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1. Introduction 

It is well known ' „ that the pion form factor F (t) 
in the vicinity of t = m„ ( m„ is the mass of the p-me
son) is well described by a simple Breit-Wigner resonance 
form or by a more refined Gounaris-Sakurai / 2 / formula. 
However, for |t | ^ 1 (GeV)2 the predictions of these 
formulas differ from the existing experimental data / 3 / 

To resolve the discrepancy the existence of higher vector 
mesons has been proposed / 4 / and more complicated 
modjels/3 , l have been developed where by means of ana-
iyticity and unitarity the effects of the energy dependence 
of the width and strong inelasticity on P -meson propaga
tor were investigated. 

In this paper we would like to show that it is possible 
to explain all existing experimental data covering the in
terval -2(GeV)2

 t ^ t й 4.4(GeV)2 (except for the 
latest Frascati data / 6 / up to 9(GeV) ) usiag a slid pie 
formula obtained by the dispersion relation method. 

The question of obtaining a behavoiur of F„(t) by 
means of the dispersion relation is about 15 years old. 
First attempts in this direction were made in connection 
with the investigations of nucleon structure ,, where 
F„(t) is explicitly appearing in the imaginary part of the 
isovector part of the nucleon form factors. Some later 
developments can be found in • But at that time phy
sicists could make only qualitative theoretical estimates 
for Fn(t) due to the lack of experimental data. At present 
we have at our disposal around 70 experimental values 

i of it /*,e.s/ measured for different time-like and space-
like momentum transfer t . Therefore, as R.P.Feynman 
mentioned in his lecture notes / 1 0 / some time ago, it 
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should be interesting to reinvestigate the pion form factor 
by means of the dispersion relation me!'.od and to compare 
it quantitatively with the existing i-.perimental data. 

2. Dispersion Relation and Basic Assumptions 

The analytic properties of Fff(t) in the complex t -
plane (see fig. 1) can be proved by means of the standard 
methods •'''' . The discontinuity on the cut from t = Ay. 2 

( ц is the mass of the pion) to ~ is determined by the 
unitarity condition. 

Further going out from the assumption 

lim | F^Ct)! = const * (1) 
1 О-» 

and using the Cauchy's theorem one gets the once-sub
tracted dispersion relation 

F ( r ) . l t i / J i f ^ d t ' , (2) 
" rr I t ' ( t ' - t ) 

where the normalization condition F (0) =1 is automatical
ly taken into account and the units h=c=jj = 1 are used. 

The unitarity at the least massive state approximation 
gives ' 7 / , 

-i<5,(0 , 
Im F (t) =F (Oe ' -sinS (t), П ч 

where й| (t) is .) -I -1 чп scattering phase shift. From 
this relation (due to the reality of the left-hand side) it 
follows that the phase of V„ (t) is just identical to S , (t) 
Strictly speaking this is true only in the region 4 <. t <, 16, 
where the approximation (3) is valid exactly. 

* It appears / I 2 that the pion form factor behaves 
asymptotically as ~l/t. However we suppose that the 
effect of the difference between this behaviour and our 
assumption (1) will be negligible in a finite energy region. 
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Fig. 1. The analytic properties of the pion form factor. 
Rho-meson poles on the second sheet are denoted by (x) . 



Now substituting Im F f f (t) from the relation (3) into 
(2) one gets the so-called Muskhelishvili-Omnes integral 
equation _ i S l ,. 

F ( , ) . i + i. 7 Al i lC i f aaJ& d. - (4) 
" " 4 t ' ( t ' - t ) 

the general solution ' ' of which is 

F (t)=P(t)expfi- f - A ^ d t ' ! , (5) 
* лг 4 t (t - t ) 

where Pn (t) is an arbitrary polynomial. The only 
restrictions which we may impose on the polynomial 
P n(t) are: P n(0)=l and that the degree of it must 

not be higher than S (~) / n . 
To obtain the explicit formula for the pion form factor 

from the general expression (5) we propose to represent 
the energy dependence of the phase shift in the form 

з 
tgs,'(t)= _ | a - _ (6) 

where q (the c m . momentum) and t are connected 
through relation 

t=4(q 2 +l) . (7) 

