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1. Introduction 

The parastatistics, being a natural generalization of 
the ordinary Fermi-Dirac and Bose-Einstein statistics, 
are thought of as statistics whose number of particles 
in the symmetric state for the para-Fermi-statistics or 
in the antisymmetric state for the para-Eose-statistics 
cannot exceed a certain given number p called the para­
statistics order. 

The field realization of parastatistics was sugges­
ted in a classic paper of Green / ' / and was also inves­
tigated in papers of Volkov I'1-/ * 

Let us introduce annihilation operators a r and her-
mitian conjugate operators » ' s я t for creation of 
a particle in a state r Both the operators are denoted 
by the same symbol nip) -whose index p may assume 
both lower and upper values. Now, the set of all the Green 
relations can be written in the form 

t nip) Д a ( a ) , a ( r ) ] ( ] _ = 2g(pr r ) a(r) + 2f gipr) a U ) , (1.1) 

* Parastatistics can also be introduced according 
to the axiomatic definition of the algebra of observables /з/. 
However, throughout the present paper we shall follow 
the original Green's field realization of the parastatistics. 
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where [ a, Ы, --• ab i <• Ьа and r = i I for the pa ra -Bose -
stat is t ics and < - i for the pa ra -Fe rmi - s t a t i s t i c s . The 
coefficients g( P « ) a r e the following numerical values 

B r s = = f i r S = 0 ' й, • - - « B * r - j R

r

S > (1.2) 

where б r is the Kronecker symbol. 
From (1.1) it follows the relation;; 

IMvfi) ,A(pA)]_=2g(,ip) A(iA) +2g(^A) А (-ре) + 
(1.3) 

+ 2t gUp) A(/xA) + 1( g( i/Л) A(pfi) , 

where 
A(i>|i) - с ЛС/лО - [ a ( v) , a ( / i ) ] £ . (1.4) 

The relat ions (1.3) a r ; analogous to the character is t ic 
relations of the Lee algebras of the orthogonalU ---DandS 
symplecticU tl) groups / t - f , / . 

The operator of the particle number in the state г is 
defined as 

n = -M 
r •> 

г < 2 ' (1.5) 

where, as will be shown below, the constant p must 
coincide with the paras ta t is t ics order . Thanks to (1.1) 
it possesses necessary propert ies 

Ln , a I - - S a , I'n , a m ] = Й a m , 
' " '" ~ (1.6) ГП1 1П 

I n , n 1 - 0 . 
r .s 

The operator of the total particle number is obtained by 
summing over all the s ta tes 

N " " - ' (1-7) 

The next step must naturally be a study of the r e p r e ­
sentations of the set of abstract quantities satisfying the 
paracommutation relations. In so doing, one usually 
postulates the existence of the only vacuum s t a t e / ? ' Star t -
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ing from this postulate and the condition of positive defini-
teness of the vector state norm Greenberg and Messiah 
have shown that an ensemble of parastatistics of all 
orders p = 0,1,2,... really corresponds to the Green 
commutation relations (1.1). 

It is, however, possible to discover the presence of 
other separable irreducible representations of the Green 
algebra, which correspond to the parastatistics of a given 
order and such in which there is acyclic vector and the 
operator of the particle number can be determined. 
Usually such representations were rejected for the reason 
that in them there is a degeneration of the ground state. 
This was, in our opinion (see also ref. /в/ ), associated 
with an incorrect interpretation of such ground states 
as "vacuum" states. In reality, they are many-particle 
states. Below, following the authors of ref. /"/. we will 
refer to these states as "reservoir" states, contrary 
to the single vacuum state. 

In the present paper we study the properties of the 
reservoir states and of the Green-algebra irreducible 
representations for the general case of para-Fermi and 
рага-Bose-statistics of an arbitrary order generalising 
the results of preceding papers / ? - " / to particular 
cases of para-Fermi-statistics of the second and third 
orders. It should be noted thai in recent papers of 
Bracken and Green f*l and Kraev >l2' a group classifi­
cation of the Green-algebra irreducible representations 
has been made in extracting them from the space of the 
well-known Green ansatz ' * •' -. Our consideration, which 
is based on the study of the properties of the reservoir 
state vectors being "minor" or "preceding" vectors of 
the irreducible representations, might be useful in a di­
rect and consistent construction of such representations 
as was just the case for the mentioned particular cases /o —11 /. 
In addition, in this paper we do not use the Green ansatzj. 

