ОБЪЕАИНЕННЫЙ
 ИНСТИТУт
 ЯAEPHЫX
 ИССАЕАОВАНИЙ

АУБНА

Y494/2-73
V.K.Dobrev , E.H.Hristova,
V.B.Petkova, D.B.Stamenov

CONFORMAL COVARIANT OPERATOR
PRODUCT EXPANSION (OPE)
OF TWO SPIN $1 / 2$ FIELDS

1973

ЛАБОРАТОРИА

E2 • 7456

V.K.Dobrev*, E.H.Hristova,
V.B.Petkova*, D.B.Stamenov

CONFORMAL COVARIANT OPERATOR PRODUCT EXPANSION (OPE)

OF TWO SPIN $1 / 2$ FLELDS

Submitted to "Bulgarian Journal
of Physics".

- Instíute for Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences, Sofia.

Introduction

A conformal covariant operator expansion for the protuct of two scalar fields was obtalned by Ferrara, Catto and rrills/l/ and Eonora, Sartori and Tonin ${ }^{/ 2 /}$. It was interestins to derive such an expansion for the product of two Dirac fields. It turns out that the basts of irreducible Lorentz tensors of the type $\left(\frac{n}{2}, \frac{n}{2}\right)$ used in papers $/ 1,2 /$ is not sufficient hero. We have found out the basis needed here and constructer the operator product expansion. We use the manifest conformat coveriant formulation of local fiteld theory based on the 1somorphism between the conformal group and the group $50(4.2) / \pm 2$ of pseudorotations in 6-dimensional space $/ 3 /$.

The paper is organized as follows:
In sections 1.1 and 1.2 we summarize some background material contained in ref. ${ }^{13 / \text {. Seotion } 1.3 \text { deals with symu tide }, ~}$ tensors. Section 1.4 describes the antisymmetric tensors needed for the expansion, Some calculations conoerning these tensors are colleated in Appendix A. Chapter 2 contains the derivation of the expansion. The final results ere glven in Chepter 3. Some of the two - and three - point functions needed in the text are given in Appendux B_{0} In Appendix C the relation between the OPF and the three - point functions is iliustrated in the case $n=1$.

1 Manifest Conformal Covariant Formalism

1.1 Relation between the manifestly conformal covariant fields and the fyelds in x-space

A Poincare covariant quantized field $\varphi(x)$ (or shorter x-field) is called conformal covariant if it has a definite scale dimension d_{ψ} (In mass units) and in addition is covariant under infinitesimal special conformal transformations, We can obtain our x-fields starting from manifest conformal covariant fields $\phi(\eta)$. The fields $\phi(\eta)$ are multispinors defined on the subset:

$$
\eta_{5}+\eta_{6}=x>0
$$

of the light cone in 6aimentions:

$$
\begin{equation*}
C_{4,2}=\left\{\eta=\left(\eta_{0}, \eta_{1}, \eta_{2}, \eta_{3}, \eta_{5}, \eta_{6}\right) \mid \eta^{2}=g^{A B} \eta_{A} \eta_{B}=0\right\} \tag{1.1}
\end{equation*}
$$

$\left(y^{A B}\right.$ is diagonal and $\left.g^{A B}=(1,-1,-1,-1,-1,1)\right)$, they are homogeneous functions of degree $-d_{\phi}$ on the cone $C_{4.2}$ and transform under the action of the $0(4,2)$ generators $\jmath_{A B}$ according to:

$$
\begin{equation*}
\delta \phi(\eta)=-i \varepsilon^{A \dot{B}} \jmath_{A B} \phi(\eta)=-i t^{A B}\left(L_{A B}+S_{A B}\right) \phi(\eta) \tag{1,2}
\end{equation*}
$$

Where

$$
L_{A B}=i\left(\eta_{A} \partial_{B}-\eta_{B} \partial_{A}\right)=\frac{i}{L}\left\{\eta_{A}\left[g_{B}^{A} \partial_{\mu}+\left(y_{B S}+g_{B C}\right)\left(\frac{\partial}{\partial 2}-x \partial\right)\right]-\eta_{B}\left[g_{A}^{A} \partial_{N}+\left(g_{A S}+g_{A C}\right)\left(\left[\frac{\partial}{\partial 2}-x \partial\right)\right]\right\}\right.
$$

and $S_{n 8}$ is some finite dimensional representation of the $0(4,2)$ acting on the indices of $\phi(\eta)$ only. men the formula

$$
\begin{equation*}
\varphi(x)=x^{d} T(x) \phi(y), T(x)=\exp \left[-i\left(s_{6 \mu}+s_{\tilde{\sigma} \mu}\right) x^{\mu}\right], \tag{1.3}
\end{equation*}
$$

where $\eta_{\mu}=\mathbb{L} x_{\mu}, \eta_{5}+\eta_{6}=x, \eta_{5}-\eta_{6}=x x^{2}$, gives us an x-field in our sense if $d_{\phi}=d_{\psi}-\tilde{d}$, where \tilde{d} is a suitably chosen eigenvalue of $i \mathrm{~S}_{65} \%$.

In all cases (except scalar fields) we must in addition to the above procedure, impose on the η-fields $\phi(\eta)$ some subsidiary oonditions (to be specified in each case) in order to exclude unwanted (we also cell them unphysical) components of the x-fields.

In the following sections of this chapter we are going to consider the flelás needed for our expansion.

1. 2 Spin th field

The "Dirac" η-fields are 8-dimensional, Here

$$
\begin{equation*}
S_{A B}=S_{A B}^{4 / 2}=\frac{i}{4}\left[\beta_{A}, \beta_{B}\right] \text {, } \tag{1.4}
\end{equation*}
$$

where β_{A} are bxs matrices which transform as a 6wvector. The. β_{A} ann be defined as the lowest order (irreducible) representation of the Clifford algebra

$$
\left\{\beta_{A}, \beta_{B}\right\}=2 g_{A B} 1_{g}
$$

We shall use the following direot-product realization of
the $\hat{\beta}$ matrices $/ 3 /$

$$
\begin{equation*}
\beta_{\mu}=\tau_{3} \gamma_{\mu}, \quad \beta_{5}=i \tau_{1} \boldsymbol{I}_{4}, \quad \beta_{6}=\tau_{2} \boldsymbol{I}_{4} \tag{1,5}
\end{equation*}
$$

or $\quad \rho_{A}=y_{A}^{\mu} i_{B} j_{\mu}-i\left(y_{i+5}+y_{A G}\right) i_{1}+i\left(y_{A G}-y_{A S}\right) \tau_{-} \quad, \quad i_{I}=\frac{1}{2}\left(i_{1} \pm \bar{i}_{2}\right)$
(τ_{i} are the Pauli matrices).
In tings basis the generators $S_{A B}$ assume the form

$$
\left.S_{\mu \nu}^{\left|V_{2}^{\prime}\right|}=i_{2} \frac{1}{4}\left[\gamma_{\mu} \gamma_{1}\right], S_{\mu,}^{(1 / 2)}=-\frac{1}{2} i_{2}\right\}_{\mu}, \quad S_{\mu}^{(1 / 2)}=\frac{1}{2} i_{1} \gamma_{\mu}, S_{i 6}^{\left(y_{2}\right)}=-\frac{i}{2} i_{3} i_{4} . \quad(1.6)
$$

