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On the Time Evolutions of Physical Systems 

In :this paper··a g'eneral class of ·time evolutions of 
physical· systems,· the .c -evolutions, will be.' defined. · 
These evolutions·:are characterized by the -property that 
any invari'ant concave functional, "entropy-like" func
:tional, .increases in''time. Different ppysical processes 
are 'shown to be · c· .:.;evolutions. 
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In this paper a general class.of evolutions of physical 
systems (G. Z) • a observable algebra, Z. state-set, 
will be-introduced. These evolutions we call .c .:.evolutions 
(concave evolutions).· A· c -.evolution. is characterized by 
the property that in the Schrodinger picture a state p 1 

affer the time t > 0 is '!more mixed'' than at the· time - .· ,.-,.. 
t ~ o in the serise o( Uhlmann /7./, i.e. every invariant · · 
concave function on· the convex set S of sets increases · 
for L·· -1 "" • ·. · · , • · 

· ··This class of ·- c -evolutions contains the strong 
determined evolutions of classical mechanics and quantum · 
mechanics but also rriti'~e· general evolutions, generated 
by Markov processes. In this sense the class of <; -evolu-··· 

- tions is ·very wide. On the otherhand they have the pro.:. 
perty . that any "entropy like" functions · incr:ease in 
dependence of the time. We regard this class of c '-evo
Iutions,also for systems with unbounded observables. 

I. 

The basic constituents of a physicai ·system Hi. S) 
are its obs'ervable * _.algebra · a ,·and the set Z of 
states. The symmetric elements A= A-;- of (f ·are.·the . 

. observables. A state pc Z is a linear positive and normed 
fundional -on - G , p ( A +A) >0 , p-(1) ,.., l , where J · is 
the identity oi a , ·p (A) is the expectation--value of the 
observable . A in thr-> state p • We suppose, that S 1s 
a .convex· sf?t, but we do not· assume any normalization 
of a. Also ah!f?bras· (1 of unbounded operators will be 
regarded. · · · · · · 
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For a physical system.( C!, .Z) ;'physical" topologies in 
U and Z are automatically defined, namely simply by 
the requirements that a sequence Av of observables 
converges· to A , if for all p~: :Z the expectation values 
p (A ,) converge to p (A) • Analogously one defines the 
convergence Pv .... p in Z by the requirement thaf 
p v ( A) converges to p (A) for every A cU. The topo
logies defined in this way are the weakest "physical" 
topologies/5/and we denote them in (i as well as in 2 by 
a • These topologies a are exactly the weak topologies 
of the dual pair ( U, Lz),where L z is the linear space of 
linear functionals generated by Z • ,. . 

The evolution of the physical system can be described · 
in the Schrodinger picture by the evolution p = Po ..... p 

1
· , 

t >· 0 of the states. If p
0 

is a state at .. t= o, then. p
1 

is 
the state after the time t . . ~ 

Usually one requires the 

Properties E. . 
1. p .. p

1 
= V t p ·is. a linear transformation, continuous 

with respect to the topology a (weakly continuous). 
2. t .... v.t is a representation of the additive semi

group T".r "71t; t > o I ,i.e. there holds 
v v ""v . 

t 1 t 2 . tl + t 2 or 
(p ) - ·p t . t . -. t + t 

1 2 I 2. 

We will see below that these requirements are general 
enough, so that irreversible· processes can be described 
in this way, too. · 
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Well known is the transition from the Schrodinger 
picture to the Heisenberg picture, by. which the states 
are fixed and the observables A£ (i change, 

A ... A
1

=W
1
A •.•. · ... · . 

The connection between the Schrodinger 'piCture and the 
Heisenberg picture is that the expectationvaiues (p ,A ) 
and (p, A 

1
) coincide, i.e. · · .. _ · ' · t .. 

(p ,A) =(V p,A) ={p,W
1

A) = (p,A
1

) 
. t t (1) 

I• 

I, 

I 

' 

,.. 

P.rope rties E': .. . . .. ... . . 
. 1 •. Th·e. operator·. w, . with 'th'e property (1) exists and is 

a. we.akly continuous linear operator from ·, .G . into itself .. ' 
- 2'. W1 . isa representation-of the semi-group T;l- •. · · 
· 3'. W1 · is commutative with the involution in U • i.e. 

.wehave (A+) "'WtA+= (W A)+.= (·A)+. 
t . . t t . 