In section 2 we deal with the st-Jy of the characte­
ristic features of reservoir states. We also prove a gene­
ralized version of the above-mentioned Greenberg and 
Messiah theorem П/, In section 3 we establish hierarchy 
of the parastatistics. In Conclusion we only dwell on 
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a possible physical interpretation of paraquantization. 
Our general conclusions are illustrated in Appendix 2 
by the examples of the parastatistics of the first (ordinary 
statistics), second and third orders. 

2. Irreducible Representation of the Green Algebra 

As was indicated above, we reject the condition of 
uniqueness of the reservoir vectors and impose on them, 
instead of it, more weak restrictions. 

i) There exists, including the single vacuum vector > , 
a complete set of linearly independent reservoir vectors 
> , 1 ? i > • I ? i • *' 2 > etc. for which 

holds. Each of the indices !, , f 2 • etc., assumes the 
same values as the initial indices of the particle states 
r . The condition of completeness means that any vector 
obeying (2.1) belongs to this set. 

The basis of the Green algebra (1.1) representations 
is obtained by the action of all possible monoms of the 
creation operators a r , a s , etc., on the reservoir vectors, 
We call the indices o* the latter ft J , , etc., " reser ­
voir" while the indices of the creation oper&tors 
etc., "external" indices. 

ii) The particle number operator (1.5) acting on the 
reservoir vectors must lead to the following results 

n r > = 0 , n r | 2 1 , . . J M > , ( S r + . . . + S r )\t1,...l№>. (2-2) 

Thus, if the unique vector - describes the vacuum 
state then the remaining reservoir vectors describe 
one-, two- and mor» particle states. 

iii) The representation space is the ordinary Hilbert 
space with the scalar product 

(2.3) 
<ф\п> = <гт\ф> , 
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where |<£>and 1^ a r e two a rb i t r a ry vectors which may 
also belong to the reservoi r vectors (the line implies here 
complex conjugation). The vector norm is positive definite 

<Ф\ Ф> ^ 1 Ы Г - - 0 - (2.4) 

The consequence of the condition (2.2) is orthogonality 
of reservoi r vectors with different number of indices or 
with different se ts of the identical number of indices. 
The rese rvo i r vectors differing only by permutations ot 
identical sets of indices can be orthogonalized by forming 
combinations symmetr ized by the Young schemes . So, we 
eonsk.er the r e s e r v o i r vectors as orthonormalized 

v ! f , M i " V ' ' S IM.IM S MM'- (2.5) 

where the symbol if i M means a set of indicesIС P M ! 
symmetrized according to the appropriate Young scheme. 

Nov let us prove two theorems being a direct gene­
ralization of the Greenberg and Messiah theorem /" / 

THEOREM I. If the conditions (2.1)-(2.3) a r e fulfilled, 
then the following equality 

'i fi V - p ' r i ' . V 
(2.6) 

also holds, where p is a number independent of г , к , 
' i ' м -

PROOF. Let us apply to the r e se rvo i r vector '.'? I M 

both the s ides of eq. (1.1) for aip) • n , aU) <is and 
a( r) = a t . Owing to (2.i) we get 

j lf i . .> - 0 . M (2.7) 

Consequently, the vector a ( n s | i f I M is r ese rvo i r and, 
according to condition i), may be expressed as a l inear 
combination ,,,, 
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in which the unknown coefficients are of the form 
(f * ) t t , M =<!£'! .|a a s | i £ l H > • /2!» 

M ' 

It is easily seen that ths latter differ from zero only for 
M=M' (we arrive at this conclusion by inserting the total 
particle number operator (1.7) between the operators 
a t and a s in (2.9) and letting it act first on the right- and 
then on the left-hand parts, taking into account (1.6) and 
(2.2)). 