There exists also a conformal pseudoscalar

$$
\begin{gathered}
\beta_{1}=-\beta_{2} \beta_{4} \beta_{2} \beta_{5} \beta_{5} \beta_{6}=\tau_{3} \gamma_{5}^{\prime}, \quad \gamma_{5}=\gamma_{6} \gamma_{1} \gamma_{2} \gamma_{3}, \\
\beta_{7}^{2}=-1 \quad\left\{\beta_{7}, \beta_{A}\right\}=0
\end{gathered}
$$

The 8-component η-field $\dot{X}(\eta)$ is homogeneous of degree $-d_{y}$ and satisfies the following subsidiary condition

$$
\begin{equation*}
(\beta \eta) / \gamma(\eta)=0 \tag{1.8}
\end{equation*}
$$

where $(\beta \eta)=\beta^{A} \eta_{A}, \quad-d_{x}=-d_{\psi}+\frac{1}{2} \quad\left(J=\frac{1}{2}\right)$.
The Dirac conjugation of the field X is defined in the above basis for the β-matrices by

$$
\widetilde{X}=X^{*} X_{0} z_{1}
$$

The relation between the $x-f i e l d \quad \psi(x)$ and $X(\eta)$ is given
by (1.3), There in the basis (1.5)

$$
\begin{equation*}
T(x)=T^{1 / 2}(x)=\exp \left[-i\left(\delta_{i / \mu}^{(i / 1)}+S_{s \mu}^{i / / 2)}\right) x^{\mu}\right]=1_{8}+i \tau-x . \tag{1.9}
\end{equation*}
$$

The subsidiary condition (1.8) is equivalent to

$$
1_{4} x_{+} \psi(x)=0
$$

which leaves us with an exactly 4-component spin //2 field.

1. 3 Symmetric tensors

The x-fields $0_{\mu_{1}} \ldots \mu_{n}(x)$ we consider here are irreducible Lorentz tensors of type ($\frac{n}{2}, \frac{n}{2}$) (symmetric and traceless). The corresponding η-fields $\theta_{c_{1} \ldots c_{n}}(\eta)$ are symmetric and traceless, homogeneous of degree $-\tilde{d}_{n}(\tilde{d}=0)$ and satisfy two subsidiary conditions (for $n \neq 0,13 /$:

$$
\begin{align*}
& \eta^{c_{1}} \theta_{c_{1} \ldots c_{n}}(\eta)=0 \tag{1.10}\\
& \left(L_{c}^{c_{1}}-i g_{c}^{c_{1}}\right) \theta_{c_{1} \ldots c_{n}}(\eta)=0 \tag{1,11}
\end{align*}
$$

Here the generators $\quad S_{A B}$ are given by $1 /$:

$$
\begin{gather*}
\left(S_{A B}^{1 n 1}\right)_{c_{1} \ldots c_{n}}^{0_{1} D_{n}}=i \sum_{j=1}^{n}\left(g_{A c_{i}} g_{B}^{0_{j}}-g_{g r_{j} j_{j}}^{0_{j}}\right) g_{c_{1}}^{0_{1}} \ldots g_{c_{j-1}}^{0_{j-1}} g_{c_{j+1}}^{D_{j+1}} \cdots g_{c_{n}}^{0_{n}} \tag{1.12}\\
\cdots \\
S_{A B}^{(0)}=0 .
\end{gather*}
$$

In the case $n=1$ the operator $T(x)$ takes the form $1 /$:

$$
\begin{equation*}
T(x)=T^{n}(x)=\exp \left[-i\left(S_{5 \mu}^{(11}+S_{i \mu}^{\prime 1}\right) x^{\mu}\right]=1_{6}+w_{A}+\frac{1}{2} w_{\lambda}^{2}, \tag{1.13}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left(w_{\alpha}^{\prime}\right)_{B}^{A}=x^{*}\left(g_{5}^{A}+g_{6}^{A}\right) g_{\mu C}-g^{A}\left(g_{5 B}+g_{6 B}\right) \\
& \left(w_{x}^{2}\right)_{B}^{A}=-x^{2}\left(g_{5}^{A}+g_{6}^{A}\right)\left(g_{5 B}+g_{6 B}\right) .
\end{aligned}
$$

In the general case of a tensor of rank $n T(x)=T^{(n)}(x)$, where

$$
\begin{equation*}
T^{(n)}(x)=\bigotimes_{i=1}^{n} T_{i}^{i n 1}(x) \quad \text { for } n \neq 0, \quad T^{-10}(x)=1 \tag{1.14}
\end{equation*}
$$

and $T_{i}^{(n)}(x)$ is $T^{(\prime \prime}(x)$ acting on the 1-th index of $\theta_{c_{1}} \ldots c_{n}(\eta)$.
As a consequence of the first subsidiary condition (1.10) one can obtain $/ 1 /$ for the fields $O_{c_{1}} \ldots c_{n}(x)$:

$$
\begin{equation*}
0_{\mu_{1} \ldots \mu_{x} 5.56 \ldots 6}(x)=0_{\mu_{1}+\mu_{x} 5 \ldots 5}(x) \tag{1.15}
\end{equation*}
$$

From the second condition (1.11) using (1.15) we get $/ 1 /$

$$
\begin{equation*}
\left.Q_{p_{1} \cdots \mu_{n-k} \frac{5,5}{\kappa}}=\frac{1}{l^{k}} \frac{\Gamma\left(d_{n}-2-n\right)}{\Gamma\left(d_{n}-2-n+k\right)} \partial^{\mu_{n-k}+1}\right]^{\mu_{n}} O_{\mu_{1} \ldots \mu_{n}}(x) \tag{1,16}
\end{equation*}
$$

Equation (1.16) becomes meaningless for canonical ${ }^{+}$) dimensions $d=2+n, n \neq 0$. The reason is that for tensors
T) If A and B were free zero mass fields, satisfying canontical commutation relation so that $d_{A}=d_{B}=1$, then the irrem duoible basis tensors $O(x)=: A(x) B(x):, O_{\mu}(x)=i: A(x) \stackrel{\leftrightarrow}{\partial_{\mu}}, x i$,
 would have canonical dimensions 2,3,4, eta.

With such dimensions the second subsidiary condition (1.11) can not be imposed, unless the tensors are conserved $\left(\partial^{\mu_{1}} O_{\mu} \ldots \mu_{n}(x)=0\right)$ but in this case it is just an identity.
1.4 Antisymmetric tensors

The x-fields $F_{\alpha \beta \mu_{1} \ldots \mu_{n}}(x)$ we are going to consider in this section are irreducible Lorentz tensors of type $\left(\frac{n+2}{2}, \frac{n}{2}\right) \oplus$ $\oplus\left(\frac{n}{2}, \frac{n+2}{2}\right)$, ie. they are antisymmetric in the first two indices, symmetric in the rest, traceless in every pair of indices and satisfy

$$
\begin{equation*}
\varepsilon^{\gamma \alpha \beta \mu_{1}} F_{\alpha \beta \mu_{1} \ldots \mu_{\pi}}(x)=0 \tag{1.17}
\end{equation*}
$$

where $\varepsilon^{\gamma+\beta \mu_{4}} \quad$ is the totally antispmatric tensor $\left(\varepsilon^{0123}=1\right)$.
 symmetric in A, B, symmetric in C_{i} traceless in every pair of indices and satisfy $\quad \mathcal{E}^{A B C, D O^{\prime} D^{\prime \prime}} F_{A B C, \ldots!}^{\prime \prime}=0$. In this case the generators $S_{A B}$ and the operator $T(x)$ are given by (1.12) and (1.14) as for the symmetric tensors ($n \rightarrow n+2$).