Here 4P ~^r\'ml ~4 and a is a p rameter which can 
be expressed by means of the mass an J the widlh Г р of 
the p -meson. To find this connection we require that 

mP. 'p 
m 2 - t lim a = 1 (6) 

p 6 1 

which is not in a contradiction with the first statement 
in the introduction. From the relation (8) we obtain 

1 1 3/2 

p 2 
In the next section we shall see that the factor (1+q ) 

in the denominator of Eq. (6) is generating a new pole of 
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the pion form factor below the thershold on the real 
axis of the second Riemann sheet.A sitisfactory physical 
interpretation will be found for this pole. 

3. Explicit Form of Pion Form Factor 

To find the explicit form of the 'pion form factor wc 
have to calculate the integral in Eq. (5). For the sake oi 
simplicity of calculations we will work with the variable 
q using Eq. (7). 

Further one can see immediately that the relation (6) 
can be rewritten in the following equivalent form 

^ ^ ^ ^ ^ i ^ ^ l . do) 
П U + < , ' 2 ) ( q p

2 - q ^ - i a q ' 3 

Then the integral in Eq. (5) (taking into account the fact 
that the intergand in even) takes the form 

i'—^I 0(q',q)dq', 
In i _ 

where 
( l + q ' 2 ) ( q | - q ' ^ H i a q ' 3 

( l+q ' tyq *-q' Э-iaq' '' 
ФЬ-Л). " . ( 1 2 ) 

(1+q l(q -q ) 

This form of the integral is suitable in the calculation by 
means of the theory of residues. It can be used in every 
case when tne energy dependence of the phase shift is 
supposed to belong to the class of the general form I S 

tgfi f(t) = (t-4) z R(t), (13) 

where R(t) is a rational function. In our case this 
method gives 
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I = In • 
( q - q , ) (i+q2)(i + q 3 )(i + q 4) 

(q b q 2 ) ( q + q . j ) ( q i q ^ (i-Ч, ) (14) 

where q j(i =1...4) are the positions of the branch points 
of the integrand (12) in q -plane (see fig. 2). Their 
explicit forms (expressed through the p -meson parame
ters) and calculation of Eq. (14) are given in Appendix. 

• ib * 

i 

Fig. 2. The poles (x) and the branch points (o) of the 
integrand <£(q',q) with the contour of integration C. 
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The expression (14) should now be inserted into (5) 
and one finds then the explicit form of the pion form factor 

F (o-P (o iiz4-iL- f i i l ^ ' - ^ j i i L ( 1 5 ) 

with a freedom of the choice of Pn (t) discussed in sec-
t -4 

tion 2 and with q=+v —^— • 
As soon as q | ( i = 1...4) in (15) a re expressed 

through p -meson paramete rs in a reasonable approxima
tion, Eq. (15) takes the following simplified form 

where 

a = J _ [ l - ^ l C ^ + 0 ( a 4 ) l ; 
% I2(q 2

+ l ) i 3 

^ - ^ _ [ 1 +

P i 6 - i ( i i ; L a 2 + o ( a ^ i 
2(q'+1) | 2 ( q 2 + l ) | * 

? P 

_l + / 3 + i 4 L ± _ _ a 2

 +0(a*); У 
I2 (q 2 +l ) l 

P 
3 " , - . , . 2 n , 3 

y * = l + < 3 - 3 q p 1 a 2 + 0 ( a 4 ) ; 
I2(q* +1)1 

P 

(15a) 

The singular structure of F f f(e) given by (15) is 
shown in fig. 3. It is straightforward to see that the 
( - q 2 ) and (-Ц4 ) poles correspond to the complex 
conjugate pair of the p -meson poles (see fig. 1). The 
additional pole for q ^ - q 3 (which is also appearing on 
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Fig. 3. The singular structure of our finite form of the 
pion form factor. The cuts do not follow from our formula 
and they are shown only for completeness. The zeros are 
denoted by & and the cross (x) is used for the poles. 



the П sheet of t ) can be explained in the following way. 
Using the unitarity condition of the pion form factor in the 
two pion approximation one can write for it the expres
sion • '•'• 

ii F , ( t ) F (t) = L , ( 1 6 ) 

