

The author is very much grateful to B.M.Barbashov, D.I.Blokhintsev, A.V.Efremov, A.T.Filippov, V.I.Ogievetsky, D.V.Shirkov, A.A.Slavnov, I.T.Todorov and M.K.Volkov for useful discussions. The author thanks also L.D.Faddeev, E.S.Fradkin and J.Honerkamp for discussions of work ${ }^{5)}$ which stimulate the present investigation.

Appendix A

The usual and covariant expansions of the Lagrangian $\mathcal{L}(\varphi+L) \quad$ eq. (1) in powers of the variable \angle are denoted, respectively, as:

$$
\begin{align*}
& \mathcal{L}(\varphi+L)=\mathcal{L}^{(0)}(\varphi)+\mathcal{L}^{(1)}(\varphi \mid L)+\sum_{n=2}^{\infty} \mathcal{L}^{(n)}(\varphi / L) \frac{1}{n!}, \tag{A.1}\\
& \mathcal{L}_{x}\left(\varphi(+1 L)=\mathcal{L}^{(\rho)}(\varphi)+\mathcal{L}^{(1)}(\varphi / L)+\sum_{n=2}^{\infty} \alpha_{x}^{(n)}(\varphi / L) \frac{1}{n!},\right. \tag{A.2}
\end{align*}
$$

where $\quad \mathcal{L}^{(0)}(\varphi)=\mathcal{L}(\varphi)$

$$
\alpha^{(1)}(\varphi / L)=g_{i e_{1}} \partial_{\mu} \varphi^{i} \partial_{\mu} L^{l_{1}}+\frac{1}{2} \partial_{4} \varphi^{i} \partial \mu \varphi \dot{ } \partial_{\rho_{r}} g_{i j} L^{l_{1}}
$$

and the following relation holds:

$$
\begin{equation*}
\mathcal{L}^{(n)}(\varphi+L / L)=\mathcal{L}^{(n)}(\varphi / L)+\alpha^{(n+1)}(\varphi / L)+\cdots \tag{A,3}
\end{equation*}
$$

Allowing for the equality

$$
\begin{equation*}
\partial_{e, g_{i j}}=\mathcal{T}_{i, e_{j}}+\mathcal{J}_{i, e i} \tag{A.4}
\end{equation*}
$$

we represent $\mathcal{L}^{(1)}(\varphi / L)$ in the form.

$$
\begin{equation*}
\left.\alpha^{(1)}(\varphi / L) \equiv \alpha_{, e,} L^{e}=g_{i j} \partial_{\mu} \varphi \dot{\gamma}(D)^{\mu} L\right)^{i} \tag{A.5}
\end{equation*}
$$

$\left(D^{n} L\right)^{i}=\partial_{\mu} L^{i}+\overline{J e}_{1}^{i} m \partial_{\mu} \varphi^{m} L^{e_{1}}$,
where $\alpha_{, e_{f}}$ is the first-order differential operator. When calculating $\mathcal{L}^{(0)}$ we employ the eq.(A.3)

The second term of the covariant expansion (A.2) $\alpha_{x}^{(2)}(\varphi / L)$ is expressed via $\mathcal{L}^{(2)}$ in the following way:

$$
\alpha_{x}^{(2)}(\varphi / L)=\alpha^{(2)}(\varphi / L)-\mathcal{L}_{1}\left[\tilde{J}_{e_{1} \hat{l}_{2}} L^{P_{1}} L^{l_{2}}\right]=
$$

$$
\begin{equation*}
=\alpha^{(2)}(\varphi / L)-g_{i j} \partial_{\mu} \varphi^{j} \partial \mu \varphi^{m}\left[\partial_{m} J_{e, p_{2}}^{i}-J_{x m}^{i} J_{e, p_{2}}^{m}\right] L^{p_{1} p_{2}}- \tag{A.8}
\end{equation*}
$$

$-\partial_{\mu} \varphi+J_{j, e_{1} e_{2}} \partial_{\mu}\left(L^{P_{1} L_{e}}\right)$.