The tensors $\mathcal{F}_{A B c_{1} \ldots C_{n}}(\eta)$ are homogeneous of degree - $d_{n}^{a}(\tilde{d}=0)$ and satisfy two subsidiary conditions analogous to (1.10) and (1.11) on both seta of indices

$$
\begin{equation*}
\eta^{B} F_{A B C_{2} \ldots C_{n}}(\eta)=0, \tag{1.18a}
\end{equation*}
$$

$$
\begin{align*}
& \eta^{c} F_{A B C} \ldots c_{n}(\eta)=0, \quad n \neq 0, \tag{1.185}\\
& \left(L_{B^{\prime}}^{B}-i g_{B^{\prime}}^{B}\right) F_{A B C_{1} \ldots C_{n}(\eta)=0, ~} \\
& \left(L_{c}^{c_{1}}-i g_{c}^{i}\right) \mathcal{F}_{A B C_{1}} \ldots c_{n}(\eta)=0, \quad n \neq 0 . \tag{1.19b}\\
& \text { Te cet the iollowing results for the } X \text {-tensors } \\
& F_{A B C} \ldots C_{n}(x) \text {. }
\end{align*}
$$

From (1.18a) we obtaln:

$$
\begin{equation*}
F_{\alpha 5 c_{1} \ldots c_{n}}(x)=F_{\alpha 6 c_{1} \ldots c_{n}}(x), \quad F_{56 c_{1} \ldots c_{n}}(x)=0 . \tag{1.20}
\end{equation*}
$$

Froin (1.18b),

$$
\begin{equation*}
F_{A B \mu_{1} \ldots \mu_{x} 5 . .54}(x):=F_{\left.A B \mu_{1} \ldots H_{k} ;\right)^{2}}(x) \tag{1.21}
\end{equation*}
$$

Fron (1.19) using (1.20) and (1.21) we get:

$$
\begin{aligned}
& F_{25 \mu_{1} \ldots+n-\alpha \sum_{k}^{j \ldots 5}}=\frac{1}{2^{k+1}} \frac{\Gamma\left(d_{n}^{\alpha}-n-3\right)}{\Gamma\left(d_{n}^{-}-n-2+k\right)\left(d_{n}^{\mu}-1\right)\left(d_{n}^{\alpha}-2\right)} \partial^{\lambda} \partial^{p_{n-k+1}} \ldots \partial^{\mu_{n}} \text { (1.22) } \\
& \left\{\left[\left(d_{n}^{n}-n-2\right)\left(d_{n}^{n}-2\right)-1\right] F_{\alpha \mu \mu_{1}, \mu_{n}}+\left(d_{n}^{4}-2\right) \sum_{i=1}^{n} F_{\alpha \mu_{i} \lambda \mu_{1} \ldots \hat{F}_{i} \ldots \mu_{n}}-\sum_{i=1}^{n} F_{\mu: h \alpha \mu_{1} \ldots \hat{\mu}_{1} \ldots \mu_{n}}\right\}= \\
& \left.\equiv \frac{1}{2^{k+1}} \frac{\Gamma\left(d_{n}^{2}-n-3\right)}{\Gamma\left(d_{n}^{4}-n-2+k\right)\left(d_{n}^{\alpha}-1\right)\left(d_{n}^{4}-1\right)} \partial^{A} \partial_{n-k+1}^{\mu} \cdot\right)_{n}^{\mu_{n}}{\underset{F}{\alpha A \mu_{1} . . \mu_{n},} n \neq 0}
\end{aligned}
$$

$$
\left.F_{\alpha \beta \mu, \ldots \beta_{n-k} \frac{5 \ldots 5}{\kappa}}=\frac{1}{2^{k}} \frac{\Gamma\left(d_{n}^{4}-n-3\right)}{\Gamma\left(d_{n}^{\alpha}-n-L+k\right)\left(\alpha_{n}^{\alpha}-1\right)} \partial^{\mu_{n-\alpha+1}} .\right)^{\mu_{n}}
$$

$$
\cdot\left\{\left[\left(d_{n}^{\alpha}-n-3\right)\left(d_{n}^{u}-1\right)+2 k\right] F_{\alpha \beta \mu \ldots \mu_{n}}+k\left(d_{n}^{\alpha}-n-2\right)\left(F_{\alpha \mu_{n}, 4, \ldots \mu, \ldots, \beta^{2}}+F_{\mu, \beta_{n} \ldots \mu \ldots \alpha}\right)+\right.
$$

for $n=0$

$$
\begin{equation*}
F_{\alpha 5}=\frac{1}{2\left(d_{a}^{a}-2\right)} \partial^{A} F_{\alpha \lambda} . \tag{1.24}
\end{equation*}
$$

The derivation of (1.22), (1.23) and (1.24) is given in appendix A. (1.22) is not valid for $d_{n}^{a}=2$ and $d_{n}^{a}=n+3$, $n \geqslant 1$ and (1.23) is not valid for $d_{n}^{\omega}=n+3$ ($d_{n}=1$ gives no trouble because positivity requirements yield $\left.d_{n}^{a} \geqslant n+3 \quad(n \geqslant 1), d_{o}^{a} \geqslant 2\right)$. So we call $d_{o}^{a}=2$ and $\quad d_{n}^{a}=n+3, n \geqslant 1$ canonical dimensions. For such values we cannot impose (1.19) unless the tensors are conserved in both kinds of indices, but in such a case we cannot derive (1.22), (1.23) and (1.24) in the same way as in the symmetric case (1.16).

2. The OPE of Thy Dirac Fields in 6-Dimensional Space and the Transition_to Minkovski_Space

2.1 Contributions to the expansion

The product of so scalar fields is expanded in the basis of the symmetric tensors described in section 1.3 (see ref. ${ }^{1 /}$). -uch a set is not sufficient for the expansion of the product or two Dirac fields. We must add the anti.. symmetric tensors described in 1.4, in have to distinguish tensors $O_{\mu_{1}} \ldots \mu_{n}$ and pseudotersors $O_{\mu_{n} \ldots, i_{n}}^{p}$ in contrast to the scalar expansion which can include only ono of the two kinds depending on whether the two scalar fields have identical or different P-parity. Finally if we assume δ_{5}^{\prime}-invariance, ie., invariance under which the spinor fields transform as

$$
\begin{equation*}
\psi \rightarrow \gamma_{5} \psi, \quad \tilde{\psi} \rightarrow \tilde{\psi} \gamma_{5} \tag{2.1}
\end{equation*}
$$

we must include in the expansion both γ_{5}-"even" and "odd" tensors, 1.c. tensors transforming as

$$
A_{\mu_{1} \ldots u_{n}} \rightarrow A_{\mu_{1} \ldots \mu_{n}} \quad \text { and } \quad A_{\mu_{1} \ldots \mu_{n}}^{5} \rightarrow-A_{\mu_{1} \ldots \mu_{n}}^{5}
$$

respectively. ($A_{\mu_{1}} \ldots \mu_{\boldsymbol{\mu}} \quad$ stands here for both
symmetric and antisymmetric tensors). We must note again that the OPE for two scalar fields excludes one of these types of tensors depending on the relative $\quad \gamma_{5}$-"parity" of the two fields as above for P-parity. Obviously the results obtained
in seot.l. 3 and 1.4 are valid for all six kinds of tensors:

It is important to note that a conformal covariant field contributes to the expansion of two Dirac fields if and only If the threempoint function of the two Dirac fields with the field in consideration is not zero. From the point of view of conformal oovarianoe the question $1 s$ whether we can build a conformal covariant structure in the expansion corresponding to the field in oonsideration.
2.2 OPE in 6-dimensional spore