Now we submit the same vector to the action of both 
sides of eq. (1.3), putting in it аЫ = а п , a(/ /)=a m , 
a(p) = a r and aU) =a t , Using (2.8) and (2.5) we obtain 
(with the account of M=̂M' ). 

(2.10) l n ^ '\V\Kl

n V ' ! ( f

m Vl ( f , hl"\ 

Owing to (2.3) the coefficients (2.9) satisfy also iae 
relation 

u i > ! и » '|М (2.11) 

In the matrix form eqs. (2.10) and (2.11) look like 
[ [ r , f M = 2e S r Г ' > - 2 < Й n Г r 

t (2.12) t •• m 

and ^ t 

f i - « ) + ' (2.13) 

where f '"is the matrix hermitian conjugate to f • 
The general solution (up to unitary transformation) of 

the obtained matrix algebra has the form of the sum of 
the unit matrix multiplied by an arbitrary number p and 
the matrices having a single non-zeronondiagona.l element 
equal to 2? . Omitting the nonessential here symmetri-
z&tion of indices according to the Young schemes we obtain 
for the coefficients 



(f t ) = Р 8 Г 8 " . . . 5 M

 + 

i м 

+ 2t 8 S . , S», . . . 5 » , + ... + (2 14) 
1 2 CM 

+ 2 e S £ M S „ e i . . . S f M - ! 8 , S , 
£' £' , £' 

1 M - l M 

from where it immediately follows (Й^б). A particular case 
of (2.6) is the Greenberg and Messiah relation for the 
vacuum vector 

a ' » S > = P S

r

K > - (2.15) 

It follows from this relation and the condition (2.2) that 
the constant entering the definition for the particle number 
operator (1.5) must really be equal to -c p/2. 

THEOREM II. Due to the condition of positive defini-
teness of the state vector norm (2.4) the number p entering 
the relation (2.6) of the preceding theorem must be 
non-negative whole number 0, 1, 2, etc. The number of 
particles being in the symmetric state for the case of 
parafermions and in the antisymmetric state for the 
case of parabosons cannot exceed this whole number p. 

PROOF: We make the proof simultaneously for 
parafermions and parabosons by putting in brackets the 
expressions related to the latter case. 

Let us consider a vector symmetric (antisymmetric) 
in all its external and reservoir indices 
X ~ X A p a P f | . . . e

P ' N j P f Vf ... , „ 
-1.M p * N + l N + M ( 2 1 6 > 

The summation is carried out over all possible permu­
tations of indices £, ,...,£ ^ l M . T h e indices obtained as 
a result of the permutation I1 are denoted as l̂ f j , . . . I'CN , M . 
The number A p is the signature of the permutation which 
is equal to +1 for parafermions and + ] depending on the 
parity of the transposition number for parabosons. 
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Re-application of eqs. (1.1) and (2.6) for the norm of 
this vector gives the following expression (see Appen-

I I X ^ I I ^ I N ! ) 2 1 Ы р - ] Ы - 2 М ) ( 2 П Х о м ( ^ | | 2 ) , ( 2 Л 7 ) 

where 
X 

0 V">-*S | I V- | , 4 > (2-18) 
is a symmetric (antisymmetric) reservoir vector. The 
sum over v- means the sum over all possible samples 
of the indices from the complete set of indices f j ,...,t N + M 

according to M. 
For a sufficiently large number of external indices 

N the norm (2.17) may turn out to be negative. In order 
that this might not happen the number p should be 
a non-negative integer: 0, 1, 2, ate. Then for N^p+l-2Mfee 
norm (2.17) vanishes, which in the Hilbert space means 
vanishing of the vector (2.16) itself. 

Now we fix one of the admissible values of the num­
ber p . Then all the vectors, whose number of external 
and reservoir indices undergoing symmetrization (an-
tisymmetrization) satisfies the condition 

2M + N > у + 1 . (2.19) 

must vanish. On the contrary, only the vectors for which 
the requirement 

Я1 :- N •_ p ( 2 - 2 0 ) 

is valid, may differ from zero. Hence it follows that 
the number p defines really the maximum number of 
particles which may be in symmetric (antisymmetric) 
states. Thereby the theorem II is definitely proved. 