From (A.8) we get for a space of constant curvature the following expression:
$\mathcal{L}_{\#}^{(2)}(\varphi)=\left(D_{\mu} L\right)^{i}(D \mu)^{j} g_{i j}+F_{\pi}^{-i}\left(g_{m e_{1}} g_{i \rho_{2}}-g_{\ell e_{2}} g_{m j}\right) \partial_{\mu} \varphi_{j} j_{\alpha} \varphi^{m}\left(\rho_{\rho} \ell_{(A .9)}\right.$

$$
\begin{align*}
& \delta^{(2)}(\varphi / L)=\left(D^{\mu} L\right)^{i}\left(D_{\mu} L\right)^{\dot{\sigma}} g_{i j}+g_{i j} \partial_{\mu} \varphi^{i} \cdot \partial \varphi^{m}\left[\partial_{\rho_{2}} \widetilde{J}_{e_{,} m}^{i}+\right. \\
& \left.+\mathcal{J}_{e_{2} \kappa}^{i} \bar{J}_{l_{1} m}^{k}\right] L^{l_{1} L^{l_{2}}}+\partial_{\mu}^{i} \varphi j \widetilde{J}_{j_{1} e_{1} e_{2}} \partial^{\mu}\left(L^{l_{1} l_{2}}\right) \tag{A.7}
\end{align*}
$$

Here the following relation:

$$
\begin{align*}
& \quad g_{i j}\left[\partial_{m} \bar{V}_{e_{1} e_{2}}^{i}-\partial_{e_{2}} \bar{J}_{e_{1} m}^{i}+\bar{J}_{k m}^{i} \bar{J}_{e_{1} e_{2}}^{k}-\bar{J}_{e_{2} k \cdot J_{e_{m}}^{k}}^{i}\right]= \\
&= R_{m, e_{1}, j e_{2}}=F_{\tau}^{-2}\left[g_{e_{1} e_{2}} g_{m j}-g_{m e,} g_{j e_{2}}\right] \tag{A.10}
\end{align*}
$$

has been used.

Calculations of subsequent terms of the covariant expansion are simplified significantly if one exploits the formula (A.3) and the fact that the covariant derivative of metric tensor is zero :

$$
\begin{align*}
& \alpha_{X}^{(2 n)}(\varphi / L)=(-1)^{n}\left(\frac{2}{E_{T}}\right)^{2(n-1)}\left\{(D _ { \mu } L) ^ { i } (D _ { \mu } L) ^ { j } \left[g_{i j}(\varphi)\left(\tilde{L}^{2}\right)^{n-1}\right.\right. \\
& \left.\left.-g_{i x} L^{k} g_{j e} L^{e}\left(L^{2}\right)^{n-2}\right]+\frac{1}{F^{2}} \partial_{\alpha} \varphi^{\gamma} \partial_{\mu} \varphi^{i}\left[g_{i x} L^{k} g_{j e} L^{l-}-g_{i j}\left(L^{2}\right)\right]\left(\tilde{L}^{2}\right)^{n-1}\right\} \\
& \alpha_{K}^{2 n+1}(\varphi / L)=(-1)^{n / 2}\left(\frac{E}{F_{\pi}}\right)^{2 n}\left(\partial_{\mu} L\right)^{i} \partial \mu \varphi^{j}\left[g_{i x} L^{\kappa} g_{j L} L^{l}-g_{i j}\left(\tilde{L}^{2}\right)\right]\left(\tilde{L}^{2}\right)^{n-1}, \tag{A.11}
\end{align*}
$$

where

$$
\tilde{L}^{2}=L^{k} g_{k e}(\varphi) L^{l}
$$

Now changing variables (7) and summing all terms in the expansion (A.2) we obtain the formulae (11) and (12).

Appendix B

To calculate $\bar{W}^{x}=\int d^{4} \overline{\mathcal{L}}^{I}(r / \varphi)$ (see eq. (15)) it is convenient to expand the functions f and g in the series:

$$
\begin{equation*}
f=\sum_{k=0}^{\infty} C_{f}(k) \Gamma^{2 k} \quad ; \quad g=\sum_{k=0}^{\infty} C_{g}(k) \Gamma^{2 k} \tag{B.1}
\end{equation*}
$$