He are going to build a manifest conformal oovariant OPE for the product of two Dirac fields $X\left(\eta_{4}\right)$ and $\tilde{X}\left(\eta_{2}\right)$ as described in 1.2 five denote $d_{\psi_{1}}=d_{1}^{\prime}$ and $d_{\psi_{2}}=d_{2}^{\prime}$, The most general form of the expansion of these fields is then

$$
\begin{aligned}
& \text { + contributions from } \theta^{p}, \theta^{(s)}, \theta^{p(s)} \mathcal{F}^{(s)}
\end{aligned}
$$

The general structure of $\mathcal{O}_{s}^{(n)}\left(\mathcal{F}_{s}^{(n)} \equiv \mathcal{D}_{s}^{(n)}\right.$ or $\left.\mathcal{X}_{s}^{(n)} \equiv \mathcal{D}_{s}^{5(n)}\right)$ is

$$
\begin{aligned}
& +\sum_{m} C_{m}^{\prime(n)}\left(\eta_{1} \eta_{2}\right)^{\alpha_{m}^{\prime}}\left(\beta \eta_{1}\right)(\beta \partial) \beta^{c_{1}} \ldots \beta^{c_{m} \eta_{m+1}} \ldots \eta_{1}^{c_{n}}\left(\beta \eta_{2}\right) \tilde{D}_{d_{m}}^{h_{m}^{\prime}}\left(\eta_{1} \eta_{2}\right) .
\end{aligned}
$$

here on the cone $\eta_{1}^{2}=0$.

In the above sums $0 \leq \ell, m \leq 1$ because of $\theta_{c_{1}} \ldots c_{n}$ being symmetric and traceless and ℓ takes even values and
m takes odd values for γ_{5} "even" tensors and vice-versa for γ_{5} - "odd" tensors. The numbers α_{h}, $h_{l}, \alpha_{m}^{\prime}, h_{m}^{\prime}$ are easily found from considerations of homozenelty.

Six vectors η_{2}^{A} are not included in the tensor struccure of \mathcal{D} because their contribution is proportional to the structure written above (see ref./l/)。 \widehat{D}_{d}^{h} must be a differential operator defined on the cones $\eta_{1}{ }^{2}=\eta_{2}^{2}=0$, finite for $\left(\eta_{1} \eta_{2}\right)=0$. In fact it turns out that this operator is essentially the one used in ref. $/ 1 /$, doe.

$$
\begin{equation*}
\tilde{D}_{d}^{h}=\left[\left(\eta_{1} \eta_{2}\right)^{-1} \eta_{4}^{A} \eta_{1}^{c} g^{B D} L_{Z A B} L_{2 B B}\right]^{h}= \tag{2.4}
\end{equation*}
$$

$$
=\left(\frac{x_{1}}{x_{2}}\right)^{h} \frac{(-1)^{h}}{\Gamma(-k)} \int_{0}^{1} d u i^{-h-1}(4-u)^{d+h-1} e^{u(2) \cdot \partial_{2}} F_{0}\left(d-1 ; \frac{x_{22}^{2}}{4} u(1-k) D_{2}\right) \equiv\left(\frac{x_{1}}{x_{2}}\right)^{h} D_{d}^{k}
$$

$$
x_{12}^{2}=i o\left(x_{16}-x_{40}\right)-\left(x_{1}-x_{2}\right)^{2}, \quad(12)_{\mu}=\left(x_{1}-x_{2}\right)_{\mu} .
$$

It can be easily checked that any other covariant oombination correctly defined on the cones $\eta_{1}{ }^{2}=0$ and $\eta_{2}{ }^{2}=0$ reduces to (2.3). The operator $\mathcal{D}_{a}^{\left(A / A B C_{1}, \cdots c_{n}\right)}\left(\eta_{1}, \bar{\eta}_{7}\right)$ is analogous to $\mathcal{D}_{s}^{\left(m i c_{1}, c_{h_{h}}\right)}\left(\gamma_{1}, \eta_{2}\right) \quad$ and is written in detail below in (2.7) and (2.8).

Now we are going to write down the explicit form of each term of the expansion.
I. Symmetrio $\gamma_{5-H_{0 v e n}}$ tenscr part (S.P.) of the expansion

$$
\begin{align*}
& \text { S.P. } X\left(\eta_{1}\right) \tilde{X}\left(\eta_{2}\right)=\sum_{n=1}^{\infty} S_{n}\left(\eta_{1} \eta_{2}\right)^{\alpha_{n}+\eta_{2}}\left(\beta \eta_{1}\right)\left(\beta \partial_{1}\right) \beta^{\beta_{1}} \eta_{1}^{A_{1}} \cdots \eta_{1}^{A_{n}}\left(\beta \eta_{1}\right) \tilde{D}_{d_{n}}^{h_{1}} \theta_{A_{1} \ldots \beta_{n}}\left(\eta_{1}\right)+ \\
& +\sum_{n=0}^{\infty} S_{n}^{\prime}\left(\eta_{1} \eta_{2}\right)^{\alpha_{n}-\eta_{n}}\left(\beta \eta_{1}\right) \eta_{1}^{A_{1}} \cdots \eta_{1}^{A_{n}}\left(\beta_{i}\right) \tilde{D}_{d_{n}}^{n} \theta_{A_{1} \ldots A_{n}}\left(\eta_{n}\right) \tag{2.5}\\
& \alpha_{n}=-\frac{1}{2}\left(d_{1}^{\prime}+d_{2}^{\prime}-d_{n}+n\right) \\
& h_{n}=-\frac{1}{2}\left(d_{1}^{\prime}-d_{2}^{\prime}+d_{n}+n\right) \\
& h=\dot{h}_{n}
\end{align*}
$$

2. Symmetric $\gamma_{5}-$ Modd" n tensor part ($S_{s} \mathrm{P}$)

$$
\begin{align*}
& s^{15 \prime} P . X\left(\eta_{1}\right) \widetilde{\eta_{1}}\left(\eta_{1}\right)= \tag{2,6}
\end{align*}
$$

$$
\begin{aligned}
& +\sum_{n=0}^{20} S_{n}^{(s)}\left(\eta_{1} \eta_{2}\right)^{\alpha_{n}^{(n)}}\left(\beta \eta_{1}\right) \beta^{A_{1}} \eta_{n}^{A_{1}} \cdots \eta_{1}^{A_{n}}\left(\rho \eta_{\eta}\right) \tilde{D}_{d_{n}}^{h^{(s 1}+y_{1}} \theta_{A_{1} \ldots A_{n}}^{(5 \cdot 1}\left(\eta_{n}\right)
\end{aligned}
$$

here $\alpha_{n}^{(5)}$ and $h^{(5)}$ are deilned as α_{n} and h in (2.5) ohanging $d_{n} \rightarrow d_{n}^{(5)}$.
3. Antisymmatric X_{5}-"ovon" tensor part (i..P.)