COROLLARY. As a consequence of our proof, from 
the conditions (2.19) there arise certain restrictions 
imposed on the reservoir vectors. The following sym­
metric (antisymmetric) combinations should vanish: 

10 



For paras ta t i s t ics of even o rde r s , p -• :H, 

2 A |F* , . . Й > . 0 , 
P 

XAp a | P r , Pf. > = 0 , 
p f ' 1 к 

S A p . P W ' » | r t I . . . . . P f b . 1 , - 0 . ( 2 2 1 ) 

£ A p a ' ' а Г 2 . . . а Г 2 к _ 1 | P?j > = 0 . 
P 

Fo r paras ta t i s t ics of odd o rde r s , 

p = 2k + l , 

2\p\Pl .... P £ l + , > = 0 , 
P 

(2.22) 

2 A p a Р Г 1 а Р Г 2 | P£ pf > = 0 , 

п р Л . P r z 4 P f j > = o. 
p 

Note that the r e se rvo i r vectors may have, in addition 
to symmetrlzable (ant isymmetrizable) indices, some other 
indices not subjected to this operation. Their presence 
does not affect the above proof, therefore we always 
omitted them. 

Thus, the r e s e r v o i r vectors a r e defined by the condi­
tions (2.1), (2.6), (2.21) and (2.22). These conditions 
should be regarded a s boundary conditions for i r r edu-
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cible representations. Their further specification consists 
in symmetrizing the reservoir vectors according to the 
appropriate Young schemes. 

Each irreducible representation of the parastatistics 
of a p -th order is thus characterized by a variable 
number of external states and by a constant number, 
say M,of reservoir states symmetrized according to 
the appropriate Young scheme. Irreducibility follows 
from the very method of constructing the representa­
tions. So, for example, the reservoir vectors are related 
to one another by the relations (2.6). 

The simplest examples provide direct evidence that 
the above-mentiored boundary conditions for the reser­
voir vectors for a fixed order of p together with the 
general Green relations (1.1) define really the appropriate 
parastatistics (see Appendix 2). 

3. Sequences of Parastatistics 

It follows from the condition (2.20) that the reservoir 
vectors of the irreducible representations of a given 
order p have themselves the parastatistics of an order 
equal to the whole part f p/2l. We can consider the se­
quences of parastatistics in which the vectors being the 
bases of the irreducible representations of the foregoing 
statistics serve as reservoir vectors of the irreducible 
representations of a subsequent parastatistics. So, taking 
any basis vector of the Fock representation of the 
ordinary Fermi-Dirac (Bose-Einstein) statistics as a 
reservoir vector we can construct on it an irreducible 
representation of the para-Fermi (para-Bo.se)-statistics 
of the second and third order. To this end, it is necessary 
to operate on it by possible polynomials of new produc­
tion operators requiring for the appropriate conditions 
to be fulfilled (Appendix 2, (A2.6)-(A2.9) and (A2.17)-
(A2.20)). The basis vectors of the irreducible represen­
tations of the second and third orders obtained in this 
manner should be symmetrized by the Young schemes. 
Further, taking them as reservoir vectors, it is possible 
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similarly to construct parastatistics of the fourth and 
fifth or the sixth and seventh orders, respectively. 
Continuing this procedure we obtain the following hierar­
chy of parastatistics in which each of the preceding 
parastatistics of an order [> generates two subsequent 
parastatistics of an order 2p and l\> 

ft should be noted that the operators belonging to the 
reservoir vectors and the operators belonging to the 
representations themselves constructed on these vectors 
obey different algebras and have with one another nothing 
in common, except the boundary conditions. 

In previous papers / ° - 1 '/when studying the parastatis­
tics of the second and third orders we have utilized the 
well-known Green ansatz / l / . The representation space 
of the latter is a reducible representation of the Green 
algebra (1.1). It is possible to single out from this space 
the irreducible representations of the latter by finding 
in it reservoir vectors (see Appendix in r e f . / u ' ). Then 
it is possible to make sure directly in the validity of the 
above considerations about the sequences of the para­
statistics. It should be noted that among the irreducible 
representations extracted in this way for p> 3 there 
appear equivalent (isomorphic) r e p r e s e n t a t i o n s / ? 8 " l 2 ' / . 
The problem of the quantity and the classification of the 
equivalent representations has been studied in recent 
papers / 8 ' 1 2 / by the group theory approach. 