Then it suffices to compute the expressions

$$
\overline{\Lambda_{e}(r) \Gamma^{2 k}}=\left(\frac{d}{d x}\right)^{n}\left[e^{x \Gamma^{2}} \Lambda_{e}(r)\right]_{2=0} \equiv e^{\frac{1}{2 i} \frac{\partial}{\partial / i} \Delta(r) \frac{\partial}{\partial r}} \Lambda_{e}(r) r^{2 k}
$$

$$
\Lambda_{1}=1 ; \Lambda_{2}=r^{a} ; \quad \Lambda_{3}=r^{a} \Gamma^{b}
$$

The expression $\overline{e^{p r^{2}} \Lambda_{e}(r)}$
is calculated by the Fourier transformation $e^{x,-2} \Lambda_{p}(r)$ with respect to the variable Γ

$$
\begin{aligned}
& \overline{e^{x \Gamma^{2}} \Lambda_{\rho}(r)}=\exp \left[x \Gamma^{2} \frac{\beta}{\beta-x}\right]\left(\frac{\beta}{\beta-x}\right)^{3 / 2} \phi^{l}(x, \beta, \Gamma) \\
& \phi^{\prime}=1 ; \phi^{2}=\Gamma^{a} \frac{\beta}{\beta-x} ; \quad \phi^{3}=\Gamma^{\alpha} \Gamma^{b}\left(\frac{\beta}{\beta-x}\right)^{2}+\frac{\delta_{\alpha} b}{2 \beta}\left(\frac{\beta}{\beta-x}\right) \\
& \beta=\frac{i}{\varepsilon^{\prime} \Delta^{c}(0)} ; \quad \Delta^{\prime}(0)=\frac{1}{(2 \pi)^{4}} \int \frac{\alpha^{4} x}{-x^{2}-i d} .
\end{aligned}
$$

And finally, we get:

$$
\bar{f}=\sum_{k=0}^{\infty} r^{2 k} c_{f}(k) \sum_{n=0}^{\infty} \frac{\alpha^{n}}{n!} \frac{k+1}{k+n+1} \quad ; \quad \bar{g}=e^{\alpha} g
$$

$$
\overline{\Gamma^{2} f}=-c_{f}(-1)+\sum_{k=0}^{\infty} r^{2 k} c_{f}(k-1) \sum_{n=0}^{\infty} \frac{\alpha^{n}}{n!} \frac{2(k+n)+1}{2 k+1}
$$

$$
\overline{f \Gamma^{a}}=\Gamma^{a} \sum_{k=0}^{\infty} \Gamma^{2 k} C_{f}(k) \sum_{n=0}^{\infty} \frac{\alpha^{n}}{n!} \frac{k+1}{k+n+1} \frac{2(k+n)+3}{2 k+3}
$$

$$
\overline{g \Gamma}^{a}=\Gamma^{a} \sum_{k=0}^{\infty} \Gamma^{2 k} C_{g}(k) \sum_{n=0}^{\infty} \frac{\alpha^{n}}{n!} \frac{2(k+n)+3}{2 k+3}
$$

$$
\frac{f-1}{\Gamma^{2}} \Gamma^{a} \Gamma^{l}=\sum_{k=0}^{\infty} \Gamma^{2 k} C_{f}(k+1) \sum_{n=0}^{\infty} \frac{\alpha^{n}}{n!}\left[\Gamma^{4} \Gamma^{b} \frac{2(k+n)+5}{2 k+5} \frac{(k+2)(k+1)}{(k+n+2)(k+n+1)}+\frac{\delta_{4} b}{2 \beta(2(2 k+4)+4)(k+n+1)}\right]
$$

$$
\overline{f \Gamma^{a} \Gamma^{l}}=\sum_{k=0}^{\infty} \Gamma^{2 k} C_{f}(k) \sum_{n=0}^{\infty} \frac{\alpha^{n}}{n!}\left[\Gamma^{a} \Gamma^{b} \frac{2(k+n)+5}{2 k+5} \frac{\hat{2}(k+n)+3}{2 k+3} \frac{k+1}{k+n+1}+\frac{\delta_{i}(}{2 \beta} \frac{2(k+n)+3}{2 k+3} \frac{k+1}{k+n+1}\right]
$$

$$
\overline{\frac{g-1}{r^{2}} \Gamma^{a} r^{6}}=\sum_{k=0}^{\infty} \Gamma^{2 k} c_{g}(k) \sum_{n=0}^{\infty} \frac{\alpha^{n}}{n!}\left[r^{4} r^{l} \frac{2(k+n)+5}{2 k+5} \frac{k+1}{k+n+1}+\frac{\delta_{a} b}{2 \beta} \frac{k+1}{k+n+1}\right]
$$