$$
\begin{aligned}
& \text { A.P. } X\left(\eta_{1}\right) \tilde{X}\left(\eta_{2}\right)=
\end{aligned}
$$

$$
\begin{align*}
& +\sum_{n=0}^{\infty} a_{n}^{\prime}\left(\eta \eta_{1}^{\alpha^{n}-k}\left(\beta \eta_{q}\right) \beta^{A} \beta^{B} \eta_{4}^{c_{1}} \cdots \eta^{c_{n}}\left(\beta \eta_{2}\right) \tilde{D}_{\alpha_{n}^{\prime}}^{u^{*}} \mathcal{F}_{A B C_{2} \ldots c_{n}\left(\eta_{2}\right)+}\right. \tag{2,7}
\end{align*}
$$

$$
\begin{aligned}
& +\sum_{n=1}^{\infty} \theta_{n}\left(\eta_{1} \eta_{2}\right)^{\alpha_{n}^{a}-\eta_{1}}\left(\beta \eta_{1}\right) \beta^{A} \eta_{1}^{B} \beta^{c_{i}} \eta_{1}^{c_{2}} \ldots \eta_{1}^{c_{n}}\left(\beta \eta_{2}\right) \tilde{D}_{j_{n}^{a}}^{h^{a}} \mathcal{F}_{A B L_{1}} \ldots c_{n}^{\left(\eta_{2}\right)}+
\end{aligned}
$$

$$
\begin{aligned}
& A_{i}^{(5)} F_{1} \delta\left(\eta_{1}\right) \tilde{X}\left(\eta_{2}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{n=0}^{\infty 0} \theta_{n}^{(s)}\left(\eta, \eta_{2}\right)^{\alpha_{n}(s)}\left(\beta p_{1}\right) \beta^{A} q_{1}^{B} p_{1} c_{1} \cdots \eta_{1} c_{n}\left(\beta \eta_{2}\right) \tilde{0}_{d_{n}^{a}}^{h^{n(s)}-\psi_{2}} F_{A B c_{1} \ldots c_{n}^{(s)}}^{\left(\eta_{2}\right)} .
\end{aligned}
$$

We must note that the fourmeonstants in (2.7) correspond to three and in some cases two constants in the threempoint functions $\left\langle X\left(\eta_{1}\right) \tilde{X}\left(\eta_{t}\right) \tilde{f}_{\left.A B C_{1}, \ldots \gamma_{n}\right\rangle_{0}}\right.$. The same is true for (2.8). (The relation between the three-point functions and the corresponding terms in the expansion: is illustrated in Appendix C with the case $n=1$ for $O_{\mu, \ldots \mu_{n}}$).

To account for pseudo -tensors we must add to S.P. and S.P. an expression that is obtained from them by multiplying by β_{7} and changing the notations respectively.
2.3 Transition to Minkowski space

Let us denote $\binom{n}{k}\left(x_{12}^{2}\right)^{\kappa}(t 2)^{\mu_{1}} \ldots(12)^{\mu_{n-k}}=X_{n}^{\mu_{1}} \mu_{1-n}^{\mu_{1}}$.
Using the relation (1.3) between $X-f i e i d s$ and η-fields we get from (2.5):

$$
\begin{aligned}
& \text { SeP. } \psi\left(x_{1}\right) \tilde{\psi}\left(x_{2}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2.9) }
\end{aligned}
$$

$$
\begin{aligned}
& -i \sum_{n=0}^{\infty} S_{n}^{\prime}\left(\frac{x_{n 2}^{2}}{2}\right)^{d_{n}-k / 2} \not 2 D^{\prime} \sum_{k=0}^{n} X_{n}^{\mu_{1} \cdots \mu_{n-k}} \bigcup_{\mu_{1} \cdots \mu_{n-k} \frac{j_{1}-5}{k}} \\
& \text { here } h^{\prime}=d_{2}^{\prime}-d_{1}^{\prime}-d_{n}+n+4 ; D=D_{d_{n}}^{h+1}, D^{\prime}=D_{d_{n}}^{h} \text {. }
\end{aligned}
$$

Deriving (2.9) we have used the relation $/ 1 /$:

$$
\begin{aligned}
& =\sum_{k=0}^{n} X_{n}^{\mu_{1} \ldots \mu_{n-k}} O_{\mu_{1} \cdots \mu_{n-k} f_{k} \ldots 5}^{\left(x_{n}\right)}
\end{aligned}
$$

To get the final result it remains to use (1.16) for noncanonical dimensions. This is done in Chapter 3.

For the symmetric Y_{r} - "odd" tensor part we get from (2.6):

$$
\begin{aligned}
& S^{\prime \prime} \cdot P, \Psi\left(x_{1}\right) \Psi\left(x_{2}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& \text { nee } D=D_{d_{4}^{(a)}}^{(s)}, h^{(n)}=d_{2}^{1}-d_{1}^{2}-d_{n}^{(5)}+n+4 \text {. }
\end{aligned}
$$

He wily not reproduce here the corresponding formae for the antisymmetric contributions.
3. Sugary of Results
3.1 Noncanonical dimensions

Introduce the operators:

$$
\begin{aligned}
& \tilde{r}_{n, x, r}^{m}=\frac{1}{l_{2}-2} \tilde{y}_{m, r}^{m}+z^{2} \text {. }
\end{aligned}
$$

Then we finally obtain for the S.P. from (2.9):
S.P. $\Psi\left(x_{1}\right) \Psi\left(x_{\lambda}\right)=$

$$
\begin{align*}
& \left.\left.+\left[x_{1} x_{1} O x_{1}+h^{\prime}(\sqrt{x} D-D \mid x)-2 \partial_{1}(x)^{v} O(k)_{y}-X_{1} D x_{12}^{2}\right] \sum_{k=0}^{n-1} V_{n_{1} k_{1} 1}^{\mu_{1} \cdot \mu_{n}} \bigcup_{\mu_{1} \ldots x_{n}}^{\left(x_{2}\right)}\right\}\right\}- \tag{3.2}\\
& -i \sum_{n=0}^{\infty} S_{n}^{\prime}\left(\frac{x_{22}^{2}}{2}\right)^{\alpha_{n}-\not / 2}\left\{2 D^{\prime} \sum_{k=0}^{n} Y_{n_{1} K_{1}, 0}^{\mu_{1} \ldots \mu_{n}} O_{\mu_{1} \ldots \mu_{n}}^{\left(x_{2}\right)} .\right.
\end{align*}
$$

Similarly for $\mathrm{S}_{\mathrm{s}}^{(5)} \mathrm{P}$. we obtain from (2.11) :

$$
\begin{aligned}
& S^{\prime \prime \prime} \text {. P. } \Psi\left(x_{1}\right) \tilde{\psi}\left(x_{2}\right)= \\
& =-i \sum_{n=0}^{\infty} S_{n}^{(s)}\left(\frac{x_{1}^{2}}{2}\right)^{\alpha_{n}^{(j)}}\left(h^{(j)}-\partial_{1}, k^{(j)}\right) D \cdot \sum_{k=0}^{n} Y_{n, k, 0}^{\mu \ldots \mu_{n}} \bigcup_{\mu_{1} .}^{\left(b^{i}\right)}\left(x_{n}\right)-
\end{aligned}
$$

$$
\begin{aligned}
& +\left[\left\{x x^{\mu} D+2\left(D(2)^{\mu}-(22)^{\mu} D\right)\right] \sum_{k=0}^{n-1} y_{n, k_{1} 0}^{\mu_{1} \cdots \mu_{n-1}} 0_{\mu \mu_{1} \ldots \mu_{n-1}}^{151} \quad\left(x_{2}\right)\right\} .
\end{aligned}
$$