According to this the observables A =A+ go over to obser-
vables. A 1 =A~. · 

.. Pro o t. 1' is valid since V1 'is weakly. continuous 
and·th~refore existsthe adjoint op_erator W 1. to V1. in the 
dtialpair and is weakly continuous, too. 

· 2' follows immediately from 2 .. 
Because ( p 

1 
, A) -= ( p, A 

1 
) is valid and p 

1 
is a state, 

i~ follows that ( p, A 
1 

) is r~all~ for all· states p • But from . 
~~_is it follows that .. A 1 is an observable, for if this were 

not so, we could :write it in the form· A1 "' B1 ~ i B2,with 
B 1 • B 2 . observables and B j. o. . 

Then there exists a· state p with ( p, B 2) I 0 and, 
therefore, (p, A 1 ) =( p,B1) +i(p .B 2 )· is.not real. 

.. ~ " 

II. 

The first well-known example for an evolution of 
· "physical system- in. the. form discussed in· the previous. 

section is the quantum mechanical system. 
Let (i be a * -algebra of operators in a unitary space 

(unbounded opei'ators are not excluded) and z. a convex 
set positive nuclea'r operators with tr;p = 1 and trAp<"" 
for every A c (i . The evolution is ·then described in the 
Schrodinge:r picture by · 

. · .. -iHt iHt . . 
p .• p = V p = e p e , p 1: Z (2) t t . . . 

and-in the H-eisenberg picture by 

A' ... A = w···A 
. t . -. t 

_ iHtA .-iHi 
- e . . ~- . •. (3) 
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Of_.course (2). and (3) ar~ w.~ll defined_if and only if 'p 
1 

£. :Z 
·and· A1 dt for .any t ~ 0. This is the case if G = !B (H) , 
the .· * -algebra of all bounded operators,' and. z the set 
of all trace..;.states. But we can also take examples 
with ·unbounded operators. For example let S"" S·( R 1 ) · be 
the Schwartz space and <l=f+ ( S> the Op ~ -a.lge)>ra of all · 
(ur(l:~unded) operators in L 2 (R 1) for. whicq AS c S and 
A'F·S c·S hold and 2 the convex set of all positive.and 

normed (to p = l ) nuclear operators ~apping L 2 intq 
$ • Then p (·A) ==tr-Ap is well defiped _16/. Theoperators 
Q == • x ·and P~1/i . <Vdx' are elements of G ·and hence 
observables for this system • ( ff, 2) . The evolut.ion(2), (3) 
is well defined for example if H is the Hamiltonian of 
the harmonic oscillator, H=l/2inP 2+Q 2 • since eiHt S= S. 

Now we regard a clas'sical mechanical system. Let 
the phase space n be a locally compact group. The group 
operation we write additive. As the set' 2 of states we 
take a conve~ set of positive normed Borel measures J.L , 

f d J.L =·· 1 on n which contains . the point measures 
U dll =o(x-x'0 ) dx. o(x) =o 0 is'thepoint..:measureconcen-
trated at the point 0. · · ' ' · · · · • 

For the observable algebra .U we take an * -algebra 
of ·locally bounded Borel functions on n which contains 
all continuous functions with compact support, such that 
il ( A) = f I A ( x) l d/t < "" for any /H Z , A £. G • ~here are 
two important special cases 

ff1 = algebra of all bounded Borel functions; 
2 1 "" set of· all· positive normed measures .. (4) 

In this case (f 1 is a . G* :.:.algebra. - , 
.G 2= algebra of alllocally'bounded Borel functions; 
Z 2= set of all. positive normed measures with_ 

compllct support.· · · · · ·· (S) 

G 2 can not be equipped with an algebra-norm. 
The classical strong determined dynamic is described 

by the one-~arametric groups (trajectories). ~ ( t ·, x 
0 

) of" 
transformations of il,¢( t1 + ~.2 ,x0 ) = ¢(t

1 
,¢{t

2
,x

0
)),¢{0,x

0
)= 1(

0
,·-., 

satisfying the equations of motlo'n (Hamilton·. equations). 
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1 In the language of the, physical system. ( ('i, Z) the clas
. · sical dynam·ic is given by the ·schroding~r picture 

where 
~-~-~ fLt ;,ytfL p£.2 

• 
p. (M) = 1-1< ¢(-t) • Mf . 

t. . . . . . ' (6). 

for any Borel subset M of n, or in. the Heisenberg 
picture A -. A1 = W 1 A with 

At ( x) = A ( ¢ ( t, x) ) • 
(7) 

:1This is in accordance with the Properties E and E' and 
!the relation (1). 
: Up to now we have not used the group-properties of 
: n . · These we need only for the next examples of general 
·jevolution of a physical system'. Let I P

1 
, 0 · ~ t $. "" 1· be 

na homogeneous stochastic process on .the locally compact 
'l group . n 3 , i.e. a -family of PI:O ba bility measures P 

1 
with 

the Markov-property I . 
I . 

l P =P*P 
t + s t s (8) 

and the con.tinuity · con~ition. p 
1 

-. o e (weak) for t .s. 0 , 
where the evolution is defined by 

.. · P~ * Ps (B) = f P1 {B~_x) P
5

(dx)·.. (9)· n . . 