Finally we note that from the point of view of the theory 
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of proper parafield the Green ansatz is a convenient, 
but not necessary, tool. The Green ansatz can, however, 
be considered as an extended formulation of paraquanti-
zation / ' 8 " 1 3 / . ln this case the Green ansatz is thought 
of as a physical picture, and one should consider all the 
irreducible representations of the Green algebra entering 
it. including the equivalent ones. Such a situation occurs 
in the physical application of paraquantization to the 
classification of the states of the nucleon pairs in nuclear 
shells • 1 4 _ 1 5 ' / . In another example the use of para-Fermi -
quantization of the third order as a field realization of 
the SU(3) symmetry equivalent states are thought of as 
states forming isomultiplets /8,9,Ь/. 

4. Conclusion 

In the theory of paraquantization we have renounced 
the condition of uniqueness of the vector which plays 
in the theory of ordinary quantization the role of the 
vacuum vector. Instead we have suggested the require­
ment that a whole set of reservoir vectors be present and 
that they be the eigenvectors of the particle number 
operator which correspond to zero-, one-, two- and more 
particle states. 

On the basis of theorems I and II we have estab­
lished the conditions imposed on the reservoir vectors 
which together with the Young symmetry define the 
irreducible representations of paracommutation Green 
relations. On the basis of the study of the parastatistics 
hierarchy we have also suggested a way of consecutive 
construction of the irreducible representations of para­
statistics as their orders increase. 

In literature one has repeatedly noted the connection 
between para-Fermi-quantization and the higher spin 
algebra /1.2,4—6,12,16 /̂  0 u r г е 5 и ц д are easily extended 
to ttis latter when the indices of the operators a r and 
a r assume the finite number of values. Then our repre­
sentations are unitary representations of an orthogonal 
and symplectic groups which correspond to para-Fermi 
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and рага-Bose quantization. Note that the presence of 
the reservoir vectors is, in this case, a consequence 
of the algebra itself. The Fock representation corresponds 
to the highest spin while other representations correspond 
to lower spins. 

In conclusion we dwell on possible applications of 
parastatistics. The presence of a set of the irreducible 
representations of the parastatistics of a given order 
shows a possibility of interpreting paraquantization as 
an implicit and field form of writing the fact that ordinary 
fermion and boson field have internal degrees of free­
dom. Then the state of the same number of particles 

but related to different irreducible representations may 
be considered as different internal states of particles 'H-I.V 
corresponding to the states of the 5Шр) group in multi-
plets. It is interesting to note that once this interpreta­
tion of paraquantization is admitted then, according to the 
above hierarchy of parastatistics, the Sd(6) symmetry 
must follows the SU(3> symmetry. However in this 
case one of the internal degrees of freedom must be 
the spin. 

Parastatistics can also appear due to the composite 
structure of the objects in question />*•'"' '. In the case 
of application of parastatistics for nucleon pairs in 
nuclear shells to its different irreducible representations 
there correspond different quantum numbers of seniority 
or quasispin. 

Acknowledgement 

I should like to thank Prof. A.M.Baldin and Drs. 
S.B.Gerasimov and B.N.Valuev for valuable and helpful 
discussions. 

15 



Appendix 1. Norm of the Symmetric (Antisymmetric) 
Vector 

In this appendix we calculate the norm of the sym­
metric for para-Fermi-statistics and antisymmetric for 
para-Bose-statistics vector (2.16). 