Now for A.P. we obtain from (2,7):

$$
\begin{align*}
& \text { A. P. } \Psi\left(x_{1}\right) \tilde{\psi}\left(x_{\lambda}\right)=-i \sum_{n=1}^{\infty} a_{n}\left(\frac{x_{2}^{2}}{2}\right)^{\alpha_{n}^{a}+1 / 2}\left\{\left[\frac{1}{2} \gamma_{1}\left[\gamma_{1}^{d} \gamma^{\tau}\right] \gamma^{\mu} \gamma \mathcal{Z}^{\mu} D+\right.\right. \tag{3.4}
\end{align*}
$$

$$
\begin{aligned}
& \left.-\frac{\gamma_{0}}{2}\left[\gamma^{c} \gamma^{\tau}\right] D x_{12}^{2}+4 \gamma_{1} \gamma^{G}\left(x^{2} 0-D, K\right)(12)^{[}\right] \sum_{k=0}^{n-1} \tilde{Y}_{n, k, 1}^{\mu_{1} \ldots \mu_{n}} \tilde{n}_{k+1}^{F_{G \tau} \mu_{1} \ldots \mu_{n}}\left(x_{2}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.-2 \gamma_{1}(12)^{\nu} D^{\prime}(12)_{r}-\partial_{1} D^{D^{\prime} x_{12}^{2}}\right]^{(12)^{1}} \sum_{k=0}^{n} \tilde{\tilde{Y}}_{n, x_{1}, 0}^{\mu \ldots p_{n} \lambda} \tilde{\tilde{F}}_{A \tau} \quad\left(x_{1} \ldots \mu_{n}\right)\right\} \\
& \text { nere } D=D_{d_{n}^{a+1}}^{h^{\prime+}}, D^{\prime}=D_{\alpha_{a}^{a}}^{b_{a}^{a}}, h_{1}^{\prime a}=4+n-d_{n}^{a_{n}^{a}-d_{1}^{\prime}+d_{2}^{\prime}, h_{2}^{\prime a}=h_{1}^{\prime a}+2 . ~ . ~ . ~}
\end{aligned}
$$

Finelly for $A^{(3)}$ P. We get fron (2,0):

$$
\begin{align*}
& \left.+4 \gamma^{0} j^{\mu}\left((12]^{\tau} D-D(12)^{\tau}\right)\right] \sum_{k=0}^{n-1} \tilde{\gamma}_{n, k, 0}^{\mu} \ldots \mu_{n-1} \tilde{F}_{\sigma_{\sigma i} \mu_{\mu} \mu_{4} \cdot \mu_{0-1}}^{(5)}+ \tag{3.5}
\end{align*}
$$

$$
\begin{aligned}
& +\left[-\left(h^{\prime 2}-\partial_{1} x\right) \gamma^{\mu}\left(120-D(x)+\partial_{1} \partial^{\mu}\left(x_{12}^{2} D+D x_{12}^{2}+2(12)^{v} D(12) v\right)+2 \partial_{1}\left((12)^{\mu}(120-01 x)-\right.\right.\right.
\end{aligned}
$$

hore $\quad D=D_{d_{n}^{a(s)}}^{h^{a+5}+v_{2}}, \quad D^{\prime}=D_{d_{n}}^{h^{a(s)}-y_{2}}, h^{\prime a}=d_{2}^{\prime}-d_{1}^{\prime}-d_{n}+n+5$.
3.2. Cazonical dimenaions

In the case or oenomioal dinezsions we oannot use (1.16) and (1.22), (1.23), (1.24) to obtadi formulae analogous to the relations writton above without "unphysioal" oompenents. Howerer if the tensora are conserred it turn: out that in the only
 oomponerts oensel out and the expanaion reduoes to:

$$
\begin{aligned}
& \text { S.P. } \Psi\left(x_{1}\right) \tilde{\psi}\left(x_{2}\right)=-i \sum_{n=1}^{\infty} S_{n}\left(\frac{x_{n 2}^{2}}{2}\right)^{-d^{\prime}+\frac{y_{2}}{2}}\left[\left(2 \gamma^{\mu}+\gamma_{1} \gamma^{\mu}\langle x)(12)^{\mu_{1}} \ldots(12)^{\mu_{1}-1} D_{d_{n}^{(n-1)}}^{\left(x_{1}-1\right.}\right.\right.
\end{aligned}
$$

here

$$
\left.\stackrel{(n)}{d}_{(n)}^{n}=\int_{0}^{1} d u u^{-h-1}(1-u)^{d+h+n-1} F_{0}\left(d-1, \frac{x_{1}^{2}}{4} u\left(1,-u_{1}\right)\right]_{2}\right) \exp \left(u\left(u^{2}\right), \because\right)
$$

Analogous formulae can be written for the contribution of $\quad F_{\alpha \beta_{1}, \ldots \mu_{n}}$ 。(Let us note that in the case $a_{1}^{\prime} \neq d_{2}^{\prime}$ the three-point functions $\left\langle\psi \tilde{\psi} A_{\mu} \ldots \mu_{n}\right\rangle_{c} \quad$ vanish so the corresponding constants in the expansion must also be equal to zero).

The case of nonoonserved tensors with canonical dimensions is more complicated ${ }^{+ \text {) }}$. Our method does not give any result With physical components only. But there exists a conjecture (Which is verified in the simplest ouse noel) that for $d_{1}^{\prime} \boldsymbol{d a}_{2}^{\prime}=d^{\prime}$ formulae (3.6) hold also for this case. (Let us note that this is not a consequence of our basic formulae: In (3.6) $(12)^{\mu_{1}} \ldots(12)^{\mu_{n}}$ are written before the differential operator D_{d}^{h} which is justified for traceless and oonserred tensors only.)

The above written expansions are checked in the usual manner. One multiplies both sides by one of the basic fields, takes the raoul expectation value and verifies that the L.H.S. and RoleS. (in which only one term is left because of orthogonality of the two-point functions) coincide. This iss done in Appendix C for the base $\mathrm{n}=1$ of the symmetric tensors. t) There is a oonjeoture ${ }^{/ 5 /}$ which excludes this ouse but no oomplete proof is given.

scKMOMLBDGERSTS:

We want to express our gratitude to Prof.I.T.Todorov for attracting our attention to his problem and for illuminating discussions. We are thankful also to Dr. A.X.Polyakor for the discussions and useful rears.

APREDDIXA.

$$
\text { From }(1.19 b) \text { using }(1.20) \text { and }(1.21) \text { we get }
$$

$$
\begin{equation*}
2\left(d_{R}^{a}-3-n+k\right) F_{\alpha \beta \mu_{1} \ldots \mu_{n-k} \frac{5 \ldots 5}{k}}=\partial^{\lambda} F_{2 \beta \lambda \mu_{1} \ldots \mu_{n-k} \frac{5.5}{k-1}}+ \tag{1.1}
\end{equation*}
$$

and

$$
+2 F_{5 \beta \alpha \mu_{1} \ldots \mu_{n-k} \frac{5 \times 5}{k-1}}+2 F_{d 5 \beta \mu_{1} \ldots \mu_{n-k} \underset{\alpha \ldots 5}{5},}
$$

$$
\begin{equation*}
2\left(d_{n}^{a}-3-n+k\right) E_{\alpha 5 \mu_{1} \ldots \mu_{n-k} \frac{5 \ldots s}{k}}=\partial^{A} F_{\alpha 5 \lambda \mu_{1} \ldots \mu_{n-k} \underbrace{}_{k-1} .} . \tag{A,2}
\end{equation*}
$$

From (A.2) we obtain inductively

$$
\begin{equation*}
F_{\alpha 5 \mu_{1} \ldots \mu_{n-k} \frac{5_{n}^{k}}{k}}=\frac{\Gamma\left(d_{n}^{a}-n-2\right)}{2^{k} \Gamma\left(d_{n}^{a}-n-2+k\right)} \partial^{\lambda_{1}} \ldots \partial^{\lambda_{k}} F_{\alpha-5 \mu_{1} \ldots \mu_{n-k} \lambda_{1} \ldots \lambda_{k}} \tag{1,3}
\end{equation*}
$$