U 2 i « l , J „ (.) 
where M n n (t) isthe m scattering partial-wave amp
litude in the j =1 = 1 state. From Eq. (16) it follows that 
FJ, (t) i.e. ¥„ (0 on its second sheet, has all singula
rities of F ' (t) and in addition all branch points of 
M 'д. (t) as well. The singularities of М _̂ (t) are con
fined to branch cuts along the real axis in the range t <. 0 
and t i 4. .So F^'(0 has an additional left-hand cut 
(marked in fig. i by the dashed lines) the contribution of 
which to F ! r (t) is approximated by the (-q 3,)-pole in 
our considerations. 

The form factor has also the zero at q=q , which 
in the . t -variable is appearing on the second Riemann 
sheet. Zeros generated by the polynomial P (t) for 
concrete cases will be discussed in the next section. 

4. Results of the Fit and Pion's Charge Radius 

Before the comparison of our formula (15) with the 
experimental data we have to choose the concrete form 
for the polynomial P n (t). Taking into account the restric
tions described in section 2 and the fact that the 8 M°°) = n 
(this follows from Eq. (6)) one gets 

P,( t )=l+At, (17) 

where A is unknown constant which can be found only 
carrying out the fit to the experimental data. 

Further we shall leave also the mass and the width of 
the p -meson as free parameters. 

The result of the minimization • | б of our formula 
to the 60 experimental points with the x1 " 88 and 3 free 
parameters with the values 
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m =778 ±4 MeV P 
Гр -152 ±4 MeV 

A -0.0027 + 0.0003 
1 (18) 

U21 
is represented by dashed lines in figs. 5 and 6 (the shape 
of the dashed line in the resonant region would be nearly 
the same as that of the full line in fig. 4). 

In this case the p, (t) generates one zero on the 
physical sheet and one on the second Riemann sheet in the 
same place 

t - - -J- =-7.39(GeV) 2. (19) 

Ignoring the slightly higher value of mp in comparison 
with that given in Review of Particle Properties' 1 7 we see 
from figs. 5 and 6 that the prediction of our formula dif
fers „from the experimental data for higher values of 111 . 
Concretely the formula (15) with P, (t) and parameters 
(18) give smaller values of Fu (t) as they were measur
ed experimentally. 

One gets excellent description of the same experimental 
points using in Eq. (15) the polynomial 

P2 (t) = l+BVt + C . t 2 (20) 

with two unknown constants. The best fit with у 2 з 46 and 
4 free parameters with the values 

m =770 + 4 MeV 

Гр =157 ±5 MeV (21) 

В =0.0038 ±0.0003-3— 

С =0.000028 +0.000004 -L_ 

is represented in figs. 4,5 and 6 by the full lines. 
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Fig. 4. Theoretical predictions of |F (t)| by means of 
our formula with the values of parameters (21). 



The polynomial P, (0 generates two pairs of the 
two complex conjugate zeros on the I and II sheets for the 
same values of t 

t , = -1.32 + ; J.-t5 .'GeV)2, 

т/here the asterisk means complex conjugation. 
The most probable interpretation of these zeros (see 

fig. 3) seems to be the following. As it is possible to see 
from Eq. (3) we have neglected all inelastic contributions 
or, in other words, we did not take into account all cuts 
In fig. 3 which (as it has been seen in confrontation of (15) 
and P, (t) with experimental data)can no more be neglect
ed for higher values of 111 -It appears that the simplest 
way how to incorporate the contributions from these cuts 
into the pion form factor is to generate four zeros shown 
in fig. 3 (denoted by 1,...4) or in other words to consi
der Eq. (15) with tl.e polynomial P (t) depending on the 
two unknown parameters. 

It should be interesting to look for the departure of 
P2 (i; for t = m ' from the value 1. The simple calcu
lation gives P2( m2 ) = 1.14. It means that 88% of 
: F

n I L J i s given by p -meson and for 12% the poly
nomial P2 (t) is responsible. 