where

$$
\alpha \equiv \frac{2 i \Delta^{c}(0)}{F_{\tau}^{2}}
$$

Appendix C

Let us here renormalize the $\quad \pi$-scattering amplitude in the one-loop approximation. In calculations we will use the formulae (14) and (15). The Lagrangian (15) in the oneloop approxiamtion has the form:
$\mathcal{L}=\left[\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{2}+\frac{1}{4 F_{\pi}^{2}} \pi^{2}\left(\theta_{\mu} \pi\right)^{2}\right]\left(1+\frac{2 i \Delta(\varphi)}{F_{\pi}^{2}}\right)-\partial_{\mu} \varphi^{i} \partial x_{i}+\frac{1}{4 F_{\pi}^{2}} \pi^{2}\left(\partial_{\mu} \pi\right)^{2} \frac{3 \Delta^{\prime}(\varphi)}{2 i}$ $+\frac{1}{2 F_{\pi}^{2}}\left(\pi_{\alpha} \partial_{\alpha} \pi_{b}-\pi b \partial_{\mu} \pi_{a}\right) \Gamma^{a} \nu_{4} \Gamma^{b}+\frac{1}{2 F_{\pi}^{2}} \partial_{\mu} \pi_{\mu}^{2} \pi^{b}\left(\Gamma^{a} \Gamma^{l}-\Gamma^{2} \delta_{a} b\right), \quad$ (c.1)

where J_{t} is the asymptotic field, $\Delta^{\prime}(0)$ th

quadratically divergent expression (B.3). From the equations of motion (3) we have:

$$
\begin{aligned}
& \frac{1}{2}(2 \varphi)^{2}=\frac{1}{2}(2 x)^{2}-2 \frac{\pi^{2}(2 \pi)^{2}}{4 F_{\pi}^{2}}+o\left(x^{6}\right) \\
& \partial \dot{\varphi}^{4} \bar{\rho}_{i}=-\left(\partial_{0} x\right)^{2}+2 \frac{x^{2}(2 x)^{2}}{4 F_{N}^{2}}+o\left(x^{6}\right)
\end{aligned}
$$

From eq. (C.l) we obtain for the functional $N(\pi)$ the following expressions:

$$
\begin{align*}
& S(x)=S_{0}^{\prime}+S_{1}^{(1)}+S_{1}^{(2)}+S_{1}^{(3)}+O\left(x^{6}\right)+o\left(\frac{1}{\pi^{6}}\right), \tag{C.2}\\
& S_{0}=-\frac{i}{2} \int d^{4}\left(Q_{\mu} x\right)^{2}\left(1-\frac{2 i \Delta^{r}(0)}{F_{\pi}^{2}}\right), \tag{C.3}\\
& S_{1}^{(1)}=\frac{i}{4 F_{x}^{2}} \int d^{6} x \pi^{2}\left(\partial_{n} x\right)^{2}\left(1-\frac{15}{2} \frac{\Delta^{\prime}(0) i}{F_{\pi}^{2}}\right), \tag{C.4}\\
& S_{1}^{(2)}=\frac{6}{4 f_{\pi}^{4}} \int d^{4} x d^{4} y \pi_{4}(x) \partial_{1} \pi_{b}(x)\left[\pi_{a}(y) \partial_{v} \pi b(y)-\pi_{g}(y) \partial_{v} \pi_{a}(y)\right] \underline{X} \\
& \left.X\left[\partial_{\mu} \Delta^{\prime}(x-y) \partial_{\Delta} \Delta^{\prime}(x-y)-\Delta^{\prime}(x-y) \partial_{\mu} \partial_{J} \Delta^{c}(x-y)\right], \quad \text { (C. } 5\right)
\end{align*}
$$

$S_{l}^{(3)}=\frac{1}{2 f_{x}^{4}} \int d_{x}^{4} d_{y}^{4} y\left[\left(\partial_{2} x_{x}\right)^{2}\left(\partial_{\nu} x(x)\right)^{2}+\left(\partial_{x} \vec{x}(x) \partial_{\nu} \vec{x}(v)\right)^{2}\right] \Delta^{c}(x-y) \cdot\left(c_{0} 6\right)$

The formula (C.3) defines the renormglized wave function

$$
\begin{equation*}
(\pi)_{\text {enorm }}=\left(1+\frac{i \Delta(0)}{F_{x}^{2}}\right) \pi \tag{C.7}
\end{equation*}
$$