From (Λ_{0}) we obtain inductively using (Λ_{0}) :

$$
\begin{aligned}
& \left.+2 K\left(F_{\alpha 5 \mu_{1} \ldots \mu_{n-\alpha \beta} \lambda_{1} \ldots \lambda_{k-1}}+F_{5 \beta \mu_{1}} \mu_{n-\alpha \not-h,} A_{n-1}\right)\right] \text {. }
\end{aligned}
$$

Now to get rid of the unphysionl components we must express $F_{\alpha 5 \mu_{1} \ldots \mu_{n}}$ in terms of $F_{\alpha \beta \mu_{1} \ldots \mu_{n}}$ - To do this we make use of (1.19a) getting:

We take (A.5) at $k=0$ and insert ($A .4$) in it at $k=1$. We write down $n+1$ equations of this type for $F_{\mu_{i}} \mu_{1} \ldots \hat{\mu}_{\ldots} \ldots \mu_{n+1}$ and solve the resulting system of linear equations (in this osee $d_{n}^{a} \neq 2$ or $\left.d_{n}^{u} \neq n+3\right)$ with the result;

$$
\begin{aligned}
& F_{\alpha \mu_{n} \cdot \mu_{n}}=\frac{1}{2\left(d_{n}^{4}-n-3\right)\left(d_{n}^{4}-1\right)}\left[\left(d_{n}^{u}-n-2-\frac{1}{d_{n}^{4}-2}\right) \sigma_{c}^{N} F_{\alpha A \mu_{1} \ldots \mu_{n}}+\right. \\
& \sum_{i=1}^{n} i_{i}^{\lambda} F_{\alpha \mu_{1}, \lambda \mu_{1}, \hat{\mu}_{1} \cdots \mu_{n}}-\frac{1}{d_{n}^{n}-2} \sum_{i=1}^{n} j^{\lambda} F_{\mu_{1} \lambda \alpha \mu_{\mu}, \ldots \hat{\mu}_{1} \cdot \mu_{n}} .
\end{aligned}
$$

Finally we ins ort (A.6) in (A.3) and (A.4) to get (1.22) and (1.23), respeotivelu.

In the oases $d_{n}^{u} 2$ or $\frac{a}{a n} n+3$ we must require

$$
\partial^{\lambda} F_{\alpha \lambda \mu_{1} \ldots \mu_{n}}=0 \quad, \quad \partial^{\mu_{1}} F_{\alpha \beta \mu_{1} \ldots \mu_{n}}=0
$$

In onder to ensure the sompatibility of the above syatem of linoar equations, but in these onees the system has infinituly nany solutions and (106) is not ralid. (The samo considerations woula be ralid for $d_{h}^{2} 1$ and $\frac{d_{n}^{2}}{n}+2$, but these values are axoluded by positivity).

For noo we obtein the formula (1.24) direotly from (1.19a).

APPHIDIX B

Trownd Mhrae-Point Yuntiona

It ia woll known that the requirments of ooxformal invarianoe oonjletely deternine the two and throe-point functione ${ }^{/ 6 /}$.

The two-point funotionare deternined up to a oonatent. Besides, the following aoleotion ruze is true

$$
\begin{equation*}
\left\langle 0_{\mu_{1} \ldots \mu_{m}}\left(x_{1}\right) O_{r_{1} \ldots v_{n}}\left(x_{2}\right)\right\rangle_{0}=0 \tag{8.1}
\end{equation*}
$$

unlena nan and $\mathrm{dma}_{n}{ }^{x}$.

[^0]We write down some of the two and three-point functions needed for oheoking of the expansion (some of them ere nell known from other papers)

$$
\begin{gather*}
\left\langle O\left(x_{1}\right) O\left(x_{1}\right)\right\rangle_{c}=c_{c} \frac{\Gamma\left(d_{u}\right)}{(4 \pi)^{2}}\left(\frac{4}{x_{12}^{2}}\right)^{d_{c}}, \tag{B,2}\\
\left\langle O_{\mu}\left\langle x_{1}\right) O,\left(x_{1}\right)\right\rangle_{0}=c_{1} \frac{\Gamma\left(d_{1}\right)}{(4-\pi)^{2}}\left(\frac{4}{x_{12}^{2}}\right)^{d_{1}} V_{\mu \nu}, \tag{8.3}
\end{gather*}
$$

where

$$
\begin{align*}
& V_{\mu v}=g_{\mu v}+2 \frac{(12)_{\mu}(12)_{\nu}}{\lambda_{12}^{2}} . \\
& \left\langle 0_{\mu v}\left(x_{1}\right) 0_{\rho c}\left(x_{2}\right)\right\rangle_{0}=c_{2} \frac{\Gamma\left(d_{2}\right)}{(4 \pi)^{2}}\left(\frac{4}{x_{12}^{2}}\right)^{d_{2}}\left(V_{\mu(\rho} V_{c) \gamma}-\frac{1}{2} y_{\mu v i} \cdot j_{j} c\right) \tag{B.4}\\
& \left\langle F_{\mu \nu}\left(x_{t}\right) F_{\rho \dot{c}}\left(x_{2}\right)\right\rangle_{c}=C_{0}^{a} \frac{\left[\left(c_{c}^{(a)}\right)\right.}{(\dot{c} 11)^{2}}\left(\frac{4}{x_{12}^{2}}\right)^{d_{c}^{c}} V_{\mu[\rho} V_{\sigma j \nu} \tag{B.5}\\
& \left\langle F_{[\alpha \beta j v}\left(x_{1}\right) F_{\left[\alpha^{\prime} \beta \cdot\right] v^{\prime}}\left(x_{2}\right)\right\rangle_{0}=c_{1}^{a} \frac{\Gamma\left[d_{1}^{a}\right)}{[4 \pi]^{2}}\left(\frac{4}{x_{[2}^{2}}\right)^{d_{1}^{a}}\left[V_{d\left[l^{\prime}\right.} V_{\left.\beta^{\prime}\right] j} V_{V V^{\prime}}-\right. \tag{B,6}\\
& -\frac{1}{2} V_{V[\alpha} g_{\beta\left[L^{\prime}\right.} V_{\left.\beta^{\prime}\right] V}+\frac{1}{2} g_{\left[\nu^{\prime}[\alpha\right.} V_{\beta\left[\alpha^{\prime}\right.} g_{\left.\left.\beta^{\prime}\right] v\right]}+\frac{1}{2} g_{v i+1} g_{i]\left[x^{\prime}\right.} g_{\beta] v}
\end{align*}
$$

$$
\begin{aligned}
& \left\langle\psi\left(x_{1}\right) \tilde{\psi}\left(x_{2}\right) O_{\mu}\left(x_{3}\right)\right\rangle_{0}=-i\left(\frac{2}{x_{12}^{2}}\right)^{\frac{d_{1}^{\prime}+d_{2}^{\prime}-d_{1}}{2}\left(\frac{2}{x_{13}^{\prime}}\right)^{\frac{d_{1}+d_{1}^{\prime}-d_{2}^{\prime}-1}{2}}\left(\frac{2}{x_{13}^{2}}\right)^{\frac{d_{1}+d_{2}^{\prime}-d_{1}^{\prime}-1}{2}} .} \\
& \cdot\left\{g_{1}\left(x_{13}^{2}\right)^{-1} k y_{\mu} 3 \underline{ }\left(x_{i 3}^{2}\right)^{-1}+g_{9}^{\prime}\left(x_{12}^{2}\right)^{-1} \text { KI } n_{\mu}\right\}
\end{aligned}
$$