First, using the induction method we prove the for-
mvla 

a e ( 2 A p a P £ l . . . e P ? N | PC !* N + M » = 
P (Al . l ) 

N ( p - N + 1 - 2 M ) {2Kp&^ a P f , 2 . . . a P e N | P f N + ] . . . , P £ N + M » 

On the basis of the fact that the vector under considera­
tion is symmetric (antisymmetric), using (2.6) it is 
easy to make sure that this relation holds for N l.Now 
we assume that it is valid for N-i and come to the con­
clusion that it holds for N, too. Making use of the Green 
relations (1.1) for a(<0 = a i , « ( ; ) - - / " i , a ( ^ a p ' i w e get 

, v

 P f > P ? 2 * N l n , 
a . ( 2. a a . . .a P? P0 s ) 

Pi 1 Pi 2 Pi 1 Pi 2 
= 2 Л p ( - 2 c a a . a - a a a „ - (A1.2) 

P " 
Pi, Pi, PP ч Pi N 

~ 2 S l 8 ) a • - 1 * И + , P « N + M > -

Using the induction condition as well as the symmetry 
(antisymmetry) of the vector in question we obtain for 
the r.h.s. the following expression 

l2(N-l)[p - (N-1) + 1-2IV]-(N-2H p - (N-2 ) + 1- 2M]-2lx 
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p£ p£ p£ 
x ( 2 A p S f

 l a ' . . . a N | P % + , W N + M > . (A1.3) 

After reducing such t e rms we a r e led to (Al l ) . 
Now we calculate the norm of the vector 

l * / p * P £ l - * P ' N 1 и н + 1 P ? N + M > | 

= 2 Л Л < P ' £ x i %t ,...P't ^ | a „, . . . a ,„ ^ A 1 " 4 ) 
P , P ' P P 

Pf, P * N 

p p , P P ' N + M ' Г' + l ' P ' £ N ' " P ' f j 

1 N + 1 N + M 

By repeating application of (А1Л) for the r . h . s . of (A1.4) 
we obtain 

N pf, р?„ 
(NO П (p- j + l - 2 M ) S / p V V e . . . S p , 

i = l P , P 1 N 

(Ai.5) 

N + M N + 1 ' N I- 1 N + M 

<We conclude that the external indices N must coincide 
and, consequently, the r e se rvo i r indices must form 
identical sets which can differ from one another only 
by permutat ions. We can rewri te (A1.5) in the form 

2 N 2 

(Ni) L II ( p - j + 1 - 2M) ( 2 | | 2 A IP? ,..., PC > | | ) , 
j - 1 ii p p ** ) ! i M 

(A1.6) 
where the sum over ц means the sum over possible 
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samplings of the indices with respect to M from the 
set of indices P,,..., 1? N + M . Introducing the notation 
(2.18) we go over to the formula (2.17). 

Appendix 2. Boundary Conditions for Parastatislics of 
the First, Second and Third Orders 

Taking the parastatistics of the first (usual) and the 
second (Green-Volkov ones) orders as the simplest 
examples we show how the boundary conditions for the 
reservoir vectors and the general Green relations (1.1) 
define the appropriate statistics. For the third order we 
give only the boundary conditions and do not introduce 
characteristic relations, because of their complexity/*/. 

C a s e p = l . I n this case the condition (2.20) shows 
that it holds only for М- о , otherwise there is the unique 
Fock representation based on the vacuum vector > . The 
boundary conditions (2.1) and (2.6) for the latter are of 
the form 

s s 
о > = 0 , э а > - S r " . r г (А2.1) 

Next, from the same condition (2.20) it follows that in 
this case not more than one particle can be in the symmet­
ric (antisymmetric) state. However, this means an anti-
commutation (commutation) of the operators 

a a 
1 a ... a ' > - с a â ... a > = 0 . (A2.2) 

Finally we show that 

a m a а г...а "> = f a , a m a . . .a N > + 

(A2.3) 

+ S a ...a > 
m 

takes place. For N=] the validity of this relation follows 
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from (A2.1). For an arbitrary \ the proof is performed 
by the induction method. First using (A2.2) we interchange 
in the l.h.s. of (A2.3) theoperators a '"i and • ":.In order 
to displace the operator a m to the right we use one of 
die Green relations (1.1) for a (p) =-»'"', .ii<») .< n , 
a(t) = a m 3 . We get 

ш 1 m

2

 m N rol m •' m •> ' " l 
a a a ... a > = ( € a a a - 11 " a a 

1 a z a + 2S 'a 2) a 
(A2.4) 

If now according to the induction condition for the second 
term in the r.h.s. of (A2.4) we make use of the relation 
(A2.3) for the N-l operator and then using (A2.2) we 
interchange in it anew the operators a"M and a"'-' then 
we arrive at the relation (A2.3) for N operators. 