The expressions (C.5) and (C.6) correspond to the two-vertex one-loop diagrams and have the quadratic divergence

$$
\begin{equation*}
\left[\Delta S_{1}^{(2)}\right]_{q_{\text {uad. }} d_{i v}}=i \int d_{x}^{4} \frac{\pi^{2}\left(\theta_{4} \pi\right)^{2}}{4 F_{\pi}^{2}}\left(\frac{3}{4} \frac{\Delta(0)_{i}}{F_{\pi}^{2}}\right) \tag{C.8}
\end{equation*}
$$

Hence it is obvious that all the quadratic divergences in the functional $S^{\prime}(\pi)$ are eliminated by renormalization of wave function (C.7) and charge:

$$
\begin{equation*}
\left(\frac{1}{F_{\pi}^{2}}\right)_{\operatorname{inoim}}=\frac{1}{F_{\pi}^{2}}\left(1-\frac{11}{4} \frac{\Delta(0) i}{F_{\pi}^{2}}\right) \tag{C.9}
\end{equation*}
$$

Appendix D

Here we would like to present the results for the $T_{1} \cdot T_{1}$. scattering amplitude calculated by the S.P. method in the one-loop approximation, making use also of the rules proposed in the work ${ }^{8)}$.

The second-order expansion of the functional $S(x)$ (19) in powers of W has the form

$$
S(x)=\int d_{x_{1}}^{\prime} d x_{2} x_{2}\left\{\frac { 1 } { 2 } \left[(\vec{x}(1) \vec{x}(2))\left(\partial_{\mu} \vec{x}(1) \partial_{0} \vec{x}(2)\right)-\left(\vec{x}(1) \partial_{0} \vec{x}(2)\right)\left(\vec{x}(2) \partial_{,} \vec{x}(1)\right] ; \partial_{0}^{(3)}\left(x_{1}-x_{2}\right)\right.\right.
$$

$$
\left.\left.+\left(\partial_{1} x(1)\right)^{2}\left(\partial_{1} x_{(2)}\right)\right)^{2} i \partial_{2}\left(x_{1}-x_{2}\right)+\left(\partial_{1} \vec{x}(1) \partial_{2} \overrightarrow{\vec{n}_{2}}(2)\right)^{2} i \partial_{1}\left(x_{1}-x_{2}\right)\right\},
$$

where

$$
\begin{aligned}
& \sigma_{k}(x)=-i \frac{1}{2 F_{x}^{6}} \Delta^{r^{2}}(x) \sum_{n=0}^{\infty}\left(\frac{-4 i \Delta^{6}(x)}{F_{1}^{2}}\right)^{2 n} C_{k}(n) ; k=1,2 \\
& C_{1}=\frac{(2 n+5)(2 n+3)}{(2 n+2)(2 n+i)!} \frac{4}{15} ; \quad c_{2}=\frac{(6 n+5)(2 n+3)}{(2 n+2)(2 n+2)!} \frac{4}{15}
\end{aligned}
$$

The Fourier transforms

$$
\tilde{\sigma}=\int e^{i \varphi x} z(x) d^{\xi}
$$

calculated by the S.P. method are of the form ${ }^{4,8)}$:

$$
\bar{b}_{k}=-\frac{1}{32 \cdot 4 F_{\pi}^{4} \pi^{2}} \quad \frac{\pi}{\hat{2}_{i}} \int_{-i \infty-\gamma}^{+\infty \infty-\gamma} \frac{1}{\sin x_{z}}\left(\frac{-q^{2}-i \xi}{4 \pi^{2} \Gamma_{\pi}^{2}}\right)^{2 z} \frac{(2 z+2) C_{k}(z)}{\Gamma(2 z+1) \Gamma(2 z+3)}=
$$

$$
\begin{equation*}
=-\frac{1}{16 \pi^{2} \pi^{4}} \frac{1}{4}\left[\ln \left(-\frac{q^{2}-q}{4 \pi^{2} \pi^{2}}\right)+3(c-1)+a_{*}\right]+0\left(q^{2}\right) \tag{D.4}
\end{equation*}
$$

$$
a_{1}=\frac{8}{15} ; \quad a_{2}=\frac{14}{15}
$$

$$
\begin{aligned}
& =\frac{1}{\left(4 \pi \xi_{\pi}^{2}\right)^{2}} \frac{1}{4} \frac{1}{3}\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right)\left[\ln \left(-\frac{q^{2}-\dot{\xi}}{4 \pi^{2} \pi^{2}}\right)+3(c-1)\right]+o\left(q^{4}\right)
\end{aligned}
$$

and C is the Euler constant.