The -evolution of the physical system· generated by the 
stochastic process P in the Schrodinger picture· is then 

. b t g1ven y .. .. ., ., . "· 

il .... J.L = v il = p ~· J.L 
t t t . (10) 

and we suppose that from p. c Z .. it follows p. (. Z . It is 
clear that the properties E are satisfied. If

1
il=RN an. 

example for such a stochastic process . is .. the Brown 
motion With ·~ · ·: -· x 2'. . . . . . 

' P ( dx) ·l· " ' 1 ' ~: e - 2t d x •. 
. -t . · --· 3N · ·y2rrt · (ll) 
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Example •. 1. The- strongly determined evolution of '. 
a quantum· mechanic_al system (.Ci ,.2) · .is of course: 
a c -evolution, since p and p t . are equivalent (Def.l). 

Example 2: The processes . p-+ p~ regarded in /2/ 
and given by 

-iHJt iHdt . 
p(t+ dt) =-(1-.\dt)· e p(t) e +Adt~Pnp(t) (17) 

n 
i 

are c -evolutions. ~ cu n Pn == n is the spectral 'reso- · 
lution of an observable n which is repeatedly measured '.: 
at an unpredictable times, randomly distributed with _ .. 
a given mean .!~~9uency .\. ---- .. -- .. ' '_ 

That (17) described a c -evolution follows from the . \ . 
fact, !hat. p. = ~ Pn p P n is more mixed than p • For the · 
case of finitely many P , ~ P = I this can be directly . n 

1 
n seen if we put · · n = · · 

n n 
U.= ~ .\.P, .\.=±1; i=1, ••• ,M 

1 n=l 1 n 1 

\ 
l with the orthogonal 

Then it holds 
~-.\~.\~=Mil 
i 1 1 nm . l 

M 

....! ~ uipu; 
M i=I 
• • '! < -· ~ 

...!_ ~ ~ .\?.\~P pP =~ P pP = p. • M • 11n m n n n,m 1 n 

. \ i 
The 1\ i can be ·chosen for N'"' 3 by 

"'· '-~ 

·' { 

1 ',":1, .\ .. :. ~ 1 l 1. ' .. , 1 • 

2 .\. : 1 1 -1 -1 
} . 

1 

.\ 3 : 1 -,1 .,1 -1 .. i ' ' ; '.·· ., ,-, ; .t., 

~,. .. ! • ., ~ . :; 
and • a~aiogously in the. general ca-~e. For infinitely many . 

. p n ~ "the rriore.' riiix~dness. of ~· p n p p ;. can Qe proved 
with the. h~lp Of Lemma (ii)~. ·• , .: . . 

. . ~ '- I , ' . • - • • ·- ~ : ~ ~ . , '" : • , ' J -

10 

:Example a .. Kossakowski in / 4/ regarded some clas
ses of dynamical semi-groups V .in (~(J<), 9'{1{) )induced 

. t ... 

by Markov processes in topologiCal groups G. $(}{) is 
the * - algebra of~ all bounded operators ofa Hilbert 
space Jt and the state-set P ( J<) - the set of all density 
operators p ( p > 0 , tr p = l) • Let 3n (G)· be th·e space of all 
probability _measures on 'G. I (G) is a· semi-group with 
respect to the convolution p. *·v ·Let . g-+ U (g) be a unitary 
representation of · G in · J( Thtm · 

. Vp. p=J U(glp U(g~1 )p.(~~) (IS) 
G . 

is a representation of :lTl ('G) in the semi-group of 
"linear" endomo~phisms of P (H). If p. t is a one para
meter convolution semi-group in :m(G) then. p -+ p t = 

= fc U (g) p U ( g-I) P. t ( d g) is a dynamical semi-group, 

which Kossakowski called "quantum Poisson process" 
00 

-at 
if p. = e ~ · 

t n=O 

(at) n * n 
--Jl . (19) 

. . : ~ . 