Thus, in the Fock space under consideration which is 
defined by the conditions (A2.I) the usual relations 

I a(p) , а (ст) ] = g ( p " ) (A2.5) 

are valid. 

C a s e p=2. For this simple generalization of the usual 
statistics we have a set of reservoir vectors satisfying, 
according to (2.1) and (2.6) the conditions 

a, |«, , . . . , « „ > - О, (А2.6) 

a

r * S | £ i < M > - 2 0 « I < M > + 

• M - l 

(А2Л) 

s > . 

In addition from the condition (2.21) for к = l it follows 
that the reservoir vectors are antisymmetric (symmetric) 
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l f I f i V " " P M > = f | f l - " ' f i ? i - - P M > ( A 2 . 8 ) 

and that the relation 

* " | г . 'м> = < a ? 1 I ' . ' 2 - - ' и * (А2.9) 

holds. We show that in this representat ion there take 
place the Green / ' / Volkov '2^ relat ions 

a ( p ) a(cr) a ( r ) - б a ( r ) a ( o ) a ( p ) 
(A"10) 

= 2 g ( p a ) a ( r ) + 2 g ( < 7 / ) a ( p ) . 

We employ the two Green relat ions 

r s t t s r t r s s r t 
a a а - е е a a = a a a — e a a a , 

r s t t s r s t r r t s ( A 2 . l l ) 
a a a — f a a a = a a a — f a a a . 

According to theorem II, forp=2 the vector syir-.metric 
{antisymmetric) in the three externa! indices 

a a - f a a a - с a a a + a a a + a a a + 

P P 
+ a a a - c a a a ) a . . . a 1; , . . . , I > = 0 

N + l N+M 

(A2.12) 
must \anish. It follows from (A2.ll) and (A2.12) 
, r s t t s r h l n (A2.13) 
( a a a -• , a a a ) a . . . a \P , . . . , ? > = 0 

1 N + 1 ' N + M 

which proves (A2.10) for the opera tors a r ,a s , a . 
Let now prove, e.g., the relation 

( a r a a - ( a a a r - 2 S r a ) a 1 . . . a ' N | « N + I ^ + M > = 0 . 

(A2.14) 
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ForN = 0 the validity of this relation is easily established 
with the aid of the Green relation 

S t t S t S S t t S 
a a a — с a a a - a a a — f a a a + It В a r r r r r 

(A2.15) 

and the conditions (A2.7) - (A2.9). For an a rb i t ra ry N the 
relation (A2.14) is proved by induction. Using (A2.15) we 
displace the operator a r to the right and utilize the 
induction condition. We obtain the expression 

S " 1 s s £ ] s ? 1 t t •'' i 
f a ( f a a a + 2 5 a ) - f a ( f a a .; + ' 5 a ) * г г г г 

H 2c 5 l a a a e i - 2 3 '" a ' a f l ! a '' 2 . . . „ ' N U\ . , , . . . , ! ' ., . 

( A 2 . 1 6 ) 

Taking into account the relation (A2.13) provea by us 
when reducing the s imi lar t e r m s we a r e led to (A2.14). 
The other relat ions of (A2.10) a r e proved in the same way. 

C a s e p =••."). The boundary conditions imposed on the 
rese rvo i r vectors a r e in this case 

>r l £ I E M > = 0 . 

, r a |e , £ m > = 3 8 r | * , P M : 

( A 2 . 1 7 ) 

( A 2 . 1 8 ) 

+ 2t 5 l | s , £ , , . . . , ? > + . . . + 2 ( 5 М \ Г ....,( , s > , 
г ' 2 M r 1 M - 1 

I V - . ' i . - . ' j . - . * M > = * l«i ^ j ' i ' M > ( A 2 . 1 9 ) 

P r l F r 2 
S A p a X a 2 \ P l 1 , l 2 , . . . , l u > = 0 . ( A 2 . 2 0 ) 
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