Calculating the amplitude by the formula

$$
\begin{aligned}
& \int \prod_{i=1}^{4} d^{4} x_{i} e^{i \rho_{1} x_{1}+i \rho_{2} x_{2}-i P_{3} x_{3}-i P_{i} x_{4}} \frac{\delta^{4}}{\delta \pi_{i} \delta \pi_{i,} \delta \pi_{i} \delta_{i},} S^{\prime}(\pi)= \\
& =i(-5)^{4} \delta\left(p_{1}+P_{2}-P_{3}-P_{p}\right)\left[A(s, t, u) \delta_{i, i,} \delta_{i j i}+A(t, s, u) \delta_{i, i}, \delta_{i, i}+(D .6)\right. \\
& \left.+A(u, t, s) \delta_{i, i_{4}} \delta_{i_{j} i_{2}}\right] \\
& \left.s=\left(P_{1}+P_{2}\right)^{2} ; \quad ; \quad ; \quad u=\left(P_{1}-P_{2}\right)^{2} P_{4}\right)^{2}
\end{aligned}
$$

we obtain for $A(s, t, u)$ the following expression

$$
\begin{aligned}
& A(s, t, u)=\frac{s}{F^{2}}-\frac{1}{16 \pi^{2} F_{r}^{4}}\left[\frac{s^{2}}{2} \ln \left(\frac{-s-i s}{4 \pi^{2} \pi^{2}}\right)+\right. \\
& +\frac{t(t-u)}{6} \ln \left(\frac{-t-i r}{4 \pi^{2} F^{2}}\right)+\frac{u(u-i)}{6} \ln \left(\frac{-u-i r}{4 \pi^{2} k^{2}}\right)+ \\
& \left.\quad+\left(c-\frac{13}{15}\right)\left(s^{2}+t^{2}+u^{2}\right)+\frac{s^{2}}{3}\right]
\end{aligned}
$$

(D.7)

1. S.Weinberg. Phys.Rev.Lett., 18, 188 (1967).
2. I.M.Charap. Phys.Rev., D2, 1554 (1971).
L.D.Faddeev. A.A.Slavnov. Soviet Phys. (T.M.P.), 8, 297 (1971).
A.A.Slavnov, Nucl. Phys., B31, 301 (1971).
S.Gerstein, R.Jackiw, B.W.Lee, S.Weinberg. Phys.Rèv., D3, 2486 (1971).
G.Ecker and J.Honerkamp. Nucl. Phya., B35, 481 (1971).
I.A.Batalin, E.Fradkin. Nucl. Phys., B46, 173 (1972). .
3. H.Lehmann and H.Trute. Nucl. Phys., 52, 380 (1973).
H.Lehmann. Phys.Lett., 41B, 529 (1972).
4. G.Ecker and J.Honerkamp. Preprint CERN-Ref. TH 1573 Geneva (1972).
5. M.K.Volkov, V.N.Pervushin, JINR E2-7283, Dubna (1973).
6. M.K.Volkov. Ann. Phys., 49, 202 (1968).
7. J. Honerkamp. Nucl. Phys., B36, 130 (1972).
8. A.Salam, C.I.Ioham and I.Strathdee. Phys.Rev., D3, 1805 (1971).
9. J.Honerkamp, F.Krause, M.Scheunert: Preprint Bonn University PI-2-139, 1973, Bonn.
10.G.Ecker and J. Honerkamp. Phys.Lett., 42B, 253 (1972).
11.L.Allen and R.S.Willey. Phys.Rev., D7, 1825 (1973).
12.G.Lazarides and A.A.Patani. Phys.Rev., D5, 1357 (1972).
13.M.K.Volkov, Soviet Phys. (T.M.P.), 11, 273 (1972).
M.K.Volkov, Commun.Math.Phys., 7, 289, 1968.
A.Salam, I.Strathdee. Phys.Rev., DI, 3296, 1970.
K. Pohlmeyer. Preprint Institute for Advanced Study, Princeton, 1971.

[^0]: TIn the work ${ }^{I 0}$ the expansion of action is sede.

[^1]: *There is similar effect in tree approximation (see D.V.Volkov, ЭЧАЯ, 4,3,1972).

[^2]: + The contraoted produot of two operators neans:
 $\overrightarrow{A B}=\langle 0| T(A B)|0\rangle$