(BiB)
where

$$
\begin{aligned}
& \left\langle\psi\left(x_{1}\right) \tilde{\psi}\left(x_{k}\right) O_{\mu v}\left(x_{3}\right)\right\rangle_{c}=-i\left(\frac{2}{x_{12}^{2}}\right)^{\frac{d_{1}^{\prime}+d_{2}^{\prime}-d_{x}+1}{2}}\left(\frac{2}{x_{13}^{2}}\right)^{\frac{d_{2}+d_{1}^{\prime}-d_{1}^{\prime}-2}{2}}\left(\frac{2}{x_{23}^{2}}\right)^{\frac{d_{2}+d_{2}^{\prime}-d_{1}^{\prime}-2}{2}}
\end{aligned}
$$

APPRHDIX C
Geiationg jotven the ops gid the Three-Foint Funotions

Fife consider the Feotor contribution to the axpersion,
 expacision mith $U_{4}\left(x_{1}\right)$ and take the vacuuw oxpeotation ralues. When su a coneqquenog of the selection ruje (B.i) it follows:

$$
\begin{equation*}
\left\langle\psi\left(x_{1}\right) \tilde{\psi}\left(x_{2}\right) O_{\mu}\left(x_{3}\right)\right\rangle_{0}=\left\langle S_{1} \cdot T \cdot\left(\psi\left(x_{1}\right) \ddot{\psi}\left(x_{2}\right)\right) O_{\mu}\left(x_{1}\right)\right\rangle_{0} \tag{c.1}
\end{equation*}
$$

It is more oonronient to make the oeloulations using S.T. not in the final form (3.2) but in some intermediate form:

$$
\begin{align*}
& S_{1} T \cdot \psi\left(x_{1}\right) \hat{\psi}\left(x_{2}\right)=-\left(\frac{2}{x_{12}^{2}}\right)^{d^{\prime}-d / 2}\left\{-S_{1} T\left(x_{1}\right)\left(\left\{X_{1}\right)\left[i_{3} \dot{c}_{1}-2, \tilde{c}_{-}\left(x_{1} u_{i}-h\right)\right] .\right.\right. \tag{c.2}\\
& \cdot \beta^{A} D_{d}^{k+1} \theta_{A}\left(x_{2}\right)\left(\beta \cdot X_{2}\right) T\left(x_{2}\right)+i S_{1}^{1} r_{t}\left\{\frac{\alpha}{x_{i 2}^{2}} X_{1}^{A} \eta_{d}^{k} \Theta_{n}\left(x_{2}\right)\right\}
\end{align*}
$$

(here $X^{A}=\frac{1}{R} \eta^{A} \quad, \quad T\left(X_{1}\right)$ is defined by (1.9), dud d_{1} and fur simplicity $\left.d_{1}^{\prime}=d_{2}^{\prime}=d^{\prime}, h=-\frac{d+1}{2}\right)$.

Then expressing

$$
O_{v}\left(X_{3}\right)=E_{v}^{\prime}\left(X_{3}\right)-x_{3}\left[G_{5}\left(X_{3}\right)+U_{6}^{1}\left(X_{3}\right)\right]
$$

(we have used (1.13)) and using the relation for conformal invariant twompoint function in η-space

$$
\begin{equation*}
\left\langle\theta_{A}\left(X_{2}\right) \theta_{\mu}\left(X_{3}\right)\right\rangle_{0}=c_{1} \frac{2^{d}[(d)}{(4 \pi)^{2}}\left[g_{A \mu}\left(X_{2} X_{1}\right)-X_{i A} X_{2 \mu}+c_{1}^{\prime} X_{2 A} X_{3 \mu}\right]\left(X_{2} X_{3}\right)^{-d-1} \tag{c.3}
\end{equation*}
$$

we obtain for the R.Fi.S. of (C.1):

$$
\begin{aligned}
& \text { R.HS }=-\left(\frac{2}{x_{12}^{2}}\right)^{d-d / 2} C_{1} \frac{z^{d} \Gamma(d)}{\left(u_{1}\right)^{2}}\left\{s_{1}\left[-i_{1} x_{1}+i \tau_{+} \tau_{-}\left(x_{1} c_{1}-2 x_{1} a_{1}+2 h\right)\right] .\right. \\
& \left.\cdot\left[y_{\mu} r_{3}-i_{i} \tau_{-} x_{j \mu}+\left(\beta_{i} x_{3}\right) \frac{i_{j \mu}}{d}\right] D_{d}^{h+1}\left(\frac{2}{x_{23}^{2}}\right)^{d}\left(\tilde{i}_{+}-i i_{-} \tau_{+} x_{2}\right)+s_{1}^{\prime} \frac{2}{x_{12}^{2}} i \tau_{+}+I\left(\left(n i_{\mu}\right)+\frac{x_{13}^{2}}{2 d} \partial_{i \mu}\right) D_{d}^{h}\left(\frac{2}{x_{13}}\right)^{4}\right\}^{c .4}= \\
& =-i \tau_{+}\left(\frac{2}{x_{13}^{2}}\right)^{d^{2}-1 / 2}\left(\frac{2}{x_{13}^{2}} \frac{2}{x_{13}^{2}}\right)^{\frac{d-1}{2}}(-1)^{\frac{d-1}{2}} \frac{1\left(\frac{d}{2}\right) c_{1}}{(4 \pi)^{2}}\left\{-\left(\frac{d-1}{2}\right)^{2} S_{1} \frac{x}{x_{13}^{2}} x_{\mu} \frac{x_{2}}{x_{33}^{2}}+S_{i}^{1} \frac{x}{x_{12}^{2}} n_{\mu}\right\} \text {, }
\end{aligned}
$$

Where η_{μ} is given by (B.9). Comparing (C.4) and (B.8) we obtain the following relations between the constants S_{1}, S_{1}^{\prime} of the expansion, y_{1}, g_{1}^{\prime} of the three-point fixation and the constant C_{1} of the two point function:

$$
\begin{align*}
& g_{1}=-c_{1} \frac{\Gamma\left(\frac{d}{2}\right)}{(4 \pi)^{2}}\left(\frac{d-1}{2}\right)^{2} s_{1}, \tag{c.5}\\
& q_{1}^{\prime}=c_{1} \frac{\Gamma\left(\frac{d}{2}\right)}{(4 \pi)^{2}} s_{1}^{\prime} .
\end{align*}
$$

References:

1. S.Ferrara, R.Gatto and AnGrilla, Springer Trgota in Modern Physios, $701.67,1$ (Springer Verlag, Beriln, 1973).
2. L. Bonora, G.Sartori and K.Tomin, Nuovo Cimeylod, 667 (1972).
3. G.Mack and Abdus Salam, Ann. Phys., 53, 174 (1969).
4. I.Todorov, JINR E2-6642 , Dubna (1972) and

Leoture Notes in Phrsios, vol.17, Strong Interaction Physios (Springer Verlag, Berlin, 1972), pp. 270-299.
5. S.Ferrara, A.Grillo, G.Parisi and R.Gatto, Phys, Lett., 38B, 333 (1972).
6. A.M.Polyakov, Zh.ETF Pis.Red.g 12, 538 (1970), [Engl.translation JETP Lett., 12, 381 (1970)]; A. A.Kigdal, Phys.Lett., 37B; 386 (1971); E.Sohreief,Phys.Rev., D3, 980 (1971).

> Received by Publishing Department on September 12,1973 .

[^0]: F) We taks the generators (oorrasponding to apooial oonforanl transfarations) of the little groul K_{μ} to be aqual to Earo.