The comparison of our formula with the nine values of 
the DESY-data together with the 60 aforementioned 
experimental points has also been carried out. The mini
mization procedure gives x2 = 98 (compare it with the 
previous value x2~ 46) with 4 free parameters as given 
without principal changes by (21). So we conclude that the 
DESY-data (see fig. 5) are inconsistent with other experi
mental data. 

The pion's charge radius squared is given by the follow
ing expression 

< r > = 6 -^7-l .=o • (23) 
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Fig. 5. The comparison of our formulas with experi
mental data in the space-like region, i denote the DESY-
data/•''/. 6 i 



Taking into account the explicit form of the pion form fac
tor with the values of the pa ramete r s given by (21) one 
g«ts from (23) 

- r2 ->' 2 = 0.701 0.01 ¥ (24) 
19 

which is slightly higher than the p -dominance value 
- r ' V f =0.62 F (25) 

but still much smal ler than - 0.95F suggested by the 
Serpukhov-UCLA measurement ' 2 0 of ire scattering. 

5. Conclusions 

In this paper we have tr ied to reinvestigate the pion 
form factor by the dispersion relation method. Starting 
with the assumption 5 ( ' (~) =n and generating the two 
complex conjugate zeros on I and II Riemann sheets 
through the polynomial P;>(0 we found the explicit 
form of the pion form factor which is in an excellent 
agreement (more than 90% confidence level) with exper i 
mental data in the region -2.02 (GeV)2<: t < 4.4(GeV) 2 . 

The latest Frascat i data 6 / cannot be explained by 
our formula because due to the Рг(0 the pion form 
factor for 1 > 4.5(GeV) 2 is increasing and therefore 
we consider our parametrization invalid for the aforemen
tioned values of t 

Appendix 

In what follows we outline the calculation of the integral 
(11) in section 3 

(l+q X q p -q > i a q 

1 -(±%L f q L" ( 1 + q ' 2 x q P

2 - q / 2 ) - i a q ' 3

d , a> 
2*i (l + q ' 2 ) ( q ' 2 _ q 2 ) 
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Due to the analyticity of Fff (t) it has a sence for both 
negative and positive values of q 2 . Further in the calcu
lation of the integral (I) we shall consider the case q 2 <0 , 
i.e. 

q = i V ~ — s i b . (П) 

The result for the case q2 > С can be obtained from 
the latter by means of the analytic continuation. 

One can see immediately the singularities of the 
integrand in (I). It has the poles for q ' ± i , q '=±ib and 
to find the branch points we have to solve two complex 
conjugate algebraic equations of the fourth order 

(l+q' 2)(q 2 - q ' 2 ) + i a q ' 3 = 0 . (HI) 

The solutions of the equation with plus sign (before that the 
transformation q = i / y is used to obtain the equation with 
real coefficients) can be written in the form ' 2 ' 

ч, = — — = ? — — ; ч 
V'2] -Vz" 2 -VZg " 3 -Vz", +V2 2 +V¥^ 

(IV) 

V z , - V ^ + v ' Z g v ' z , + \ / z

2 - V 2

3 

where г, (̂ =-.1... 3) are solutions of the cubic equation 

з (qJ-D 2 <ч*+1> 2

 a 2 
2q2 16 q4 64 q* ( V > 

and ttu» signs of v z in (IV) are taken to fulfill the follow
ing condition 

^ ' ^ - - i ^ r . - <VI> 
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Numerically, using the values of the p -meson parame
ters given by (21), we obtain 

q ,= -Ю.95837 |>] 
q =-2.53669 + i 0.30054 Ы 

2 (VII) 
q 3 = + il.05117 > ] 
q4 =2.53669 +i0.30054. [JI] 

The solutions 4* of the equation (III) with the minus 
sign can be obtained from (VII) simply by complex con
jugation. Then it is straightforward to see the relations 

q 2 ~ ~ q 4 
q * = - q 3 (vni) 

The singularities of the integrand in (1) with the contour 
of integration С in the upper half plane are shown in 
fig. 2. Taking into account the property of the integrand 

lim #(q',q) = 0 (K) 
1ч'|-»~ 

and using the relations (VIII) one gets (14) in sect. 3. 
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