It follows_ immediately ,from the definitions, that (1~) 
describes a c -evolution of the physical system (~(H). , 
p ( }{) ) . . . . 

IV . 

In the last section let :us yet regard the evolution of
the mechanical system. For the sake of definiteness of -th~ 
motion we. take the . physical system ( G 2 • :2 2) (5), which 
contains also unbounded observables for non-compact 
phase spaces n . We will see that the .evolutions (6) 
or (14) are c .,.~volutions. For this let G be the group of 
all homoeinorphisms of n , for g «='G.: we define :~ _ 

A g ( x) = A( g( x) ): . (20) 

In·· this sense G .is also ,a· group .. of· J' -.continuous 
* -automorphism of (j 2 • · ·::;·< 

For any J1 «= 2 2 · fL g is ~hen defined by · 

. 

II 



" 
/> 

p. .. (A)~ p.(A ) "'f A(g(x)) dp. 
g . ~-·· ' g 

fA( x) p. ( s1 
Cd:')) ·~21) 

Hence fl ( M) = fl ( g -I(M)) • 
g . 

Example 4 .. For the strongly determined classical 
dynamic (6) one has 

fl -+ fl t = fl ¢ (t,.) ¢'(t ,.) ~'· G 
(22) 

and therefore it is a c -evolution. More precisely the 
states fl 1 and p. are even (G-) equivalent (Def. 1). 

Example 5. Now we regard the Markov process (10) . 
in ( fi2 , .Z 2) supp P 1 compact. It holds 

p. ( B) = ( P * p. ) ( B) = f P ( B - x) p. ( dx) 
t t n t 

= f p.(-y +B) P·( dy) = f p. (B) P (dy) (23) 
n t n r t 

with the denotion IL z (B) = p. ( -z + B) for z E G. 
If we denote by g c G · the homoemorphism x ... z + x ·of 
n , then in consistence with (21) we have 

fl z == {L g·z • (24) 

Therefore p. t is more mixed than fl (with respect 
.to G ), sin_ce from (23) p. t c . M it · fqp!)w~ (Def. 1): Hence 
(10) p. -. P 1 * iL is a c -evol~~ion. · ·· ·>··.·~ 

Let T be the set of all translation·. - automorphisms · 

A(x) ., A_gz (x) == A(z; ~~) ·-:: ... ~:: .. · (25). 

of 6 2 • • ;t · is a subgroup of 'G. From. ( ZJ) we see that 

T 
flt r It for t ) o, (26) 

i.e. fl t is ·already with respect to T more miXed 
than fl • 

12. 

Finally let us .summarize another two properties of the 
semiorder p ~ p. in 2 . · .·' . ·. · . . 

. ' ' 2. 

Lemma 2 
. 1) All · point measures ox are equivalent and any 

state p f . 2 2 is . more mixed than every ·point 
measure ox. 

ii) 2 2 contains· a maximal mixed .state if and only if 
n is a compact group .. This maximal mhed state 
is uniquely determined and equal to the normed Haar 
.measure. 

Proof T 
i) 0· ·- 0 X - y 

measure then 
since 8 =(8 y) g,x-y ·X • pe any .Let fl 

p. ( M) == J ( 8 0 ) g x J M) p. ( dx) ' (27). 

(the integral converges with respect to the topology a· ). 

.. H T s:- ..T. s:- . 
ence fl ~uo - . u x • 

ii) Let n be a compact group and p. ,.• f dfl = 1 the 
Haar measure of n .Let p be an arbitrary measure on 
n . Then it follows that 

p. ( M) = f p. ( M .- x) p ( dx). == f p ( ~x + M) p. { dx) 
· n n · 

. 
f p (M) fl (dx) 
n· x 

and therefo,re fl ~P • On .the other ~id~ M p. contains only 
fl • Hence the maximal state p. is uniquely determined. 
Now let n. be not compact and p. an arbitrary state 
of 2 2; supp p. = K is a compact set. K-K is also a com- . 
pact set and we take · x f n , x q K- K. Then -x+Kn K= f{. 

l l 1 We put p(B) =-u(B) +-fL. (B) =-(p.(B) +p.(-x+ B)) 2r 2X. 2 
T l Then we have p ~ ft and p( K) = 2. Further for any 

x f Mp it is X ( K) ·~ 1. Therefore p. is not an element 

13 



.· 

of M. , i.e. p. is not a maximal mixed state: Since p. 
was arbitrary Z 2 does not contain any m-aximal state, 
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